Two Due-Date Assignment Scheduling with Location-Dependent Weights and a Deteriorating Maintenance Activity
Abstract
:1. Introduction
2. Problem Description
3. Results of
Algorithm 1: Solution of |
Initialization: Let , , and . Step 1: Calculate h from Lemma 2. Step 2: For If , then obtain the minimum value and the schedule by using (3)–(6); If , then let , , and ; If , then obtain the minimum value and the schedule by using (7)–(10); If , then let , , and ; If , then acquire the optimal value of and the schedule by the rule; Calculate ; If , then obtain the optimal value of and the schedule by the rule; Calculate . Step 3: Choose the minimum value , and obtain the corresponding schedule , and . |
4. Results of
Algorithm 2: Solution of . |
Initialization: Let , , and . Step 1: Calculate h from Lemma 5. Step 2: For If , then obtain the minimum value and the schedule by using (14)–(17); If , then let , , and ; If , then obtain the minimum value and the schedule by using (18)–(21); If , then let , , and ; If , then acquire the optimal value of and the schedule by the rule; Calculate ; If , then obtain the optimal value of and the schedule by the rule; Calculate . Step 3: Choose the minimum value , and obtain the corresponding schedule , and . |
5. An Example and Computational Experiments
5.1. An Example
5.2. Computational Experiments
- (1)
- , and ;
- (2)
- () is evenly distributed over [1, 100];
- (3)
- () is evenly distributed over [0.5, 0.95];
- (4)
- and () are evenly distributed over [1, 50].
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Lee, C.Y.; Leon, V.J. Machine scheduling with a rate-modifying activity. Eur. J. Oper. Res. 2001, 128, 119–128. [Google Scholar] [CrossRef]
- Ma, Y.; Chu, C.; Zuo, C. A survey of scheduling with deterministic machine availability constraints. Comput. Ind. Eng. 2010, 58, 199–211. [Google Scholar] [CrossRef]
- Strusevich, V.A.; Rustogi, K. Scheduling with Time-Changing Effects and Rate-Modifying Activities; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Mosheiova, G.; Oron, D. Due-date assignment and maintenance activity scheduling problem. Math. Comput. Model. 2006, 44, 1053–1057. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Wang, M.-Z. Single machine common flow allowance scheduling with a rate-modifying activity. Comput. Ind. Eng. 2010, 59, 898–902. [Google Scholar] [CrossRef]
- Yin, Y.; Cheng, T.C.E.; Xu, D.; Wu, C.-C. Common due date assignment and scheduling with a rate-modifying activity to minimize the due date, earliness, tardiness, holding, and batch delivery cost. Comput. Ind. Eng. 2012, 63, 223–234. [Google Scholar] [CrossRef]
- Bai, J.; Li, Z.-R.; Wang, J.-J.; Huang, X. Single machine common flow allowance scheduling with deteriorating jobs and a rate-modifying activity. Appl. Math. Model. 2014, 38, 5431–5438. [Google Scholar] [CrossRef]
- Cheng, M.; Xiao, S.; Luo, R.; Lian, Z. Single-machine scheduling problems with a batch-dependent aging effect and variable maintenance activities. Int. J. Prod. Res. 2018, 56, 7051–7063. [Google Scholar] [CrossRef]
- Detti, P.; Nicosia, G.; Pacifici, A.; De Lara, G.Z.M. Robust single machine scheduling with a flexible maintenance activity. Comput. Oper. Res. 2019, 107, 19–31. [Google Scholar] [CrossRef]
- Wang, J.-B.; Hu, Y.; Zhang, B. Common due-window assignment for single-machine scheduling with generalized earliness/tardiness penalties and a rate-modifying activity. Eng. Optim. 2021, 53, 496–512. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, J.; Wang, J.-B.; Li, L. Bicriteria common flow allowance scheduling with aging effect, convex resource allocation, and a rate-modifying activity on a single machine. Asia-Pac. J. Oper. Res. 2022, 39, 2150046. [Google Scholar] [CrossRef]
- Sun, X.; Liu, T.; Geng, X.-N.; Hu, Y.; Xu, J.-X. Optimization of scheduling problems with deterioration effects and an optional maintenance activity. J. Sched. 2023. [Google Scholar] [CrossRef]
- Ji, P.; Li, G.; Huo, Y.; Wang, J.-B. Single-machine common flow allowance scheduling with job-dependent aging effects and a deteriorating maintenance activity. Optim. Lett. 2014, 8, 1389–1400. [Google Scholar] [CrossRef]
