Endophytic Fungi as Potential Biological Control Agents against Grapevine Trunk Diseases in Alentejo Region
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Fungal Isolation
2.3. Extraction of Genomic DNA (gDNA)
2.4. Fungal DNA Identification
2.5. Direct Inhibition Antagonism Test and Multivariate Data Analysis
3. Results
3.1. Fungal Isolation from Plant Material
3.2. Grapevine Trunk Disease (GTDs)-Associated Fungi
3.3. Direct Inhibition Antagonism Tests
3.3.1. Evolution of the Control
3.3.2. Antagonistic Action against Diaporthe sp.
3.3.3. Antagonism Action against Diplodia pseudoseriata
3.3.4. Antagonism Action against Phialophora fastigiata
3.3.5. The Growth Inhibition of GTDs-Associated Fungi
4. Discussion
4.1. Fungi Identification
4.1.1. Endophytes Fungal Community
4.1.2. GTDs-Associated Fungi
4.2. Endophyte Antagonism Activity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gramaje, D.; Úrbez-Torres, J.R.; Sosnowski, M.R. Managing grapevine trunk diseases with respect to etiology and epidemiology: Current strategies and future prospects. Plant Dis. 2018, 102, 12–39. [Google Scholar] [CrossRef] [Green Version]
- International Organisation of Vine and Wine: OIV. 2019 Statistical Report on World Vitiviniculture. Available online: http://www.oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitiviniculture.pdf (accessed on 3 February 2020).
- Wines of Portugal. Available online: http://www.winesofportugal.com/br/press-room/statistics/other/ (accessed on 3 February 2020).
- Bertsch, C.; Ramirez-Suero, M.; Magnin-Robert, M.; Larignon, P.; Chong, J.; Abou-Mansour, E.; Spagnolo, A.; Clément, C.; Fontaine, F. Grapevine trunk diseases: Complex and still poorly understood. Plant Pathol. 2012, 62, 243–265. [Google Scholar] [CrossRef] [Green Version]
- Pintos, C.; Redondo, V.; Aguín, O.; Chaves, M.; Rial, C.; Mansilla, J.P. Evaluation of Trichoderma atroviride as biocontrol agent against five Botryosphaeriaceae grapevine trunk pathogens. Phytopathol. Mediterr. 2012, 51, 450. [Google Scholar]
- Fontaine, F.; Gramaje, D.; Armengol, J.; Smart, R.; Nagy, Z.A.; Borgo, M.; Rego, C.; Corio-Costet, M. Grapevine Trunk Diseases: A Review, 1st ed.; OIV Publications: Paris, France, 2016. [Google Scholar]
- Hofstetter, V.; Buyck, B.; Croll, D.; Viret, O.; Couloux, A.; Gindro, K. What if esca disease of grapevine were not a fungal disease? Fungal Divers. 2012, 54, 51–67. [Google Scholar] [CrossRef] [Green Version]
- Claverie, M.; Notaro, M.; Fontaine, F.; Wery, J. Current knowledge on Grapevine Trunk Diseases with complex etiology: A systemic approach. Phytopathol. Mediterr. 2020, 59, 29–53. [Google Scholar]
- Rolshausen, P.; Kiyomoto, R. The Status of Grapevine Trunk Diseases in the Northeastern United States. In Proceedings of the New England Vegetable and Fruit Conference, Manchester, NH, USA, 12–14 December 2014. [Google Scholar]
- Bruez, E.; Lecomte, P.; Grosman, J.; Doublet, B.; Bertsch, C.; Fontaine, F.; Ugaglia, A.; Teissedre, P.; Da Costa, J.; Guerin-Dubrana, L.; et al. Overview of grapevine trunk diseases in France in the 2000s. Phytopathol. Mediterr. 2012, 52, 262–275. [Google Scholar]
- Dissanayake, A.J.; Liu, M.; Zhang, W.; Chen, Z.; Udayanga, D.; Chukeatirote, E.; Li, X.; Yan, J.; Hyde, K.D. Morphological and molecular characterization of Diaporthe species associated with grapevine trunk disease in China. Fungal Biol. 2015, 119, 283–294. [Google Scholar] [CrossRef]
- Gramaje, D.; Baumgartner, K.; Halleen, F.; Mostert, L.; Sosnowski, M.R.; Úrbez-Torres, J.R.; Armengol, J. Fungal trunk diseases: A problem beyond grapevines? Plant Pathol. 2015, 65, 355–356. [Google Scholar] [CrossRef]
