Sperm Quality Assessment in Honey Bee Drones
Abstract
:1. Introduction
2. Normal Sperm Structure in the Honey Bee
3. Sperm Life Cycle in the Honey Bee
3.1. Spermatogenesis and Sperm Storage in the Male
3.2. Mating, Sperm Storage in the Spermatheca and Egg Fertilization
4. In Vitro Evaluation of Semen Quality in the Honey Bee
4.1. Semen Collection
4.2. Semen Volume
4.3. Sperm Concentration
4.4. Sperm Motility
4.5. Sperm Morphology
4.6. Sperm Viability (Plasma Membrane Integrity)
4.7. Acrosome Integrity
4.8. Sperm Mitochondrial Function (Mitochondrial Membrane Potential)
4.9. DNA Fragmentation
4.10. Sperm Apoptosis
4.11. Effect of Stress
4.11.1. Oxidative Stress
4.11.2. Response to Induced Stress
4.12. Biochemical Assays
4.13. Multiparametric Sperm Quality Assessment
4.14. Contamination of Semen
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Soroker, V.; Hetzroni, A.; Yakobson, B.; David, D.; David, A.; Voet, H.; Slabezki, Y.; Efrat, H.; Levski, S.; Kamer, Y.; et al. Evaluation of colony losses in Israel in relation to the incidence of pathogens and pests. Apidologie 2011, 42, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Clermont, A.; Eickermann, M.; Kraus, F.; Georges, C.; Hoffmann, L.; Beyer, M. A survey on some factors potentially affecting losses of managed honey bee colonies in Luxembourg over the winters 2010/2011 and 2011/2012. J. Apic. Res. 2014, 53, 43–56. [Google Scholar] [CrossRef]
- Dainat, B.; Evans, J.D.; Chen, Y.P.; Gauthier, L.; Neumann, P. Predictive markers of honey bee colony collapse. PLoS ONE 2012, 7, e32151. [Google Scholar] [CrossRef]
- Pettis, J.S.; Rice, N.; Joselow, K.; van Engelsdorp, D.; Chaimanee, V. Colony failure linked to low sperm viability in honey bee (Apis mellifera) queens and an exploration of potential causative factors. PLoS ONE 2016, 11, e0147220. [Google Scholar] [CrossRef]
- Collins, A.M. Relationship between semen quality and performance of instrumentally inseminated honey bee queens. Apidologie 2000, 31, 421–429. [Google Scholar] [CrossRef] [Green Version]
- Collins, A.M. Functional longevity of honey bee, Apis mellifera, queens inseminated with low viability semen. J. Apic. Res. 2004, 43, 167–171. [Google Scholar] [CrossRef]
- Tarpy, D.R.; Olivarez, R. Measuring sperm viability over time in honey bee queens to determine patterns in stored-sperm and queen longevity. J. Apic. Res. 2014, 53, 493–495. [Google Scholar] [CrossRef]
- Locke, S.J.; Peng, Y.S. The effects of drone age, semen storage and contamination on semen quality in the honey-bee (Apis mellifera). Physiol. Entomol. 1993, 18, 144–148. [Google Scholar] [CrossRef]
- Rhodes, J.W.; Harden, S.; Spooner-Hart, R.; Anderson, D.L.; Wheen, G. Effects of age, season and genetics on semen and sperm production in Apis mellifera drones. Apidologie 2011, 42, 29–38. [Google Scholar] [CrossRef]
- Stürup, M.; Baer-Imhoof, B.; Nash, D.R.; Boomsma, J.J.; Baer, B. When every sperm counts: Factors affecting male fertility in the honeybee Apis mellifera. Behav. Ecol. 2013, 24, 1192–1198. [Google Scholar] [CrossRef] [Green Version]
- Rousseau, A.; Fournier, V.; Giovenazzo, P. Apis mellifera (Hymenoptera: Apidae) drone sperm quality in relation to age, genetic line, and time of breeding. Can. Entomol. 2015, 147, 702–711. [Google Scholar] [CrossRef]
- Schluns, H.; Schluns, E.A.; van Praagh, J.; Moritz, R.F.A. Sperm numbers in drone honeybees (Apis mellifera) depend on body size. Apidologie 2003, 34, 577–584. [Google Scholar] [CrossRef] [Green Version]
- Czekonska, K.; Chuda-Mickiewicz, B.; Chorbinski, P. The effect of brood incubation temperature on the reproductive value of honey bee (Apis mellifera) drones. J. Apic. Res. 2013, 52, 96–105. [Google Scholar] [CrossRef]