- Fan, Y.P.; Zhao, C.-L. Single machine scheduling with multiple common due date assignment and aging effect under a deteriorating maintenance activity consideration. J. Appl. Math. Comput. 2014, 46, 51–66. [Google Scholar] [CrossRef]
- Mor, B.; Mosheiov, G. Scheduling a deteriorating maintenance activity and due-window assignment. Comput. Oper. Res. 2015, 57, 33–40. [Google Scholar] [CrossRef]
- Li, S.-S.; Chen, R.X. Scheduling with rejection and a deteriorating maintenance activity on a single machine. Asia-Pac. J. Oper. Res. 2017, 34, 1750010. [Google Scholar] [CrossRef]
- Zhu, H.; Li, M.; Zhou, Z.J. Machine scheduling with deteriorating and resource-dependent maintenance activity. Comput. Ind. Eng. 2015, 88, 479–486. [Google Scholar] [CrossRef]
- Wang, J.-J.; Wang, J.-B.; Liu, F. Parallel machines scheduling with a deteriorating maintenance activity. J. Oper. Res. Soc. 2011, 62, 1898–1902. [Google Scholar] [CrossRef]
- He, H.; Hu, Y.; Liu, W.-W. Scheduling with deterioration effects and maintenance activities under parallel processors. Eng. Optim. 2021, 53, 2070–2087. [Google Scholar] [CrossRef]
- Jia, X.; Lv, D.-Y.; Hu, Y.; Wang, J.-B.; Wang, Z.; Wang, E. Slack due-window assignment scheduling problem with deterioration effects and a deteriorating maintenance activity. Asia-Pac. J. Oper. Res. 2022, 39, 2250005. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X.; Li, L.; Zhao, P. A maintenance activity scheduling with time-and-position dependent deteriorating effects. Math. Biosci. Eng. 2022, 19, 11756–11767. [Google Scholar] [CrossRef]
- Zou, J.; Sui, Y.-K.; Gao, J.; Zhang, X.-Z. Parallel machines scheduling with deteriorating maintenance activities and job rejection. Asia-Pac. J. Oper. Res. 2023, 40, 2240013. [Google Scholar] [CrossRef]
- Gordon, V.S.; Proth, J.-M.; Chu, C.B. A survey of the state-of-the-art of common due date assignment and scheduling research. Eur. J. Oper. Res. 2002, 139, 1–25. [Google Scholar] [CrossRef]
- Gordon, V.S.; Proth, J.-M.; Chu, C.B. Due date assignment and scheduling: SLK, TWK and other due date assignment models. Prod. Plan. Control 2002, 13, 117–132. [Google Scholar] [CrossRef]
- Qian, J.; Zhan, Y. The due date assignment scheduling problem with delivery times and truncated sum-of-processing-times-based learning effect. Mathematics 2021, 9, 3085. [Google Scholar] [CrossRef]
- Lu, Y.-Y.; Wang, T.-T.; Wang, R.-Q.; Li, Y. A note on due-date assignment scheduling with job-dependent learning effects and convex resource allocation. Eng. Optim. 2021, 53, 1273–1281. [Google Scholar] [CrossRef]
- Wang, W. Single-machine due-date assignment scheduling with generalized earliness/tardiness penalties including proportional setup times. J. Appl. Math. Comput. 2022, 68, 1013–1031. [Google Scholar] [CrossRef]
- Brucker, P. Scheduling Algorithms; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Liu, W.; Hu, X.; Wang, X. Single machine scheduling with slack due dates assignment. Eng. Optim. 2017, 49, 709–717. [Google Scholar] [CrossRef]
- Wang, S.-H.; Lv, D.-Y.; Wang, J.-B. Research on position-dependent weights scheduling with delivery times and truncated sum-of-processing-times-based learning effect. J. Ind. Manag. Optim. 2023, 19, 2824–2837. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Wang, S.-H.; Wang, J.-B. Resource allocation scheduling with position-dependent weights and generalized earliness-tardiness cost. Mathematics 2023, 11, 222. [Google Scholar] [CrossRef]
- Jiang, C.; Zou, D.; Bai, D.; Wang, J.-B. Proportionate flowshop scheduling with position-dependent weights. Eng. Optim. 2020, 52, 37–52. [Google Scholar] [CrossRef]
- Liu, W.; Yao, Y.; Jiang, C. Single-machine resource allocation scheduling with due-date assignment, deterioration effect and position-dependent weights. Eng. Optim. 2020, 52, 701–714. [Google Scholar] [CrossRef]
- Lv, D.Y.; Wang, J.-B. Study on proportionate flowshop scheduling with due-date assignment and position-dependent weights. Optim. Lett. 2021, 15, 2311–2319. [Google Scholar] [CrossRef]