- Kaplan, J.; Travadon, R.; Cooper, M.; Hillis, V.; Lubell, M.; Baumgartner, K. Identifying economic hurdles to early adoption of preventative practices: The case of trunk diseases in California winegrape vineyards. Wine Econ. Policy 2016, 5, 127–141. [Google Scholar] [CrossRef]
- Romanazzi, G.; Murolo, S.; Pizzichini, L.; Nardi, S. Esca in young and mature vineyards, and molecular diagnosis of the associated fungi. Eur. J. Plant Pathol. 2009, 125, 277–290. [Google Scholar] [CrossRef]
- Úrbez-Torres, J.R.; Peduto, F.; Smith, R.J.; Gubler, W.D. Phomopsis dieback: A grapevine trunk disease caused by Phomopsis viticola in California. Plant Dis. 2013, 97, 1571–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chebil, S.; Fersi, R.; Bouzid, M.; Quaglino, F.; Chenenaoui, S.; Melki, I.; Durante, G.; Zacchi, E.; Bahri, B.A.; Bianco, P.A.; et al. Fungi from the Diaporthaceae and Botryosphaeriaceae families associated with grapevine decline in Tunisia. Cienc. Investig. Agrar. 2017, 44, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Mondello, V.; Songy, A.; Battiston, E.; Pinto, C.; Coppin, C.; Trotel-Aziz, P.; Clément, C.; Mugnai, L.; Fontaine, F. Grapevine Trunk Diseases: A Review of Fifteen Years of Trials for Their Control with Chemicals and Biocontrol Agents. Plant Dis. 2017, 102, 1189–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mugnai, L.; Graniti, A.; Surico, G. Esca (black measles) and brown wood-streaking: Two old and elusive diseases of grapevines. Plant Dis. 1999, 83, 404–418. [Google Scholar] [CrossRef] [Green Version]
- Andolfi, A.; Mugnai, L.; Luque, J.; Surico, G.; Cimmino, A.; Evidente, A. Phytotoxins produced by fungi associated with grapevine trunk diseases. Toxins 2011, 3, 1569–1605. [Google Scholar] [CrossRef] [Green Version]
- Del Frari, G.; Cabral, A.; Nascimento, T.; Ferreira, R.B.; Oliveira, H. Epicoccum layuense a potential biological control agent of esca-associated fungi in Grapevine. PLoS ONE 2019, 14, e0213273. [Google Scholar] [CrossRef] [Green Version]
- Moller, W.J.; Kasimatis, A.N. Further evidence that Eutypa armeniacae not Phomopsis viticola—Incites dead arm symptoms on grape. Plant Dis. 1981, 65, 429–431. [Google Scholar] [CrossRef]
- Surico, G.; Mugnai, L.; Marchi, G. Older and more recent observations on esca: A critical review. Phytopathol. Mediterr. 2006, 45, 68–86. [Google Scholar]
- Murolo, S.; Romanazzi, G. Effects of grapevine cultivar, rootstock and clone on esca disease. Australas. Plant Pathol. 2014, 43, 215–221. [Google Scholar] [CrossRef]
- Cardot, C.; Mappa, G.; La Camera, S.; Gaillard, C.; Vriet, C.; Lecomte, P.; Ferrari, G. Coutos-Thévenot, P. Comparison of the molecular responses of tolerant, susceptible and highly susceptible grapevine cultivars during interaction with the pathogenic fungus Eutypa lata. Front. Plant Sci. 2019, 10, 991. [Google Scholar] [CrossRef] [Green Version]
- Úrbez-Torres, J.R. The status of Botryosphaeriaceae species infecting grapevines. Phytopathol. Mediterr. 2011, 50, S5–S45. [Google Scholar]
- Fleurat-Lessard, P.; Luini, E.; Berjeaud, J.M.; Roblin, G. Diagnosis of grapevine esca disease by immunological detection of Phaeomoniella chlamydospora. Aust. J. Grape Wine R. 2010, 16, 455–463. [Google Scholar] [CrossRef]
- Halleen, F.; Fourie, P.H. An integrated strategy for the proactive management of grapevine trunk disease pathogen infections in grapevine nurseries. S. Afr. J. Enol. Vitic. 2016, 37, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Spinosi, J.; Févotte, J.; Vial, G. Éléments Techniques sur L’Exposition Professionnelle aux Pesticides Arsenicaux: Matrice Cultures—Expositions aux Pesticides Arsenicaux; Institut de Veille Sanitaire: Saint-Maurice, France, 2009; p. 19. [Google Scholar]