- Abdelkader, F.B.; Kairo, G.; Tchamitchian, S.; Cousin, M.; Senechal, J.; Crauser, D.; Vermandere, J.P.; Alaux, C.; Conte, Y.L.; Belzunces, L.P.; et al. Semen quality of honey bee drones maintained from emergence to sexual maturity under laboratory, semi-field and field conditions. Apidologie 2014, 45, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Czekonska, K.; Chuda-Mickiewicz, B.; Samborski, J. Quality of honeybee drones reared in colonies with limited and unlimited access to pollen. Apidologie 2015, 46, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zaitoun, S.; Al-Ghzawi, A.A.M.; Kridli, R. Monthly changes in various drone characteristics of Apis mellifera ligustica and Apis mellifera syriaca. Entomol. Sci. 2009, 12, 208–214. [Google Scholar] [CrossRef]
- Collins, A.M.; Pettis, J.S. Effect of varroa infestation on semen quality. Am. Bee J. 2001, 141, 590–593. [Google Scholar]
- DelCacho, E.; Marti, J.I.; Josa, A.; Quilez, J.; Sanchez-Acedo, C. Effect of Varroa jacobsoni parasitization in the glycoprotein expression on Apis mellifera spermatozoa. Apidologie 1996, 27, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Ciereszko, A.; Wilde, J.; Dietrich, G.J.; Siuda, M.; Bak, B.; Judycka, S.; Karol, H. Sperm parameters of honeybee drones exposed to imidacloprid. Apidologie 2017, 48, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Gajger, I.T.; Sakac, M.; Gregorc, A. Impact of thiamethoxam on honey bee queen (Apis mellifera carnica) reproductive morphology and physiology. Bull. Environ. Contam. Toxicol. 2017, 99, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.M.; Dahlgren, L.; Siegfried, B.D.; Ellis, M.D. Effect of in-hive miticides on drone honey bee survival and sperm viability. J. Apic. Res. 2013, 52. [Google Scholar] [CrossRef]
- Taylor, M.A.; Guzman-Novoa, E.; Morfin, N.; Buhr, M.M. Improving viability of cryopreserved honey bee (Apis mellifera L.) sperm with selected diluents, cryoprotectants, and semen dilution ratios. Theriogenology 2009, 72, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, B.K.; Herr, C. Factors affecting the successful cryopreservation of honey bee (Apis mellifera) spermatozoa. Apidologie 2010, 41, 548–556. [Google Scholar] [CrossRef] [Green Version]
- Wegener, J.; May, T.; Knollmann, U.; Kamp, G.; Muller, K.; Bienefeld, K. In vivo validation of in vitro quality tests for cryopreserved honey bee semen. Cryobiology 2012, 65, 126–131. [Google Scholar] [CrossRef]
- Hopkins, B.K.; Cobey, S.W.; Herr, C.; Sheppard, W.S. Gel-coated tubes extend above-freezing storage of honey bee (Apis mellifera) semen to 439 days with production of fertilised offspring. Reprod. Fertil. Dev. 2017, 29, 1944–1949. [Google Scholar] [CrossRef]
- Collins, A.M. A scientific note on the effect of centrifugation on pooled honey bee semen. Apidologie 2003, 34, 469–470. [Google Scholar] [CrossRef]
- Collins, A.M. Sources of variation in the viability of honey bee, Apis mellifera L., semen collected for artificial insemination. Invertebr. Reprod. Dev. 2004, 45, 231–237. [Google Scholar] [CrossRef]
- Shafir, S.; Kabanoff, L.; Duncan, M.; Oldroyd, B.P. Honey bee (Apis mellifera) sperm competition in vitro—Two are no less viable than one. Apidologie 2009, 40, 556–561. [Google Scholar] [CrossRef] [Green Version]
