Is It Time to Rethink Our Weight Loss Paradigms?
Abstract
:1. Problem Statement
2. Current Support for Exercise
3. Considerations Moving Forward
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Rodas, M.C.; Valenzuela, R.; Videla, L.A. Relevant Aspects of Nutritional and Dietary Interventions in Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2015, 16, 25168–25198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Booth, H.P.; Prevost, T.A.; Wright, A.J.; Gulliford, M.C. Effectiveness of behavioural weight loss interventions delivered in a primary care setting: A systematic review and meta-analysis. Fam. Pract. 2014, 31, 643–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domrowski, S.U.; Avenell, A.; Sniehott, F.F. Behavioural Interventions for Obese Adults with Additional Risk Factors for Morbidity: Systematic Review of Effects on Behaviour, Weight and Disease Risk Factors. Obes Facts 2010, 3, 377–396. [Google Scholar] [CrossRef] [Green Version]
- Fildes, A.; Charlton, J.; Rudisill, C.; Littlejohns, P.; Prevost, A.T.; Gulliford, M.C. Probability of an Obese Person Attaining Normal Body Weight: Cohort Study Using Electronic Health Records. Am. J. Public Health 2015, 105, e54–e59. [Google Scholar] [CrossRef] [Green Version]
- Naves, J.P.A.; Viana, R.B.; Rebelo, A.C.S.; de Lira, C.A.B.; Pimentel, G.D.; de Oliveira, J.C.; Ramirez-Campillo, R.; Gentil, P. Effects of High-Intensity Interval Training vs. Sprint Interval Training on Anthropometric Measures and Cardiorespiratory Fitness in Healthy Young Women. Front. Physiol. 2018, 9, 1738. [Google Scholar] [CrossRef] [Green Version]
- De Keyzer, W.; Bracke, T.; McNaughton, S.A.; Parnell, W.; Moshfegh, A.J.; Pereira, R.A.; Haeng-Shin, L.; Veer, P.V.; De Henauw, S.; Huybrechts, I. Cross-continental comparison of national food consumption survey methods--a narrative review. Nutrients 2015, 7, 3587–3620. [Google Scholar] [CrossRef] [Green Version]
- Conway, J.M.; Ingwersen, L.A.; Moshfegh, A.J. Accuracy of dietary recall using the USDA five-step multiple-pass method in men: An observational validation study. J. Am. Diet. Assoc. 2004, 104, 595–603. [Google Scholar] [CrossRef]
- Salvador Castell, G.; Serra-Majem, L.; Ribas-Barba, L. What and how much do we eat? 24-hour dietary recall method. Nutr. Hosp. 2015, 31, 46–48. [Google Scholar] [CrossRef]
- Shim, J.S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef]
- Trapp, E.G.; Chisholm, D.J.; Freund, J.; Boutcher, S.H. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int. J. Obes. 2008, 32, 684–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racil, G.; Ben Ounis, O.; Hammouda, O.; Kallel, A.; Zouhal, H.; Chamari, K.; Amri, M. Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. Eur. J. Appl. Physiol. 2013, 113, 2531–2540. [Google Scholar] [CrossRef] [PubMed]
- Racil, G.; Zouhal, H.; Elmontassar, W.; Ben Abderrahmane, A.; De Sousa, M.V.; Chamari, K.; Amri, M.; Coquart, J.B. Plyometric exercise combined with high-intensity interval training improves metabolic abnormalities in young obese females more so than interval training alone. Appl. Physiol. Nutr. Metab. 2016, 41, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Higgins, S.; Fedewa, M.V.; Fedewa, M.V.; Hathaway, E.D.; Schmidt, M.D.; Evans, E.M. Sprint interval and moderate-intensity cycling training differentially affect adiposity and aerobic capacity in overweight young-adult women. Appl. Physiol. Nutr. Metab. 2016, 41, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- van Aggel-Leijssen, D.P.; Saris, W.H.; Hul, G.B.; van Baak, M.A. Short-term effects of weight loss with or without low-intensity exercise training on fat metabolism in obese men. Am. J. Clin. Nutr. 2001, 73, 523–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieman, D.C.; Brock, D.W.; Butterworth, D.; Utter, A.C.; Nieman, C.C. Reducing diet and/or exercise training decreases the lipid and lipoprotein risk factors of moderately obese women. J. Am. Coll. Nutr. 2002, 21, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Bond Brill, J.; Perry, A.C.; Parker, L.; Robinson, A.; Burnett, K. Dose-response effect of walking exercise on weight loss. How much is enough? Int. J. Obes. Relat. Metab. Disord. 2002, 26, 1484–1493. [Google Scholar] [CrossRef] [Green Version]
- Ring-Dimitriou, S.; von Duvillard, S.P.; Paulweber, B.; Stadlmann, M.; LeMura, L.M.; Peak, K.; Mueller, E. Nine months aerobic fitness induced changes on blood lipids and lipoproteins in untrained subjects versus controls. Eur. J. Appl. Physiol. 2007, 99, 291–299. [Google Scholar] [CrossRef]
- Evans, E.M.; Saunders, M.J.; Spano, M.A.; Arngrimsson, S.A.; Lewis, R.D.; Cureton, K.J. Body-composition changes with diet and exercise in obese women: A comparison of estimates from clinical methods and a 4-component model. Am. J. Clin. Nutr. 1999, 70, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Hardman, A.E.; Jones, P.R.M.; Norgan, N.G.; Hudson, A. Brisk walking improves endurance fitness without changing body fatness in previously sedentary women. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 65, 354–359. [Google Scholar] [CrossRef]
- Wilmore, J.H.; Després, J.P.; Stanforth, P.R.; Mandel, S.; Rice, T.; Gagnon, J.; Leon, A.S.; Rao, D.; Skinner, J.S.; Bouchard, C. Alterations in body weight and composition consequent to 20 wk of endurance training: The HERITAGE Family Study. Am. J. Clin. Nutr. 1999, 70, 346–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedenreich, C.M.; Neilson, H.K.; Reilly, R.O.; Duha, A.; Yutaka, Y.; Morielli, A.R.; Adams, S.C.; Courneya, K.S. Effects of a High vs Moderate Volume of Aerobic Exercise on Adiposity Outcomes in Postmenopausal Women: A Randomized Clinical Trial. JAMA Oncol. 2015, 1, 766–776. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, A.; Royer, M.M.; Chaput, J.P.; Doucet, E. Adaptive thermogenesis can make a difference in the ability of obese individuals to lose body weight. Int. J. Obes. 2013, 37, 759–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinhardt, M.; Thearle, M.S.; Ibrahim, M.; Hohenadel, M.G.; Bogardus, C.; Krakoff, J.; Votruba, S.B. A Human Thrifty Phenotype Associated With Less Weight Loss During Caloric Restriction. Diabetes 2015, 64, 2859–2867. [Google Scholar] [CrossRef] [Green Version]
- Byrne, N.M.; Wood, R.E.; Schutz, Y.; Hills, A.P. Does metabolic compensation explain the majority of less-than-expected weight loss in obese adults during a short-term severe diet and exercise intervention? Int. J. Obes. (Lond.) 2012, 36, 1472–1478. [Google Scholar] [CrossRef] [Green Version]
- Fothergill, E.; Guo, J.; Howard, L.; Kerns, J.C.; Knuth, N.D.; Brychta, R.; Chen, K.Y.; Skarulis, M.C.; Walter, M.; Walter, P.J.; et al. Persistent metabolic adaptation 6 years after “The Biggest Loser” competition. Obesity 2016, 24, 1612–1619. [Google Scholar] [CrossRef]
- Pontzer, H. Constrained Total Energy Expenditure and the Evolutionary Biology of Energy Balance. Exerc. Sport Sci. Rev. 2015, 43, 110–116. [Google Scholar] [CrossRef]
- Westerterp, K.R.; Meijer, G.A.; Janssen, E.M.E.; Saris, W.H.M.; Hoor, F.T. Long-term effect of physical activity on energy balance and body composition. Br. J. Nutr. 1992, 68, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Phinney, S.D.; LaGrange, B.M.; O’Connell, M.; Danforth, E., Jr. Effects of aerobic exercise on energy expenditure and nitrogen balance during very low calorie dieting. Metabolism 1988, 37, 758–765. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Casper, K.; Hearn, J.; Guy, D. Rate of weight loss during underfeeding: Relation to level of physical activity. Metabolism 1989, 38, 215–223. [Google Scholar] [CrossRef]
- Viana, R.B.; Naves, J.P.A.; Coswig, V.S.; de Lira, C.A.B.; Steele, J.; Fisher, J.P.; Jentil, P. Is interval training the magic bullet for fat loss? A systematic review and meta-analysis comparing moderate-intensity continuous training with high-intensity interval training (HIIT). Br. J. Sports Med. 2019. [Google Scholar] [CrossRef] [PubMed]
- Rodas, G.; Ventura, J.L.; Cadefau, J.A.; Cusso, R.; Parra, J. A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. Eur. J. Appl. Physiol. 2000, 82, 480–486. [Google Scholar] [CrossRef] [PubMed]
- MacDougall, J.D.; Hicks, A.L.; MacDonald, J.R.; McKelvie, R.S.; Green, H.J.; Smith, K.M. Muscle performance and enzymatic adaptations to sprint interval training. J. Appl. Physiol. 1998, 84, 2138–2142. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, A.; Simoneau, J.A.; Bouchard, C. Impact of exercise intensity on body fatness and skeletal muscle metabolism. Metabolism 1994, 43, 814–818. [Google Scholar] [CrossRef]
- Tjønna, A.E.; Lee, S.J.; Rognmo, Ø.; Stølen, T.O.; Bye, A.; Haram, P.M.; Loennechen, J.P.; AI-Share, Q.Y.; Skogvoll, E.; Slørdahl, S.A.; et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: A pilot study. Circulation 2008, 118, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Raben, A.; Mygind, E.; Astrup, A. Lower activity of oxidative key enzymes and smaller fiber areas in skeletal muscle of postobese women. Am. J. Physiol. 1998, 275, E487–E494. [Google Scholar] [CrossRef]
- Simoneau, J.A.; Veerkamp, J.H.; Turcotte, L.P.; Kelley, D.E. Markers of capacity to utilize fatty acids in human skeletal muscle: Relation to insulin resistance and obesity and effects of weight loss. Faseb. J. 1999, 13, 2051–2060. [Google Scholar] [CrossRef] [Green Version]
- Zurlo, F.; Nemeth, P.M.; Choksi, R.M.; Sesodia, S.; Ravussin, E. Whole-body energy metabolism and skeletal muscle biochemical characteristics. Metabolism 1994, 43, 481–486. [Google Scholar] [CrossRef]
- Doucet, E.; Tremblay, A.; Simoneau, J.A.; Joanisse, D.R. Skeletal muscle enzymes as predictors of 24-h energy metabolism in reduced-obese persons. Am. J. Clin. Nutr. 2003, 78, 430–435. [Google Scholar] [CrossRef]
- Whyte, L.J.; Ferguson, C.; Wilson, J.; Scott, R.A.; Gill, J.M.R. Effects of single bout of very high-intensity exercise on metabolic health biomarkers in overweight/obese sedentary men. Metabolism 2013, 62, 212–219. [Google Scholar] [CrossRef]
- Kiens, B.; Richter, E.A. Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans. Am. J. Physiol. 1998, 275, E332–E337. [Google Scholar] [CrossRef] [PubMed]
- Islam, H.; Townsend, L.K.; Hazell, T.J. Modified sprint interval training protocols. Part I. Physiological responses. Appl. Physiol. Nutr. Metab. 2017, 42, 339–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Withers, R.T.; Sherman, W.M.; Clark, D.G.; Esselbach, P.C.; Nolan, S.R.; Mackay, M.H.; Brinkman, M. Muscle metabolism during 30, 60 and 90 s of maximal cycling on an air-braked ergometer. Eur. J. Appl. Physiol. Occup. Physiol. 1991, 63, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Binzen, C.A.; Swan, P.D.; Manore, M.M. Postexercise oxygen consumption and substrate use after resistance exercise in women. Med. Sci. Sport Exerc. 2001, 33, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Melby, C.; Scholl, C.; Edwards, G.; Bullough, R. Effect of acute resistance exercise on postexercise energy expenditure and resting metabolic rate. J. Appl. Physiol. 1993, 75, 1847–1853. [Google Scholar] [CrossRef] [PubMed]
- Osterberg, K.L.; Melby, C.L. Effect of acute resistance exercise on postexercise oxygen consumption and resting metabolic rate in young women. Int. J. Sport Nutr. Exerc. Metab. 2000, 10, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Schuenke, M.D.; Mikat, R.P.; McBride, J.M. Effect of an acute period of resistance exercise on excess post-exercise oxygen consumption: Implications for body mass management. Eur. J. Appl. Physiol. 2002, 86, 411–417. [Google Scholar] [CrossRef]
- Paoli, A.; Moro, T.; Marcolin, G.; Neri, M.; Bianco, A.; Palma, A.; Grimaldi, K. High-Intensity Interval Resistance Training (HIRT) influences resting energy expenditure and respiratory ratio in non-dieting individuals. J. Transl. Med. 2012, 10, 237. [Google Scholar] [CrossRef]
- Kump, D.S.; Booth, F.W. Alterations in insulin receptor signalling in the rat epitrochlearis muscle upon cessation of voluntary exercise. J. Physiol. 2005, 562, 829–838. [Google Scholar] [CrossRef]
- Laye, M.J.; Thyfault, J.P.; Stump, C.S.; Booth, F.W. Inactivity induces increases in abdominal fat. J. Appl. Physiol. 2007, 102, 1341–1347. [Google Scholar] [CrossRef] [Green Version]
- Dohm, G.L.; Barakat, H.A.; Tapscott, E.B.; Beecher, G.R. Changes in body fat and lipogenic enzyme activities in rats after termination of exercise training. Proc. Soc. Exp. Biol. Med. 1977, 155, 157–159. [Google Scholar] [CrossRef] [PubMed]
- Kump, D.S.; Booth, F.W. Sustained rise in triacylglycerol synthesis and increased epididymal fat mass when rats cease voluntary wheel running. J. Physiol. 2005, 565, 911–925. [Google Scholar] [CrossRef] [PubMed]
- Booth, F.W.; Tseng, B.S.; Fluck, M.; Carson, J.A. Molecular and cellular adaptation of muscle in response to physical training. Acta Physiol. Scand. 1998, 162, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Askew, E.W.; Huston, R.L.; Dohm, G.L. Effect of physical training on esterification of glycerol-3-phosphate by homogenates of liver, skeletal muscle, heart, and adipose tissue of rats. Metabolism 1973, 22, 473–480. [Google Scholar] [CrossRef]
- Hardcastle, S.J.; Ray, H.; Beale, L.; Hagger, M.S. Why sprint interval training is inappropriate for a largely sedentary population. Front. Psychol. 2014, 5, 1505. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, B.R.R.; Santos, T.M.; Kilpatrick, M.; Pires, F.O.; Deslandes, A.C. Affective and enjoyment responses in high intensity interval training and continuous training: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0197124. [Google Scholar] [CrossRef] [Green Version]
- Del Vecchio, F.B.; Gentil, P.; Coswig, V.S.; Fukuda, D.H. Commentary: “Why Sprint interval training is inappropriate for a largely sedentary population” The satisfaction that moves us—Sprint interval training as an exercise method for sedentary individuals. Front. Psychol. 2015, 6, 1359. [Google Scholar] [CrossRef] [Green Version]
- Roy, M. High-intensity Interval Training in the Real World: Outcomes from a 12-month Intervention in Overweight Adults. Med. AMP 2018, 50, 1818–1826. [Google Scholar] [CrossRef]
- Viana, R.B.; de Lira, C.A.B.; Naves, J.P.A.; Coswig, V.S.; Del Vecchio, F.B.; Ramirez-Campillo, R.; Vieira, C.A.; Gentil, P. Can We Draw General Conclusions from Interval Training Studies? Sport Med. 2018, 48, 2001–2009. [Google Scholar] [CrossRef]
Variables | Δ Energy Intake | Δ Carbohydrate Intake | Δ Protein Intake | Δ Lipid Intake | ||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | |
Δ body weight | 0.06 | 0.7 | 0.19 | 0.18 | −0.06 | 0.67 | −0.01 | 0.97 |
Δ Body mass index | 0.06 | 0.66 | 0.20 | 0.16 | −0.06 | 0.69 | −0.01 | 0.97 |
Δ waist circumference | 0.17 | 0.25 | 0.17 | 0.24 | 0.21 | 0.14 | 0.22 | 0.14 |
Δ sum of ST | −0.20 | 0.17 | −0.16 | 0.28 | −0.05 | 0.73 | −0.23 | 0.11 |
Δ triceps ST | −0.12 | 0.42 | −0.06 | 0.71 | −0.10 | 0.49 | −0.11 | 0.45 |
Δ subescapular ST | −0.22 | 0.12 | −0.22 | 0.14 | −0.03 | 0.85 | −0.21 | 0.15 |
Δ suprailiac ST | −0.13 | 0.36 | −0.07 | 0.63 | −0.01 | 0.97 | −0.22 | 0.12 |
Δ abdominal ST | −0.06 | 0.70 | −0.06 | 0.67 | −0.03 | 0.87 | −0.14 | 0.35 |
Δ thigh ST | −0.25 | 0.09 | −0.24 | 0.10 | −0.08 | 0.61 | −0.19 | 0.18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gentil, P.; Viana, R.B.; Naves, J.P.; Del Vecchio, F.B.; Coswig, V.; Loenneke, J.; de Lira, C.A.B. Is It Time to Rethink Our Weight Loss Paradigms? Biology 2020, 9, 70. https://doi.org/10.3390/biology9040070
Gentil P, Viana RB, Naves JP, Del Vecchio FB, Coswig V, Loenneke J, de Lira CAB. Is It Time to Rethink Our Weight Loss Paradigms? Biology. 2020; 9(4):70. https://doi.org/10.3390/biology9040070
Chicago/Turabian StyleGentil, Paulo, Ricardo Borges Viana, João Pedro Naves, Fabrício Boscolo Del Vecchio, Victor Coswig, Jeremy Loenneke, and Claudio André Barbosa de Lira. 2020. "Is It Time to Rethink Our Weight Loss Paradigms?" Biology 9, no. 4: 70. https://doi.org/10.3390/biology9040070
APA StyleGentil, P., Viana, R. B., Naves, J. P., Del Vecchio, F. B., Coswig, V., Loenneke, J., & de Lira, C. A. B. (2020). Is It Time to Rethink Our Weight Loss Paradigms? Biology, 9(4), 70. https://doi.org/10.3390/biology9040070