- Landum, M.C.; Félix, M.R.; Alho, J.; Garcia, R.; Cabrita, M.J.; Rei, F.; Varanda, C.M.R. Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum. Microbiol. Res. 2016, 183, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Varanda, C.M.R.; Oliveira, M.; Materatski, P.; Landum, M.; Clara, M.I.E.; Felix, M. do R. Fungal endophytic communities associated to the phyllosphere of grapevine cultivars under different types of management. Fungal Biol. 2016, 120, 1525–1536. [Google Scholar] [CrossRef]
- Pertot, I.; Prodorutti, D.; Colombini, A.; Pasini, L. Trichoderma atroviride SC1 prevents Phaeomoniella chlamydospora and Phaeoacremonium aleophilum infection of grapevine plants during the grafting process in nurseries. BioControl 2016, 61, 257–267. [Google Scholar] [CrossRef]
- Petrini, O. Fungal endophytes of leaves. In Microbial Ecology of Leaves, 1st ed.; Andrews, J.H., Hirano, S.S., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 179–197. [Google Scholar]
- Oono, R.; Lefevre, E.; Simha, A.; Lutzoni, F. A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda). Fungal Biol. 2015, 119, 917–928. [Google Scholar] [CrossRef] [Green Version]
- Mostert, L.; Crous, P.W.; Petrini, O. Endophytic fungi associated with shoots and leaves of Vitis vinifera, with specific reference to de Phomopsis viticola complex. Sydowia 2000, 52, 46–58. [Google Scholar]
- Materatski, P.; Varanda, C.M.R.; Carvalho, T.; Dias, A.B.; Campos, M.D.; Rei, F.; Félix, M.R. Diversity of colletotrichum species associated with Olive Anthracnose and new perspectives on controlling the disease in portugal. Agronomy 2018, 8, 301. [Google Scholar] [CrossRef] [Green Version]
- Materatski, P.; Varanda, C.M.R.; Carvalho, T.; Dias, A.B.; Campos, M.D.; Rei, F.; Félix, M.R. Spatial and temporal variation of fungal endophytic richness and diversity associated to the phyllosphere of olive cultivars. Fungal Biol. 2019, 123, 66–76. [Google Scholar] [CrossRef]
- Varanda, C.M.R.; Materatski, P.; Landum, M.; Campos, M.D.; Félix, M.R. Fungal communities associated with peacock and Cercospora Leaf Spots in olive. Plants 2019, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- Musetti, R.; Polizzotto, R.; Vecchione, A.; Borselli, S.; Zulini, L.; D’Ambrosio, M.; di Toppi, L.S.; Pertot, I. Antifungal activity of diketopiperazines extracted from Alternaria alternate against Plasmopara viticola: An ultrastructural study. Micron 2007, 38, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Polizzotto, R.; D’Agostin, S.; Grisan, S.; Assante, G.; Pertot, I.; Andersen, B.; Musetti, R. Activity of endophytic Alternaria spp. strains in the control of Plasmopara viticola. Plant Pathol. J. 2009, 91, 79–80. [Google Scholar]
- Bruez, E.; Vallance, J.; Gerbore, J.; Lecomte, P.; Da Costa, J.P.; Guerin-Dubrana, L.; Rey, P. Analyses of the temporal dynamics of fungal communities colonizing the healthy wood tissues of esca leaf-symptomatic and asymptomatic vines. PLoS ONE 2014, 9, e95928. [Google Scholar] [CrossRef]
- Pancher, M.; Ceol, M.; Corneo, P.E.; Longa, C.M.O.; Yousaf, S.; Pertot, I.; Campisano, A. Fungal endophytic communities in grapevines (Vitis vinifera L.) respond to crop management. Appl. Environ. Microbiol. 2012, 78, 4308–4317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fourie, P.H.; Halleen, F.; van der Vyver, J.; Schrueder, W. Effect of Trichoderma treatments on the occurrence of decline pathogens on the roots and rootstocks of nursery plants. Phytopathol. Mediterr. 2001, 40, 473–478. [Google Scholar]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical 1987, 19, 11–15. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications, 1st ed.; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press, Inc.: New York, NY, USA, 1989; pp. 315–322. [Google Scholar]