- Wang, L.-Y.; Huang, X.; Liu, W.-W.; Wu, Y.; Wang, J.-B. Scheduling with position-dependent weights, due-date assignment and past-sequence-dependent setup times. Rairo-Oper. Res. 2021, 55, S2747–S2758. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Li, L.; Zhao, P.; Zhang, R. Due date assignment scheduling with positional-dependent weights and proportional setup times. Math. Biosci. Eng. 2022, 19, 5104–5119. [Google Scholar] [CrossRef]
- Sun, X.; Geng, X.-N.; Liu, T. Due-window assignment scheduling in the proportionate flow shop setting. Ann. Oper. Res. 2020, 292, 113–131. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1976. [Google Scholar]
- Zhang, H.; Qin, C.; Zhang, W.; Xu, Z.; Xu, G.; Gao, Z. Energy-saving scheduling for flexible job shop problem with AGV transportation considering emergencies. Systems 2023, 11, 103. [Google Scholar] [CrossRef]
- Song, L.; Xu, Z.; Wang, C.; Su, J. A new decision method of flexible job shop rescheduling based on WOA-SVM. Systems 2023, 11, 59. [Google Scholar] [CrossRef]
Problem | Complexity | Ref. |
---|---|---|
Brucker [28] | ||
Liu et al. [29] | ||
Wang et al. [36] | ||
Wang et al. [36] | ||
Mosheiova and Oron [4] | ||
Wang and Wang [5] | ||
Theorem 1 | ||
Theorem 2 |
9 | 11 | 6 | 10 | 15 | 12 | 8 | |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | 126 | 126 | |||||
2 | 154 | 198 | |||||
3 | 96 | 72 | |||||
4 | 140 | 70 | 90 | 105 | 100 | 10 | |
5 | 210 | 42 | 54 | 60 | 45 | 6 | |
6 | 168 | 72 | 54 | ||||
7 | 112 | 48 |
, | , | |||||
41 | 509 | |||||
38 | 25 | |||||
36 | 26 | 1118 | ||||
39 | 26 | 902 | 836 | |||
38 | 26 | 866 | 776 | , | , |
Algorithm 1 (ms) | Algorithm 2 (ms) | |||||
---|---|---|---|---|---|---|
Jobs ( ) | Min | Mean | Max | Min | Mean | Max |
30 | 96.15 | 104.12 | 116.47 | 105.57 | 123.42 | 131.36 |
40 | 403.13 | 447.04 | 468.66 | 456.02 | 490.37 | 533.89 |
50 | 1100.62 | 1133.92 | 1207.00 | 1800.97 | 1869.21 | 1969.54 |
60 | 2385.21 | 2415.26 | 2480.62 | 2406.82 | 3211.60 | 3621.18 |
70 | 4764.21 | 4824.51 | 4962.15 | 4427.60 | 5595.50 | 6072.50 |
80 | 8988.25 | 9047.69 | 9174.25 | 9546.26 | 10,260.97 | 11,854.23 |
90 | 15,607.89 | 15,735.94 | 15,993.65 | 18,732.12 | 19,081.05 | 20,657.20 |
100 | 25,808.64 | 26,019.12 | 26,248.52 | 25,948.21 | 31,214.80 | 34,985.24 |
110 | 40,791.23 | 40,888.99 | 41,023.33 | 44,216.25 | 47,840.15 | 50,154.56 |
120 | 62,351.40 | 62,705.79 | 62,994.49 | 69,263.57 | 72,753.31 | 76,016.59 |
130 | 91,992.40 | 92,142.26 | 92,376.48 | 95,431.29 | 104,475.77 | 112,460.39 |
140 | 131,937.56 | 132,467.57 | 134,070.77 | 153,157.28 | 159,192.78 | 165,218.85 |
150 | 185,206.31 | 186,061.38 | 187,231.45 | 185,069.15 | 197,686.43 | 204,623.32 |
160 | 255,436.23 | 256,559.22 | 259,944.61 | 259,783.23 | 266,256.81 | 279,325.82 |
170 | 342,530.15 | 342,989.64 | 344,039.89 | 382,981.28 | 389,495.60 | 391,893.45 |
180 | 453,007.52 | 455,489.67 | 457,957.65 | 494,021.26 | 496,965.56 | 501,507.23 |
190 | 594,550.76 | 597,809.51 | 602,660.32 | 625,462.31 | 639,839.76 | 661,165.27 |
200 | 763,412.32 | 780,313.79 | 791,677.65 | 812,131.25 | 822,461.92 | 830,682.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Lv, D.-Y.; Wang, J.-B. Two Due-Date Assignment Scheduling with Location-Dependent Weights and a Deteriorating Maintenance Activity. Systems 2023, 11, 150. https://doi.org/10.3390/systems11030150
Wu W, Lv D-Y, Wang J-B. Two Due-Date Assignment Scheduling with Location-Dependent Weights and a Deteriorating Maintenance Activity. Systems. 2023; 11(3):150. https://doi.org/10.3390/systems11030150
Chicago/Turabian StyleWu, Wei, Dan-Yang Lv, and Ji-Bo Wang. 2023. "Two Due-Date Assignment Scheduling with Location-Dependent Weights and a Deteriorating Maintenance Activity" Systems 11, no. 3: 150. https://doi.org/10.3390/systems11030150
APA StyleWu, W., Lv, D. -Y., & Wang, J. -B. (2023). Two Due-Date Assignment Scheduling with Location-Dependent Weights and a Deteriorating Maintenance Activity. Systems, 11(3), 150. https://doi.org/10.3390/systems11030150