- Den Boer, S.P.; Baer, B.; Boomsma, J.J. Seminal fluid mediates ejaculate competition in social insects. Science 2010, 327, 1506–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lino-Neto, J.; Bao, S.N.; Dolder, H. Sperm ultrastructure of the honey bee (Apis mellifera) (L) (Hymenoptera, Apidae) with emphasis on the nucleus-flagellum transition region. Tissue Cell 2000, 32, 322–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, D.M. Insect sperm: Their structure and morphogenesis. J. Cell Biol. 1970, 44, 243. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.Y.S.; Yin, C.M.; Yin, L.R.S. Ultrastructure of honey-Bee, Apis mellifera, sperm with special emphasis on the acrosomal complex following high-pressure freezing fixation. Physiol. Entomol. 1993, 18, 93–101. [Google Scholar] [CrossRef]
- Bishop, G.H. Fertilization in the honey-bee. I. The male sexual organs: Their histological structure and physiological functioning. J. Exp. Zool 1920, 31, 224–265. [Google Scholar] [CrossRef] [Green Version]
- Hoage, T.R.; Kessel, R.G. An electron microscope study of the process of differentiation during spermatogenesis in the drone honey bee (Apis mellifera L.) with special reference to centriole replication and elimination. J. Ultrastruct. Res. 1968, 24, 6–32. [Google Scholar] [CrossRef]
- Jaycox, E.R. The Effects of Various Foods and Temperatures on Sexual Maturity of the Drone Honey Bee (Apis mellifera). Ann. Entomol. Soc. Am. 1961, 54, 519–523. [Google Scholar] [CrossRef]
- Hayashi, S.; Satoh, T. Sperm maturation process occurs in the seminal vesicle following sperm transition from testis in honey bee males. Apidologie 2019, 50, 369–378. [Google Scholar] [CrossRef]
- Couvillon, M.J.; Hughes, W.O.H.; Perez-Sato, J.A.; Martin, S.J.; Roy, G.G.F.; Ratnieks, F.L.W. Sexual selection in honey bees: Colony variation and the importance of size in male mating success. Behav. Ecol. 2010, 21, 520–525. [Google Scholar] [CrossRef] [Green Version]
- Hellmich, R.L.; Rinderer, T.E.; Danka, R.G.; Collins, A.M.; Boykin, D.L. Flight Times of Africanized and European Honey-Bee Drones (Hymenoptera, Apidae). J. Econ. Entomol. 1991, 84, 61–64. [Google Scholar] [CrossRef]
- Reyes, M.; Crauser, D.; Prado, A.; Le Conte, Y. Flight activity of honey bee (Apis mellifera) drones. Apidologie 2019, 50, 669–680. [Google Scholar] [CrossRef]
- Baudry, E.; Solignac, M.; Garnery, L.; Gries, M.; Cornuet, J.M.; Koeniger, N. Relatedness among honeybees (Apis mellifera) of a drone congregation. Proc. Biol. Sci. 1998, 265, 2009–2014. [Google Scholar] [CrossRef] [Green Version]
- Schluns, H.; Moritz, R.F.A.; Neumann, P.; Kryger, P.; Koeniger, G. Multiple nuptial flights, sperm transfer and the evolution of extreme polyandry in honeybee queens. Anim. Behav. 2005, 70, 125–131. [Google Scholar] [CrossRef]
- Koeniger, N.; Koeniger, G. Mating flight duration of Apis mellifera queens: As short as possible, as long as necessary. Apidologie 2007, 38, 606–611. [Google Scholar] [CrossRef]
- Taber, S.; Wendel, J. Concerning the number of times queen bees mate. J. Econ. Entomol. 1958, 51, 786–789. [Google Scholar] [CrossRef]
- Kraus, F.B.; Koeniger, N.; Tingek, S.; Moritz, R.F.A. Using drones for estimating colony number by microsatellite DNA analyses of haploid males in Apis. Apidologie 2005, 36, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Withrow, J.M.; Tarpy, D.R. Cryptic “royal” subfamilies in honey bee (Apis mellifera) colonies. PLoS ONE 2018, 13, e0199124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brutscher, L.M.; Baer, B.; Nino, E.L. Putative Drone Copulation Factors Regulating Honey Bee (Apis mellifera) Queen Reproduction and Health: A Review. Insects 2019, 10, 8. [Google Scholar] [CrossRef] [Green Version]
- Haberl, M.; Tautz, D. Sperm usage in honey bees. Behav. Ecol. Sociobiol. 1998, 42, 247–255. [Google Scholar] [CrossRef]
- Baer, B. Sexual selection in Apis bees. Apidologie 2005, 36, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Laidlaw, H.H.; Page, R.E. Polyandry in honey bees (Apis-mellifera L)—Sperm utilization and intracolony genetic-relationships. Genetics 1984, 108, 985–997. [Google Scholar]
- Tarpy, D.R.; Keller, J.J.; Caren, J.R.; Delaney, D.A. Assessing the mating ‘health’ of commercial honey bee queens. J. Econ. Entomol. 2012, 105, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Lodesani, M.; Balduzzi, D.; Galli, A. A study on spermatozoa viability over time in honey bee (Apis mellifera ligustica) queen spermathecae. J. Apic. Res. 2004, 43, 27–28. [Google Scholar] [CrossRef]
- Baer, B.; Collins, J.; Maalaps, K.; den Boer, S.P. Sperm use economy of honeybee (Apis mellifera) queens. Ecol. Evol. 2016, 6, 2877–2885. [Google Scholar] [CrossRef] [PubMed]
- Mackensen, O. Experiments in the technique of artificial insemination of queen bees. J. Econ. Entomol. 1955, 48, 418–421. [Google Scholar] [CrossRef]
- Moritz, R.F.A. Influence of Inbreeding on the Fitness of Drones. Apidologie 1981, 12, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Rinderer, T.E.; Collins, A.M.; Pesante, D. A comparison of africanized and european drones-weights, mucus gland and seminal-vesicle weights, and counts of spermatozoa. Apidologie 1985, 16, 407–411. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.Y.S.; Yin, C.M.; Yin, L.R.S. Effect of rapid freezing and thawing on cellular integrity of honey-bee sperm. Physiol. Entomol. 1992, 17, 269–276. [Google Scholar] [CrossRef]
- Rinderer, T.E.; De Guzman, L.I.; Lancaster, V.A.; Delatte, G.T.; Stelzer, J.A. Varroa in the mating yard: I. The effects of Varroa jacobsoni and Apistan (R) on drone honey bees. Am. Bee J. 1999, 139, 134–139. [Google Scholar]
- Duay, P.; De Jong, D.; Engels, W. Decreased flight performance and sperm production in drones of the honey bee (Apis mellifera) slightly infested by Varroa destructor mites during pupal development. Genet. Mol. Res. 2002, 1, 227–232. [Google Scholar] [PubMed]
- Phiancharoen, M.; Wongsiri, S.; Koeniger, N.; Koeniger, G. Instrumental insemination of Apis mellifera queens with hetero- and conspecific spermatozoa results in different sperm survival. Apidologie 2004, 35, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Gencer, H.V.; Firatli, C. Reproductive and morphological comparisons of drones reared in queenright and laying worker colonies. J. Apic. Res. 2005, 44, 163–167. [Google Scholar] [CrossRef]
- Mazeed, A.; Mohanny, K.M. Some reproductive characteristics of honeybee drones in relation to their ages. Entomol. Res. 2010, 40, 245–250. [Google Scholar] [CrossRef]
- Gencer, H.V.; Kahya, Y. The viability of sperm in lateral oviducts and spermathecae of instrumentally inseminated and naturally mated honey bee (Apis mellifera L.) queens. J. Apic. Res. 2011, 50, 190–194. [Google Scholar] [CrossRef]
- Nur, Z.; Seven-Cakmak, S.; Ustuner, B.; Cakmak, I.; Erturk, M.; Abramson, C.I.; Sagirkaya, H.; Soylu, M.K. The use of the hypo-osmotic swelling test, water test, and supravital staining in the evaluation of drone sperm. Apidologie 2012, 43, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Rzymski, P.; Langowska, A.; Fliszkiewicz, M.; Poniedzialek, B.; Karczewski, J.; Wiktorowicz, K. Flow cytometry as an estimation tool for honey bee sperm viability. Theriogenology 2012, 77, 1642–1647. [Google Scholar] [CrossRef]
- Tofilski, A.; Chuda-Mickiewicz, B.; Czekonska, K.; Chorbinski, P. Flow cytometry evidence about sperm competition in honey bee (Apis mellifera). Apidologie 2012, 43, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Czekonska, K.; Chuda-Mickiewicz, B.; Chorbinski, P. The Influence of Honey Bee (Apis Mellifera) Drone Age on Volume of Semen and Viability of Spermatozoa. J. Apic. Sci. 2013, 57, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Gencer, H.V.; Kahya, Y.; Woyke, J. Why the viability of spermatozoa diminishes in the honeybee (Apis mellifera) within short time during natural mating and preparation for instrumental insemination. Apidologie 2014, 45, 757–770. [Google Scholar] [CrossRef] [Green Version]
- Alcay, S.; Ustuner, B.; Cakmak, I.; Cakmak, S.; Nur, Z. Effects of Various Cryoprotective Agents on Post-Thaw Drone Semen Quality. Kafkas Univ. Vet. Fak. Derg. 2015, 21, 31–35. [Google Scholar] [CrossRef]
- Rousseau, A.; Giovenazzo, P. Optimizing drone fertility with spring nutritional supplements to honey bee (Hymenoptera: Apidae) colonies. J. Econ. Entomol. 2016, 109, 1009–1014. [Google Scholar] [CrossRef]
- Kairo, G.; Provost, B.; Tchamitchian, S.; Abdelkader, F.B.; Bonnet, M.; Cousin, M.; Senechal, J.; Benet, P.; Kretzschmar, A.; Belzunces, L.P.; et al. Drone exposure to the systemic insecticide Fipronil indirectly impairs queen reproductive potential. Sci. Rep. 2016, 6, 31904. [Google Scholar] [CrossRef] [Green Version]
- Fisher, A.; Rangel, J. Exposure to pesticides during development negatively affects honey bee (Apis mellifera) drone sperm viability. PLoS ONE 2018, 13, e0208630. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.; Harrison, K.; Love, C.; Varner, D.; Rangel, J. Spatio-Temporal Variation in Viability of Spermatozoa of Honey Bee, Apis mellifera, Drones in Central Texas Apiaries. Southwest. Entomol. 2018, 43, 343–356. [Google Scholar] [CrossRef]
- Alcay, S.; Cakmak, S.; Cakmak, I.; Mulkpinar, E.; Gokce, E.; Ustuner, B.; Sen, H.; Nur, Z. Successful cryopreservation of honey bee drone spermatozoa with royal jelly supplemented extenders. Cryobiology 2019, 87, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Yaniz, J.; Palacin, I.; Santolaria, P. Sperm Viability Assessment in Honey Bee Drones using the OpenCASA System. In Proceedings of the 46th APIMONDIA—International Apicultural Congress, Montreal, QC, Canada, 2019; p. 90. [Google Scholar]
- Cobey, S.W.; Tarpy, D.R.; Woyke, J. Standard methods for instrumental insemination of Apis mellifera queens. J. Apic. Res. 2013, 52, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Gencer, H.V.; Kahya, Y. Are sperm traits of drones (Apis mellifera L.) from laying worker colonies noteworthy? J. Apic. Res. 2011, 50, 130–137. [Google Scholar] [CrossRef]
- Woyke, J. Natural and artificial insemination of queen honeybees. Bee World 1962, 43, 21–25. [Google Scholar] [CrossRef]
- Schlüns, H.; Koeniger, G.; Koeniger, N.; Moritz, R.F.A. Sperm utilization pattern in the honeybee (Apis mellifera). Behav. Ecol. Sociobiol. 2004, 56, 458–463. [Google Scholar] [CrossRef]
- Collins, A.M. Insemination of honey bee, Apis mellifera, queens with non-frozen stored semen: Sperm concentration measured with a spectrophotometer. J. Apic. Res. 2005, 44, 141–145. [Google Scholar] [CrossRef]
- Koeniger, G.; Koeniger, N.; Tingek, S.; Phiancharoen, M. Variance in spermatozoa number among Apis dorsata drones and among Apis mellifera drones. Apidologie 2005, 36, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Anzar, M.; Kroetsch, T.; Buhr, M.M. Comparison of Different Methods for Assessment of Sperm Concentration and Membrane Integrity With Bull Semen. J. Androl. 2009, 30, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Prathalingam, N.S.; Holt, W.W.; Revell, S.G.; Jones, S.; Watson, P.E. The precision and accuracy of six different methods to determine sperm concentration. J. Androl. 2006, 27, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Delaney, D.A.; Keller, J.J.; Caren, J.R.; Tarpy, D.R. The physical, insemination, and reproductive quality of honey bee queens (Apis mellifera L.). Apidologie 2011, 42, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cobey, S.W. Comparison studies of instrumentally inseminated and naturally mated honey bee queens and factors affecting their performance. Apidologie 2007, 38, 390–410. [Google Scholar] [CrossRef] [Green Version]
- Amiri, E.; Strand, M.K.; Rueppell, O.; Tarpy, D.R. Queen Quality and the Impact of Honey Bee Diseases on Queen Health: Potential for Interactions between Two Major Threats to Colony Health. Insects 2017, 8, 48. [Google Scholar] [CrossRef]
- Gregorc, A.; Skerl, M.I.S. Characteristics of honey bee (Apis mellifera carnica, Pollman 1879) queens reared in slovenian commercial breeding stations. J. Apic. Sci. 2015, 59, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Yaniz, J.L.; Silvestre, M.A.; Santolaria, P.; Soler, C. CASA-Mot in mammals: An update. Reprod. Fertil. Dev. 2018, 30, 799–809. [Google Scholar] [CrossRef]
- Yaniz, J.; Palacin, I.; Santolaria, P. Effect of chamber characteristics, incubation, and diluent on motility of honey bee (Apis mellifera) drone sperm. Apidologie 2019, 50, 472–481. [Google Scholar] [CrossRef]
- Lensky, Y.; Schindler, H. Motility and reversible inactivation of honeybee spermatozoa in vivo and in vitro. Ann. Abeille 1967, 10, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Verma, L.R. Biology of honeybee (Apis mellifera L.) spermatozoa. 1. Effect of different diluents on motility and survival. Apidologie 1978, 9, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Kaftanoglu, O.; Peng, Y.S. Preservation of Honeybee Spermatozoa in Liquid-Nitrogen. J. Apic. Res. 1984, 23, 157–163. [Google Scholar] [CrossRef]
- Dadkhah, F.; Nehzati-Paghaleh, G.; Zhandi, M.; Emamverdi, M.; Hopkins, B.K. Preservation of honey bee spermatozoa using egg yolk and soybean lecithin-based semen extenders and a modified cryopreservation protocol. J. Apic. Res. 2016, 55, 279–283. [Google Scholar] [CrossRef]
- Wegener, J.; May, T.; Kamp, G.; Bienefeld, K. New methods and media for the centrifugation of honey bee (Hymenoptera: Apidae) drone semen. J. Econ. Entomol. 2014, 107, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegener, J.; May, T.; Kamp, G.; Bienefeld, K. A successful new approach to honeybee semen cryopreservation. Cryobiology 2014, 69, 236–242. [Google Scholar] [CrossRef]
- Werner, M.; Simmons, L.W. Insect sperm motility. Biol. Rev. Camb. Philos. Soc. 2008, 83, 191–208. [Google Scholar] [CrossRef]
- Lodesani, M.; Balduzzi, D.; Galli, A. Functional characterisation of semen in honeybee queen (A. m. ligustica) spermatheca and efficiency of the diluted semen technique in instrumental insemination. Ital. J. Anim. Sci. 2004, 3, 385–392. [Google Scholar] [CrossRef]
- Paynter, E.; Baer-Imhoof, B.; Linden, M.; Lee-Pullen, T.; Heel, K.; Rigby, P.; Baer, B. Flow cytometry as a rapid and reliable method to quantify sperm viability in the honeybee Apis mellifera. Cytom. Part A 2014, 85, 463–472. [Google Scholar] [CrossRef]
- Gontartz, A.; Banaszewska, D.; Gryzinska, M.; Andraszek, K. Differences in drone sperm morphometry and activity at the beginning and end of the season. Turk. J. Vet. Anim. Sci. 2016, 40, 598–602. [Google Scholar] [CrossRef] [Green Version]
- Yániz, J.L.; Palacín, I.; Vicente-Fiel, S.; Gosálvez, J.; López-Fernández, C.; Santolaria, P. Comparison of membrane-permeant fluorescent probes for sperm viability assessment in the ram. Reprod. Domest. Anim. 2013, 48, 598–603. [Google Scholar] [CrossRef]
- Peng, Y.S.; Locke, S.; Nasr, M.; Montague, M.A. Differential staining for live and dead sperm of honey bees. Physiol. Entomol. 1990, 15, 211–217. [Google Scholar] [CrossRef]
- Collins, A.M.; Donoghue, A.M. Viability assessment of honey bee, Apis mellifera, sperm using dual fluorescent staining. Theriogenology 1999, 51, 1513–1523. [Google Scholar] [CrossRef]
- Wegener, J.; Bienefeld, K. Toxicity of cryoprotectants to honey bee semen and queens. Theriogenology 2012, 77, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Chaimanee, V.; Evans, J.D.; Chen, Y.; Jackson, C.; Pettis, J.S. Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. J. Insect. Physiol. 2016, 89, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangel, J.; Fisher, A. Factors affecting the reproductive health of honey bee (Apis mellifera) drones—A review. Apidologie 2019, 50, 759–778. [Google Scholar] [CrossRef] [Green Version]
- Lybaert, P.; Danguy, A.; Leleux, F.; Meuris, S.; Lebrun, P. Improved methodology for the detection and quantification of the acrosome reaction in mouse spermatozoa. Histol. Histopathol. 2009, 24, 999–1007. [Google Scholar] [PubMed]
- Marti, J.I.; Del Cacho, E.; Josa, A.; Espinosa, E.; Muiño-Blanco, T. Plasma membrane glycoproteins of mature and inmature drone honey bee (Apis mellifera L.) spermatozoa: Lecting-binding as seen by light and electron microscopy. Theriogenology 1996, 46, 181–190. [Google Scholar] [CrossRef]
- Gillan, L.; Evans, G.; Maxwell, W.M. Flow cytometric evaluation of sperm parameters in relation to fertility potential. Theriogenology 2005, 63, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.F.; Gadella, B.M. Detection of damage in mammalian sperm cells. Theriogenology 2006, 65, 958–978. [Google Scholar] [CrossRef]
- Nagy, S.; Jansen, J.; Topper, E.K.; Gadella, B.M. A triple-stain flow cytometric method to assess plasma- and acrosome-membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biol. Reprod. 2003, 68, 1828–1835. [Google Scholar] [CrossRef]
- Storey, B.T. Mammalian sperm metabolism: Oxygen and sugar, friend and foe. Int. J. Dev. Biol. 2008, 52, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Moscatelli, N.; Spagnolo, B.; Pisanello, M.; Lemma, E.D.; De Vittorio, M.; Zara, V.; Pisanello, F.; Ferramosca, A. Single-cell-based evaluation of sperm progressive motility via fluorescent assessment of mitochondria membrane potential. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Pena, F.J.; Rodriguez, J.M.O.; Gil, M.C.; Ferrusola, C.O. Flow cytometry analysis of spermatozoa: Is it time for flow spermetry? Reprod. Domest. Anim. 2018, 53, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Dolník, M.; Mudroňová, D.; Pošivák, J.; Lazar, G.; Mudroň, P. Flow cytometry in assessment of sperm integrity and functionality—A review. Acta Vet. Brno 2019, 88, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Borsuk, G.; Kozlowska, M.; Anusiewicz, M.; Olszewski, K. A scientific note on DNA fragmentation rates in sperm collected from drones and spermathecae of queens of different age, with possible implications on the scattered brood phenomenon. Apidologie 2018, 49, 803–806. [Google Scholar] [CrossRef] [Green Version]
- Borsuk, G.; Kozlowska, M.; Anusiewicz, M.; Paleolog, J. Nosema ceranae changes semen characteristics and damages sperm DNA in honeybee drones. Invertebr. Surviv. J. 2018, 15, 197–202. [Google Scholar]
- Del Valle, I.; Mendoza, N.; Casao, A.; Cebrian-Perez, J.A.; Perez-Pe, R.; Muino-Blanco, T. Significance of non-conventional parameters in the evaluation of cooling-induced damage to ram spermatozoa diluted in three different media. Reprod. Domest. Anim. 2010, 45, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, S.; Pertusa, J.; Yaniz, J.L.; Nunez, J.; Soler, C.; Silvestre, M.A. Effect of different oxidative stress degrees generated by hydrogen peroxide on motility and DNA fragmentation of zebrafish (Danio rerio) spermatozoa. Reprod. Domest. Anim. 2018, 53, 1498–1505. [Google Scholar] [CrossRef]
- Fiser, P.S.; Hansen, C.; Underhill, L.; Marcus, G.J. New thermal stress test to assess the viability of cryopreserved boar sperm. Cryobiology 1991, 28, 454–459. [Google Scholar] [CrossRef]
- Sellem, E.; Broekhuijse, M.L.W.J.; Chevrier, L.; Camugli, S.; Schmitt, E.; Schibler, L.; Koenen, E.P.C. Use of combinations of in vitro quality assessments to predict fertility of bovine semen. Theriogenology 2015, 84, 1447–1454. [Google Scholar] [CrossRef]
- Battut, I.B.; Kempfer, A.; Becker, J.; Lebailly, L.; Camugli, S.; Chevrier, L. Development of a new fertility prediction model for stallion semen, including flow cytometry. Theriogenology 2016, 86, 1111–1131. [Google Scholar] [CrossRef]
- Yaniz, J.L.; Soler, C.; Alquezar-Baeta, C.; Santolaria, P. Toward an integrative and predictive sperm quality analysis in Bos taurus. Anim. Reprod. Sci. 2017, 181, 108–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, K.E.; Evison, S.E.F.; Baer, B.; Hughes, W.O.H. The cost of promiscuity: Sexual transmission of Nosema microsporidian parasites in polyandrous honey bees. Sci. Rep. 2015, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Evans, J.D.; Murphy, C.; Gutell, R.; Zuker, M.; Gundensen-Rindal, D.; Pettis, J.S. Morphological, molecular, and phylogenetic characterization of Nosema ceranae, a microsporidian parasite isolated from the European honey bee, Apis mellifera. J. Eukaryot. Microbiol. 2009, 56, 142–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Origin of Semen * | Sperm Quantity (×106/drone) | Sperm Viability (%) * | Reference |
---|---|---|---|
SV | 9.9 | [54] | |
SV | 10.8 | [36] | |
SV | 8.5 | - | [55] |
SV | 11.4 | - | [56] |
E | 98.5 - E/N | [57] | |
E | 86.9 - E/N | [9] | |
SV | 8.6 | - | [58] |
E | 8.7 | 99.2 - SYBR14/PI | [18] |
SV | 7.6 | - | [59] |
SV | 9.2 | - | [13] |
E | 78.1 - SYBR14/PI | [28] | |
SV | 7.6 | [60] | |
SV | 12.0 | - | [61] |
E | 81–88 - SYBR14/PI | [29] | |
SV | 3.7–6.9 | [62] | |
SV/E | 7.3 (E) | 98.1 (SV)- SYBR14/PI | [63] |
E | 3.2 | - | [10] |
E | 1.5 | 87.2 - SYBR14/PI | [64] |
SV | 96.2 - SYBR14/PI | [65] | |
E | 95.2 - SYBR14/PI | [66] | |
E | 85.1 - Hoechst/PI | [25] | |
E | - | 87.8–91.4 - SYBR14/PI | [67] |
E | 81.1 - SYBR14/PI | [22] | |
SV/E | - | 98.1 (SV), 94.8 (E) - SYBR14/PI | [68] |
E | 88.4 - HOST | [69] | |
E | 5.8 | 98.8 - SYBR14/PI | [16] |
E | 1.8 | 64.2 - SYBR14/PI | [12] |
E | 3.1 | 79.7 - SYBR14/PI | [70] |
E | 10.5 | 69.7 - SYBR14/PI | [71] |
E | 95–99 – 7-AAD | [20] | |
E | 99.2 - SYBR14/PI | [72] | |
E | 46.2–67.0 -SYBR14/PI | [73] | |
E | 86.8 -HOST | [74] | |
E | 70.6 - AO/PI | [75] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yániz, J.L.; Silvestre, M.A.; Santolaria, P. Sperm Quality Assessment in Honey Bee Drones. Biology 2020, 9, 174. https://doi.org/10.3390/biology9070174
Yániz JL, Silvestre MA, Santolaria P. Sperm Quality Assessment in Honey Bee Drones. Biology. 2020; 9(7):174. https://doi.org/10.3390/biology9070174
Chicago/Turabian StyleYániz, Jesús L., Miguel A. Silvestre, and Pilar Santolaria. 2020. "Sperm Quality Assessment in Honey Bee Drones" Biology 9, no. 7: 174. https://doi.org/10.3390/biology9070174
APA StyleYániz, J. L., Silvestre, M. A., & Santolaria, P. (2020). Sperm Quality Assessment in Honey Bee Drones. Biology, 9(7), 174. https://doi.org/10.3390/biology9070174