- Dennis, C.; Webster, J. Antagonistic properties of species groups of Trichoderma III, Hyphal Interaction. Trans. Brit. Mycol. Soc. 1971, 57, 363–369. [Google Scholar] [CrossRef]
- Nunez-Trujillo, G.; Cabrera, R.; Burgos-Reyes, R.; Da Silva, E.; Gimenez, C.; Cosoveanu, A.; Brito, N. Endophytic fungi from Vitis vinifera L. isolated in Canary Islands and Azores as potential biocontrol agents of Botrytis cinerea Pers.:Fr. J. Hortic. For. Biotechnol. 2012, 16, 1–6. [Google Scholar]
- Haleem, R.A.; Saedo, K.A.; Abdullah, S.K. Antagonism of Trichoderma harzianum and Clonostachys rosea against fungi associated with grapevine decline in Kurdistan region—Iraq. J. Univ. Zakho. 2016, 4, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Boughalleb-M’Hamdi, N.; Salem, I.B.; M’Hamdi, M. Evaluation of the efficiency of Trichoderma, Penicillium, and Aspergillus species as biological control agents against four soil-borne fungi of melon and watermelon. J. Biol. Pest Co. 2018, 28, 25. [Google Scholar] [CrossRef] [Green Version]
- Nusaibah, S.A.; Musa, H. A Review report on the mechanism of Trichoderma spp. as biological control agent of the Basal Stem Rot (BSR) disease of Elaeis guineensis. In Trichoderma—The Most Widely Used Fungicide, 1st ed.; Mohammad, M.S., Sharif, U., Buhari, T.R., Eds.; IntechOpen: London, UK, 2019; pp. 79–90. [Google Scholar]
- Royse, D.; Ries, S. The influence of fungi isolated from peach twigs on the pathogenicity of Cytospora cincta. Pyhtopathology 1977, 68, 603–607. [Google Scholar] [CrossRef]
- Clarke, K.R.; Green, R.H. Statistical design and analysis for a ”biological Effects” study. Mar. Ecol. Prog. Ser. 1988, 46, 213–226. [Google Scholar] [CrossRef]
- Clarke, K.; Warwick, R. Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed.; PRIMER-E: Plymouth, UK, 2001. [Google Scholar]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. Permanova+ for Primer: Guide to Software and Statistical Methods, 1st ed.; PRIMER-E: Plymouth, UK, 2008; p. 214. [Google Scholar]
- Porras-Alfaro, A.; Liu, K.L.; Kuske, C.R.; Xiec, G. From Genus to Phylum: Large-Subunit and Internal Transcribed Spacer rRNA Operon Regions Show Similar Classification Accuracies Influenced by Database Composition. Appl. Environ. Microbiol. 2014, 80, 829–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raja, H.A.; Miller, A.N.; Pearce, C.J.; Oberlies, N.H. Fungal identification using molecular tools: A primer for the natural products research community. J. Nat. Prod. 2017, 80, 756–770. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Abarenkov, K.; Larsson, K.-H.; Kõljalg, U. Molecular Identification of Fungi: Rationale, Philosophical Concerns, and the UNITE Database. Open Appl. Informat J. 2014, 5, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Pacifico, D.; Squartini, A.; Crucitti, D.; Barizza, E.; Lo Schiavo, F.; Muresu, R.; Carimi, F.; Zottini, M. The role of the endophytic microbiome in the grapevine response to environmental triggers. Front. Plant Sci. 2019, 10, 1256. [Google Scholar] [CrossRef] [Green Version]
- Niem, J.M.; Billones-Baaijens, R.; Stodart, B.; Savocchia, S. Diversity Profiling of Grapevine Microbial Endosphere and Antagonistic Potential of Endophytic Pseudomonas Against Grapevine Trunk Diseases. Front. Microbiol. 2020, 11, 1–19. [Google Scholar] [CrossRef]
- Cosoveanu, A.; Gimenez-Mariño, C.; Cabrera, Y.; Hernandez, G.; Cabrera, R. Endophytic fungi from grapevine cultivars in Canary Islands and their activity against phytopatogenic fungi. Int. J. Agri. Crop Sci. 2014, 7, 1497–1503. [Google Scholar]
- Yadav, A.; Yadav, K. Exploring the potential of endophytes in agriculture: A minireview. Adv. Plants Agric. Res. 2017, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Nicoletti, R.; Fiorentino, A.; Scognamiglio, M. Endophytism of Penicillium Species in Woody Plants. Open Mycol. J. 2014, 8, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M. A new wood-decaying basidiomycete species associated with esca of grapevine: Fomitiporia mediterranea (Hymenochaetales). Mycol. Prog. 2002, 1, 315–324. [Google Scholar] [CrossRef]
- Úrbez-Torres, J.R.; Adams, P.; Kamas, J.; Gubler, W.D. Identification, Incidence, and Pathogenicity of Fungal Species Associated with Grapevine Dieback in Texas. Am. J. Enol. Vitic. 2009, 60, 497–507. [Google Scholar]
- Crous, P.W.; Wingfield, M.J.; Guarro, J.; Hernández-Restrepo, M.; Sutton, D.A.; Acharya, K.; Barber, P.A.; Boekhout, T.; Dimitrov, R.A.; Duenas, M.; et al. Fungal Planet description sheets: 320–370. Persoonia 2015, 34, 167–266. [Google Scholar] [CrossRef] [PubMed]
- Guarnaccia, V.; Groenewald, J.Z.; Woodhall, J.; Armengol, J.; Cinelli, T.; Eichmeier, A.; Ezra, D.; Fontaine, F.; Gramaje, D.; Gutierrez-Aguirregabiria, A.; et al. Diaporthe diversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Persoonia 2018, 40, 135–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossman, A.Y.; Adams, G.C.; Cannon, P.F.; Castlebury, L.A.; Crous, P.W.; Gryzenhout, M.; Jaklitsch, W.M.; Mejia, L.C.; Stoykov, D.; Udayanga, D.; et al. Recommendations of generic names in Diaporthales competing for protection or use. IMA Fungus 2015, 6, 145–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Niekerk, J.M.; Crous, P.W.; Groenewald, J.Z.E.; Fourie, P.H.; Halleen, F. DNA phylogeny, morphology and pathogenicity of Botryosphaeria species on grapevines. Mycologia 2004, 96, 781–798. [Google Scholar] [CrossRef] [PubMed]
- Barba, P.; Lillis, J.; Luce, R.S.; Travadon, R.; Osier, M.; Baumgartner, K.; Wilcox, W.F.; Reisch, B.I.; Cadle-Davidson, L. Two dominant loci determine resistance to Phomopsis cane lesions in F1 families of hybrid grapevines. Theor. Appl. Genet. 2018, 131, 1173–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arzanloua, M.; Narmania, A.; Mosharib, S.; Khodaeia, S.; Babai-Aharia, A. Truncatella angustata associated with grapevine trunk disease in northern Iran. Arch. Phytopathol. Pflanzenschutz 2013, 46, 1168–1181. [Google Scholar] [CrossRef]
- Cole, G.T.; Kendrick, B. Taxonomic Studies of Phialophora. Mycologia 1979, 65, 661–668. [Google Scholar] [CrossRef]
- Travadon, R.; Lawrence, D.P.; Rooney-Latham, S.; Gubler, W.D.; Wilcox, W.F.; Rolshausend, P.E.; Baumgartner, K. Cadophora species associated with wood-decay of grapevine in North America. Fungal Biol. 2014, 119, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, D.P.; Travadon, R.; Pouzoulet, J.; Rolshausen, P.E.; Wilcox, W.F.; Baumgartner, K. Characterization of Cytospora isolates from wood cankers of declining grapevine in North America, with the descriptions of two new Cytospora species. Plant Pathol. 2016, 66, 713–725. [Google Scholar] [CrossRef]
- Kusari, S.; Hertweck, C.; Spiteller, M. Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chem. Biol. 2012, 19, 792–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrios, G. Plant Pathology, 5th ed.; Elsevier Academic Press: Burlington, VT, USA, 2005; p. 992. [Google Scholar]
- Aly, A.; Debbab, A.; Proksvch, P. Fungal endophytes: Unique plant inhabitants with great promises. Appl. Microbiol. Biotechnol. 2011, 90, 1829–1845. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, V.; Tello, M. The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers. 2011, 47, 29–42. [Google Scholar] [CrossRef]
- Udayanga, D.; Castlebury, L.A.; Rossman, A.Y.; Chukeatirote, E.; Hyde, K.D. Insights into the genus Diaporthe: Phylogenetic species delimitation in the D. eres species complex. Fungal Divers. 2014, 67, 203–229. [Google Scholar] [CrossRef] [Green Version]
- Sessa, L.; Abreo, E.; Lupo, S. Diversity of fungal latent pathogens and true endophytes associated with fruit trees in Uruguay. J. Phytopathol. 2018, 166, 633–647. [Google Scholar] [CrossRef]
- Phillips, A.J.L. Botryosphaeria dothidea and other fungi associated with excoriose and dieback of grapevines in Portugal. J. Phytopathol. 1998, 146, 327–332. [Google Scholar] [CrossRef]
- Pouzoulet, J.; Mailhac, N.; Couderc, C.; Besson, X.; Daydé, J.; Lummerzheim, M.; Jacques, A. A method to detect and quantify Phaeomoniella chlamydospora and Phaeoacremonium aleophilum DNA in grapevine-wood samples. Appl. Microbiol. Biotechnol. 2013, 97, 10163–10175. [Google Scholar] [CrossRef]
- Makatini, G.; Mutawila, C.; Halleen, F.; Mostert, L. Grapevine sucker wounds as infection ports for trunk disease pathogens. Phytopathol. Mediterr. 2014, 53, 573. [Google Scholar]
- Heydari, A.; Pessarakli, M. A review on biological control of fungal plant pathogens using microbial antagonists. J. Biol. Sci. 2010, 10, 273–290. [Google Scholar] [CrossRef] [Green Version]
- Sezões, F.F.L. Endophytic fungi present in grapevines (Vitis vinifera L.) with the ability to inhibit the growth of the causal agent of black rot (Guignardia bidwellii). Master’s Thesis, University of Evora, Evora, Portugal, 2016. [Google Scholar]
- Highet, A.S.; Nair, N.G. Fusarium oxysporum associated with grapevine decline in the Hunter Valley. Aust. J. Grape Wine Res. 2008, 1, 48–50. [Google Scholar] [CrossRef]
- Vilvert, E.; Costa, M.D.; Cangahuala-Inocente, G.C.; Lovato, P.E. Root proteomic analysis of grapevine rootstocks inoculated with Rhizophagus irregularis and Fusarium oxysporum f. sp. herbemontis. Rev. Bras. Ciênc. Solo 2017, 41, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Nicoletti, R.; De Stefano, M. Penicillium restrictum as an antagonist of plant pathogenic fungi. Dyn. Biochem. Process. Biotechnol. Mol. Biol. 2012, 6, 61–69. [Google Scholar]
- Hajieghrari, B.; Torabi-Giglou, M.; Mohammadi, M.R.; Davari, M. Biological potential of some Iranian Trichoderma isolates in the control of soil borne plant pathogenic fungi. Afr. J. Biotechnol. 2008, 7, 967–972. [Google Scholar]
- Murolo, S.; Concas, J.; Romanazzi, G. Use of biocontrol agents as potential tools in the management of chestnut blight. Biol. Control 2019, 132, 102–109. [Google Scholar] [CrossRef]
- Martini, M.; Musetti, R.; Grisan, S.; Polizzotto, R.; Borselli, S.; Pavan, F.; Osler, R. DNA-dependent detection of the grapevine fungal endophytes Aureobasidium pullulans and Epicoccum nigrum. Plant Dis. 2009, 93, 993–998. [Google Scholar] [CrossRef] [Green Version]
- Preto, G.; Martins, F.; Pereira, J.A.; Baptista, P. Fungal community in olive fruits of cultivars with different susceptibilities to anthracnose and selection of isolates to be used as biocontrol agents. Biol. Control 2017, 110, 1–9. [Google Scholar] [CrossRef] [Green Version]
Roots | Petioles | Offshoots | Total | ||||||
---|---|---|---|---|---|---|---|---|---|
Homology | Asymptomatic Plants | Symptomatic Plants | Asymptomatic Plants | Symptomatic Plants | Asymptomatic Plants | Symptomatic Plants | Asymptomatic Plants | Symptomatic Plants | |
Acrocalymma vagum | 100% | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 3 |
Alternaria alternata | 100% | 2 | 19 | 0 | 14 | 0 | 0 | 2 | 33 |
Alternaria sp. | 100% | 21 | 21 | 0 | 8 | 0 | 0 | 21 | 29 |
Aspergillus niger | 99.47% | 29 | 16 | 28 | 16 | 22 | 23 | 79 | 55 |
Aspergillus niveus | 100% | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
Aspergillus sp. | 98.75% | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
Aspergillus terreus | 100% | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
Beauveria bassiana | 98.65% | 5 | 7 | 5 | 0 | 0 | 0 | 10 | 7 |
Bjerkandera adusta | 99.14% | 14 | 20 | 13 | 14 | 23 | 25 | 50 | 59 |
Botrytis cinerea | 99.50% | 9 | 26 | 0 | 6 | 1 | 23 | 10 | 55 |
Chaetomium succineum | 99.71% | 3 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
Clonostachys rosea | 100% | 11 | 7 | 0 | 4 | 7 | 23 | 18 | 34 |
Clonostachys sp. | 100% | 13 | 0 | 0 | 0 | 0 | 11 | 13 | 11 |
Colletotrichum sp. | 100% | 1 | 4 | 19 | 16 | 0 | 0 | 20 | 20 |
Cytospora acaceae | 97.89% | 0 | 0 | 6 | 0 | 3 | 11 | 9 | 11 |
Diaporthe sp. | 99.66% | 1 | 15 | 4 | 35 | 6 | 47 | 11 | 97 |
Diplodia pseudoseriata | 100% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
Epicoccum nigurum | 100% | 2 | 15 | 7 | 0 | 0 | 1 | 9 | 16 |
Eupenicillium sp. | 97.89% | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
Fusarium oxysporum | 99.71% | 21 | 42 | 6 | 50 | 10 | 53 | 37 | 145 |
Fusarium sp. | 95.25% | 0 | 10 | 1 | 14 | 10 | 38 | 11 | 62 |
Fusarium verticillioides | 99.72% | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 0 |
Hormonema viticola | 92.05% | 19 | 29 | 28 | 19 | 6 | 25 | 53 | 73 |
Macrophomina phaseolina | 100% | 44 | 19 | 28 | 15 | 30 | 30 | 102 | 64 |
Neofusicoccum parvum | 98.02% | 3 | 13 | 5 | 23 | 5 | 26 | 13 | 62 |
Penicillium chrysogenum | 100% | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 4 |
Penicillium glabrum | 91.09% | 12 | 0 | 25 | 0 | 31 | 0 | 68 | 0 |
Penicillium sp. | 99.27% | 59 | 32 | 76 | 98 | 271 | 166 | 406 | 296 |
Penicillium thomii | 100% | 17 | 33 | 8 | 12 | 0 | 0 | 25 | 45 |
Pestalotiopsis sp. | 99.72% | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
Phialophora fastigiata | 99.75% | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
Phialophora sp. | 99.50% | 0 | 2 | 0 | 0 | 0 | 11 | 0 | 13 |
Phlebia setulosa | 96.60% | 2 | 21 | 0 | 0 | 0 | 0 | 2 | 21 |
Phlebiopsis gigantea | 99.08% | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
Rutstroemiaceae sp. | 100% | 7 | 0 | 5 | 44 | 2 | 40 | 14 | 84 |
Stereum armeniacum | 100% | 4 | 5 | 0 | 0 | 0 | 0 | 4 | 5 |
Talaromyces sp. | 100% | 1 | 8 | 0 | 0 | 0 | 0 | 1 | 8 |
Trichoderma sp. | 99.47% | 108 | 10 | 88 | 37 | 67 | 31 | 263 | 78 |
Truncatella angustata | 100% | 9 | 11 | 0 | 0 | 0 | 0 | 9 | 11 |
Total | 427 | 393 | 352 | 427 | 497 | 585 | 1276 | 1405 |
Species/Genus | Genus | Family | Order | Class | Division |
---|---|---|---|---|---|
Hormonema viticola | Hormonema | Dothioraceae | Diaporthales | Sordariomycetes | Ascomycota |
Truncatella angustata | Truncatella | Amphisphaeriaceae | Xylariales | Sordariomycetes | Ascomycota |
Stereum armeniacum | Stereum | Stereaceae | Russulales | Agaricomycetes | Basidiomycota |
Phialophora fastigiata | Phialophora | Herpotrichiellaceae | Chaetothyriomycetidae | Eurotiomycetes | Ascomycota |
Cytospora acaciae | Cytospora | Valsaceae | Diaporthales | Sordariomycetes | Ascomycota |
Diplodia pseudoseriata | Diplodia | Botryosphaeriaceae | Botryosphaeriales | Dothideormycetes | Ascomycota |
Diaporthe sp. | Diaporthe | Diaporthaceae | Diaporthales | Sordariomycetes | Ascomycota |
Pestalotiopsis sp. | Pestalotiopsis | Amphisphaeriaceae | Xylariales | Sordariomycetes | Ascomycota |
Neofusicoccum sp. | Neofusicoccum | Botryosphaeriaceae | Botryosphaeriales | Dothideormycetes | Ascomycota |
Fungus | Day | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Diaporthe sp. | 0 | 0 | 0.67 | 1.50 | 2.83 | 3.80 | 3.80 | 3.80 | 3.80 |
Diplodia pseudoseriata | 0.70 | 1.53 | 2.83 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Phialophora fastigiata | 0.70 | 1.33 | 2.77 | 3.90 | 4.10 | 4.10 | 4.10 | 4.10 | 4.10 |
Fusarium oxysporum | 0.23 | 0.50 | 0.90 | 1.17 | 1.53 | 1.77 | 2.13 | 2.37 | 2.80 |
Aspergillus niger | 0.03 | 0.20 | 0.37 | 0.57 | 0.73 | 0.87 | 0.97 | 0.97 | 1.13 |
Penicillium sp. | 0 | 0 | 0.27 | 0.53 | 0.90 | 1.00 | 1.07 | 1.10 | 1.17 |
Trichoderma sp. | 0.10 | 0.30 | 0.60 | 0.87 | 1.07 | 1.20 | 1.40 | 1.68 | 1.78 |
Clonostachys rosea | 0 | 0.30 | 0.80 | 1.07 | 1.57 | 1.67 | 1.97 | 2.05 | 2.30 |
Epicocum nigrum | 0.43 | 0.70 | 1.23 | 1.70 | 2.20 | 2.73 | 3.17 | 3.70 | 4.03 |
Diaporthe sp. | D. pseudoseriata | P. fastigiata | |
---|---|---|---|
p-Values | |||
F. oxysporum vs. Control | 0.0002 | 0.0001 | 0.0005 |
Trichoderma sp. vs. Control | 0.0002 | 0.0002 | 0.0026 |
A. niger vs. Control | 0.0014 | 0.0003 | 0.0003 |
Penicillium sp. vs. Control | 0.0077 | 0.0005 | 0.0131 |
C. rosea vs. Control | 0.0011 | 0.0126 | 0.0003 |
E. nigrum vs. Control | 0.005 | 0.0008 | 0.0003 |
F.oxysporum vs. Trichoderma sp. | 0.0485 | 0.0353 | 0.386 |
F. oxysporum vs. A. niger | 0.5766 | 0.017 | 0.0566 |
F. oxysporum vs. Penicillium sp. | 0.0052 | 0.0006 | 0.0392 |
F. oxysporum vs. C. rosea | 0.3764 | 0.1104 | 0.0293 |
F. oxysporum vs. E. nigrum | 0.267 | 0.0123 | 0.244 |
Trichoderma sp. vs. A. niger | 0.1731 | 0.0137 | 0.0381 |
Trichoderma sp. vs. Penicillium sp. | 0.0162 | 0.0093 | 0.1309 |
Trichoderma sp. vs. C. rosea | 0.3709 | 0.6528 | 0.2162 |
Trichoderma sp. vs. E. nigrum | 0.6012 | 0.2782 | 0.5927 |
A. niger vs. Penicillium sp. | 0.0172 | 0.0011 | 0.0087 |
A. niger vs. C. rosea | 0.7164 | 0.0803 | 0.0059 |
A. niger vs. E. nigrum | 0.5322 | 0.01 | 0.0277 |
Penicillium sp. vs. C. rosea | 0.0177 | 0.2489 | 0.1617 |
Penicillium sp. vs. E. nigrum | 0.1266 | 0.0583 | 0.0757 |
C. rosea vs. E. nigrum | 0.781 | 0.9857 | 0.1702 |
Inhibition Percentage | |||
---|---|---|---|
Diaporthe sp. | D. pseudoseriata | P. fastigiata | |
F. oxysporum | 50.88% | 59.17% | 56.91% |
Trichoderma sp. | 41.23% | 48.75% | 49.59% |
A. niger | 47.37% | 58.75% | 62.60% |
Penicillium sp. | 30.70% | 32.08% | 34.15% |
C. rosea | 45.61% | 40.83% | 43.90% |
E. nigrum | 48.25% | 40.83% | 49.59% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Billar de Almeida, A.; Concas, J.; Campos, M.D.; Materatski, P.; Varanda, C.; Patanita, M.; Murolo, S.; Romanazzi, G.; Félix, M.d.R. Endophytic Fungi as Potential Biological Control Agents against Grapevine Trunk Diseases in Alentejo Region. Biology 2020, 9, 420. https://doi.org/10.3390/biology9120420
Billar de Almeida A, Concas J, Campos MD, Materatski P, Varanda C, Patanita M, Murolo S, Romanazzi G, Félix MdR. Endophytic Fungi as Potential Biological Control Agents against Grapevine Trunk Diseases in Alentejo Region. Biology. 2020; 9(12):420. https://doi.org/10.3390/biology9120420
Chicago/Turabian StyleBillar de Almeida, Angela, Jonathan Concas, Maria Doroteia Campos, Patrick Materatski, Carla Varanda, Mariana Patanita, Sergio Murolo, Gianfranco Romanazzi, and Maria do Rosário Félix. 2020. "Endophytic Fungi as Potential Biological Control Agents against Grapevine Trunk Diseases in Alentejo Region" Biology 9, no. 12: 420. https://doi.org/10.3390/biology9120420
APA StyleBillar de Almeida, A., Concas, J., Campos, M. D., Materatski, P., Varanda, C., Patanita, M., Murolo, S., