Evolution of Hemoglobin Genes in a Subterranean Rodent Species (Lasiopodomys mandarinus)
Abstract
:1. Introduction
2. Results
2.1. Hb Gene Structure
2.2. Phylogenetic Trees
2.3. Selection Pressure Analysis
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. DNA Extraction, Amplification, and Sequencing
4.3. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Hb | Hemoglobin |
O2 | Oxygen |
CO2 | Carbon dioxide |
ML | Maximum likelihood |
LRT | Likelihood-ratio test |
VEGF | Vascular endothelial growth factor |
Hif-1α | Hypoxia-inducible factor-1α |
EPO | Erythropoietin |
References
- Lacey, E.A.; Cutrera, A.P. Behavior, Demography, and Immunogenetic Variation: New Insights from Subterranean Rodents. In Subterranean Rodents; Springer: Berlin/Heidelberg, Germany, 2007; pp. 341–355. [Google Scholar]
- Lacey, E.A.; Patton, J.L.; Cameron, G.N.; Lacey, E.A.; Patton, J.L.; Cameron, G.N. Life Underground: The Biology of Subterranean Rodents. Ethology 2010, 107, 559–560. [Google Scholar] [CrossRef]
- Shams, I.; Avivi, A.; Nevo, E. Oxygen and carbon dioxide fluctuations in burrows of subterranean blind mole rats indicate tolerance to hypoxic–hypercapnic stresses. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2005, 142, 376–382. [Google Scholar] [CrossRef]
- Park, T.J.; Reznick, J.; Peterson, B.L.; Blass, G.; Omerbašić, D.; Bennett, N.C.; Applegate, D.T. Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science 2017, 356, 307–311. [Google Scholar] [CrossRef] [Green Version]
- Shams, I.; Nevo, E.; Avivi, A. Ontogenetic expression of erythropoietin and hypoxia-inducible factor-1 alpha genes in subterranean blind mole rats. FASEB J. 2005, 19, 307–309. [Google Scholar] [CrossRef] [Green Version]
- Shams, I.; Avivi, A.; Nevo, E. Hypoxic stress tolerance of the blind subterranean mole rat: Expression of erythropoietin and hypoxia-inducible factor 1 alpha. Proc. Natl. Acad. Sci. USA 2004, 101, 9698–9703. [Google Scholar] [CrossRef] [Green Version]
- Widmer, H.R.; Hoppeler, H.; Nevo, E.; Taylor, C.R.; Weibel, E.R. Working Underground: Respiratory Adaptations in the Blind Mole Rat. Proc. Natl. Acad. Sci. USA 1997, 94, 2062–2067. [Google Scholar] [CrossRef] [Green Version]
- Aaron, A.; Frank, G.; Alma, J.; Stefan, R.; Thorsten, B.; Eviatar, N.; Thomas, H. Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax. Proc. Natl. Acad. Sci. USA 2010, 107, 21570–21575. [Google Scholar]
- Tomasco, I.H.; Boullosa, N.; Hoffmann, F.G.; Lessa, E.P. Molecular adaptive convergence in the α-globin in subterranean octodontid rodents. Gene 2017, 628, 275–280. [Google Scholar] [CrossRef]
- Schelshorn, D.W.; Schneider, A.; Kuschinsky, W.; Weber, D.; Krüger, C.; Dittgen, T.; Maurer, M.H. Expression of hemoglobin in rodent neurons. J. Cerebr. Blood Flow Metab. 2009, 29, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Opazo, J.C.; Hoffmann, F.G.; Chandrasekhar, N.; Witt, C.C.; Michael, B.; Storz, J.F. Gene turnover in the avian globin gene families and evolutionary changes in hemoglobin isoform expression. Mol. Biol. Evol. 2015, 32, 871–887. [Google Scholar] [CrossRef] [Green Version]
- Storz, J.F.; Runck, A.M.; Sabatino, S.J.; Kelly, J.K.; Nuno, F.; Hideaki, M.; Weber, R.E.; Angela, F. Evolutionary and functional insights into the mechanism underlying high-altitude adaptation of deer mouse hemoglobin. Proc. Natl. Acad. Sci. USA 2009, 106, 14450–14455. [Google Scholar] [CrossRef] [Green Version]
- Weber, R.E.; Hiebl, I.; Braunitzer, G. High altitude and hemoglobin function in the vultures Gyps rueppellii and Aegypius monachus. Biol. Chem. Hoppe Seyler 1988, 369, 233–240. [Google Scholar] [CrossRef]
- Weber, R.E.; Lalthantluanga, R.; Braunitzer, G. Functional characterization of fetal and adult yak hemoglobins: An oxygen binding cascade and its molecular basis. Arch. Biochem. Biophys. 1988, 263, 199–203. [Google Scholar] [CrossRef]
- Storz, J.F.; Sabatino, S.J.; Hoffmann, F.G.; Gering, E.J.; Moriyama, H.; Ferrand, N.; Nachman, M.W. The molecular basis of high-altitude adaptation in deer mice. PLoS Genet. 2007, 3, e45. [Google Scholar] [CrossRef] [Green Version]
- Storz, J.F.; Chandrasekhar, N.; Cheviron, Z.A.; Hoffmann, F.G.; Kelly, J.K. Altitudinal variation at duplicated β-globin genes in deer mice: Effects of selection, recombination, and gene conversion. Genetics 2012, 190, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Tian, R.; Losilla, M.; Lu, Y.; Yang, G.; Zakon, H. Molecular evolution of globin genes in Gymnotiform electric fishes: Relation to hypoxia tolerance. BMC Evol. Biol. 2017, 17, 51. [Google Scholar] [CrossRef] [Green Version]
- Projecto-Garcia, J.; Natarajan, C.; Moriyama, H.; Weber, R.E.; Fago, A.; Cheviron, Z.A.; Storz, J.F. Repeated elevational transitions in hemoglobin function during the evolution of Andean hummingbirds. Proc. Natl. Acad. Sci. USA 2013, 110, 20669–20674. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Zhang, Y.; Wang, B.; Zheng, W. Investigation on Oxygen and Carbon Dioxide Fluctuations in Lasiopodomys mandarinus Burrows. Pak. J. Zool. 2019, 51, 1519–1526. [Google Scholar]
- Storz, J.F.; Moriyama, H. Mechanisms of Hemoglobin Adaptation to High Altitude Hypoxia. High Alt. Med. Biol. 2008, 9, 148–157. [Google Scholar]
- Ran, T.; Wang, Z.; Xu, N.; Zhou, K.; Xu, S.; Yang, G. Evolutionary Genetics of Hypoxia Tolerance in Cetaceans during Diving. Genome Biol. Evol. 2016, 8, 827–839. [Google Scholar]
- Hoffmann, F.G.; Opazo, J.C.; Storz, J.F. New genes originated via multiple recombinational pathways in the beta-globin gene family of rodents. Mol. Biol. Evol. 2008, 25, 2589–2600. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Dong, Q.; Wang, C.; Jiang, M.; Wang, B.; Wang, Z. Evolution of circadian genes PER and CRY in subterranean rodents. Int. J. Biol. Macromol. 2018, 118, 1400–1405. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Y.; Lu, J.; Ji, W.; Wang, Z. Sequence and phylogenetic analysis of the complete mitochondrial genome of Lasiopodomys mandarinus mandarinus (Arvicolinae, Rodentia). Gene 2016, 593, 302–307. [Google Scholar] [CrossRef]
- Chen, Z.; Qiao, F.; He, Y.; Xie, H.; Qi, D. Evidence for positive selection on α and β globin genes in pikas and zokor from the Qinghai-Tibetan Plateau. Gene Transl. Bioinform. 2016, 2, 1–10. [Google Scholar]
- Storz, J.F.; Kelly, J.K. Effects of spatially varying selection on nucleotide diversity and linkage disequilibrium: Insights from deer mouse globin genes. Genetics 2008, 180, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Storz, J.F.; Runck, A.M.; Moriyama, H.; Weber, R.E.; Fago, A. Genetic differences in hemoglobin function between highland and lowland deer mice. J. Exp. Biol. 2010, 213, 2565–2574. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Liang, Y.; Huerta-Sanchez, E.; Jin, X.; Cuo, Z.X.P.; Pool, J.E.; Zheng, H. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 2010, 329, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, G.; Lohman, D.J.; Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 2011, 27, 171–180. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Wong, W.S.; Nielsen, R. Bayes empirical bayes inference of amino acid sites under positive selection. Mol. Biol. Evol. 2005, 22, 1107–1118. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anisimova, M.; Nielsen, R.; Yang, Z. Effect of Recombination on the Accuracy of the Likelihood Method for Detecting Positive Selection at Amino Acid Sites. Genetics 2003, 164, 1229–1236. [Google Scholar]
- Pond, S.; Posada, D.; Gravenor, M.B.; Woelk, C.H.; Frost, S. GARD: A genetic algorithm for recombination detection. Bioinformatics 2006, 22, 3096–3098. [Google Scholar] [CrossRef] [Green Version]
Gene | Mandarin vole | Brandts’ Vole | Number of Amino Acid Differences | |||
---|---|---|---|---|---|---|
Length | Acession Number | Length | Acession Number | |||
α-globin cluster | HBZ | 1685 bp | MN402680 | 1685 bp | MN402679 | 0 |
HBA-T1 | 700 bp | MN402682 | 700 bp | MN402681 | 1 | |
HBA-T2 | 700 bp | MN402684 | 700 bp | MN402683 | 2 | |
HBQ-T1 | 647 bp | MN402686 | 647 bp | MN402685 | 1 | |
HBQ-T2 | 647 bp | MN402688 | 647 bp | MN402687 | 3 | |
β-globin cluster | HBE | 1307 bp | MN402690 | 1307 bp | MN402689 | 0 |
HBE/HBG | 1664 bp | MN402692 | 1664 bp | MN402691 | 0 | |
HBG | 1393 bp | MN402694 | 1393 bp | MN402693 | 0 | |
HBB-T1 | 1141 bp | MN402696 | 1141 bp | MN402695 | 1 | |
HBB-T2 | 1141 bp | MN402698 | 1141 bp | MN402697 | 1 |
Gene | Modle | -lnL | Parameter Estimates | Parameter Estimates | Positively Selected Sites | p Value |
---|---|---|---|---|---|---|
Branch—site Model | ||||||
HBA-T1 | Branch: Lasiopodomys mandarinus | |||||
Null | 2021.164 | ω0 = 0.066, ω1 = 1, ω2 = 1 | ||||
Model A | 2021.164 | ω0 = 0.066, ω1 = 1, ω2 = 1 | Model A vs. Null | NA | 1.000 | |
Branch: Spalax galili | ||||||
Null | 2021.534 | ω0 = 0.068, ω1 = 1, ω2 = 0.065 | ||||
Model A | 2016.368 | ω0 = 0.068, ω1 = 92.003, ω2 = 92.003 | Model A vs. Null | 12K - 0.999 * | 0.001 | |
Branch: Heterocephalus glaber | ||||||
Null | 2004.606 | ω0 = 0.032, ω1 = 1, ω2 = 1 | ||||
Model A | 2004.554 | ω0 = 0.033, ω1 = 1.166, ω2 = 1.166 | Model A vs. Null | 2V - 0.975 *, 21H - 0.957 *, 87L - 0.964 *, 89A - 0.981 *, 105C - 0.965 *, 124A - 0.971 * | 0.746 | |
Branch: Fukomys damarensis | ||||||
Null | 2021.577 | ω0 = 0.067, ω1 = 1, ω2 = 1 | ||||
Model A | 2021.577 | ω0 = 0.067, ω1 = 1, ω2 = 1 | Model A vs. Null | NA | 1.000 | |
HBB-T1 | Branch: Lasiopodomys mandarinus | |||||
Null | 1578.455 | ω0 = 0.002, ω1 = 1, ω2 = 1 | ||||
Model A | 1578.455 | ω0 = 0.002, ω1 = 3.742, ω2 = 3.742 | Model A vs. Null | NA | 1.000 | |
Branch: Spalax galili | ||||||
Null | 1578.455 | ω0 = 0.002, ω1 = 1, ω2 = 1 | ||||
Model A | 1565.826 | ω0 = 0, ω1 = 999, ω2 = 999 | Model A vs. Null | 17G - 0.966 *, 87A - 0.995 **, 113C - 0.960 * | 0.000 | |
Branch: Heterocephalus glaber | ||||||
Null | 1578.230 | ω0 = 0, ω1 = 1, ω2 = 1 | ||||
Model A | 1568.434 | ω0 = 0, ω1 = 999, ω2 = 999 | Model A vs. Null | 24V - 0.981 *, 109N - 0.929 *, 140A - 0.984 *, 143A - 0.941 * | 0.000 | |
Branch: Fukomys damarensis | ||||||
Null | 1577.920 | ω0 = 0, ω1 = 1, ω2 = 1 | ||||
Model A | 1567.132 | ω0 = 0, ω1 = 999, ω2 = 999 | Model A vs. Null | 23 - 0.952 *, 56M - 0.992 **, 57G - 0.990 *, 70G - 0.967 *, 75G - 0.953 *, 110V - 0.983 *,114V - 0.987 *, 121K - 0.955 * | 0.000 | |
Site Model | ||||||
HBB-T1 | M7: β | 2558.967 | p = 0.15303, q = 1.97705 | |||
M8: β and ω | 2553.328 | p0 = 0.94925, p1 = 0.05075, p = 0.17988, ω = 2.30313, q = 0.47855 | M8 v sM7 | 6P - 1.000 **, 13T - 0.994 *, 21V - 0.960 *, 23E - 1.000 **, 24V - 0.999 **, 45S - 0.999 **, 55V - 1.000 **, 57G - 0.992 **, 70G - 1.000 **, 71A - 1.000 **, 73S - 1.000 **, 77A - 0.999 **, 87A - 1.000 **, 88T - 1.000 **, 105R - 1.000 **, 110V - 0.988 *, 113C - 0.998 **, 121K - 0.996 **, 122E - 0.964 *, 126Q - 1.000 **, 140N - 1.000 ** | 0.003 |
Gene | Position | Spalax galili | Heterocephalus glaber | Fukomys damarensis | Secondary Doamin |
---|---|---|---|---|---|
HBA-T1 | 2V | V→S | |||
12K | K→R | A-Helix | |||
21H | H→S | B-Helix | |||
87L | L→K | F-Helix | |||
89A | A→S | F-Helix | |||
124A | A→L | H-Helix | |||
HBB-T1 | 17G | G→S | A-Helix | ||
56M | M→V | D-Helix | |||
75G | G→S | E-Helix | |||
109N | N→D | G-Helix | |||
114V | V→A | G-Helix | |||
143A | H→G | H-Helix |
Gene | Forward Primer | Reverse Primer |
---|---|---|
HBZ | GTCACCCTGTCTGATAACAAGC | TAACGGGTCCTAAAGACTTACCAG |
TTACAGGCAGTTGTGAGCTACCAT | ACAGGACCAGTTATTTCCGTCT | |
HBA-T1 | GCCTTCTCTGCACAGGACTCT | CCCAGGCTTCCCCGTGTCA |
HBA-T2 | AACCACCCTAGTCAGCCAATGAGG | TCCAGAAGACGCCCTGAAGCTC |
HBQ-T1 | ACAGAAACAGGCTTCATATCCTC | AGGCTGAGTTACACAAGACCA |
ACTACTCGAGGGAAAGTTACGC | GCCTCTTGGAACCTTGCTT | |
HBE | CTGGCCCTCTCATAACCTG | CCAGTCCAGTACTCATGTGC |
HBE/HBG | TGTCTTGCCCAGCCTCTCTTGACC | ATTAAGGCTGAGGAAGACAACCCA |
AAAAGAATGAAAGTTAAGAGCGTGA | CCAGGAGCTATAAGAGAAAACACAA | |
HBG | CCTGCTTGACACTATCTTACTGG | CCAGTCCAGTACTCATGTGC |
HBB-T1 | GTTGCTCCTCACACTTGCT | TAGTCAGAAGAAAGATGCCCCA |
HBB-T2 | CTAAGTCAGTGCCATAGCC | AGGTCTTCATTATTTAGCCCAA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Ye, K.; Liu, D.; Pan, D.; Gu, S.; Wang, Z. Evolution of Hemoglobin Genes in a Subterranean Rodent Species (Lasiopodomys mandarinus). Biology 2020, 9, 106. https://doi.org/10.3390/biology9050106
Sun H, Ye K, Liu D, Pan D, Gu S, Wang Z. Evolution of Hemoglobin Genes in a Subterranean Rodent Species (Lasiopodomys mandarinus). Biology. 2020; 9(5):106. https://doi.org/10.3390/biology9050106
Chicago/Turabian StyleSun, Hong, Kaihong Ye, Denghui Liu, Dan Pan, Shiming Gu, and Zhenlong Wang. 2020. "Evolution of Hemoglobin Genes in a Subterranean Rodent Species (Lasiopodomys mandarinus)" Biology 9, no. 5: 106. https://doi.org/10.3390/biology9050106
APA StyleSun, H., Ye, K., Liu, D., Pan, D., Gu, S., & Wang, Z. (2020). Evolution of Hemoglobin Genes in a Subterranean Rodent Species (Lasiopodomys mandarinus). Biology, 9(5), 106. https://doi.org/10.3390/biology9050106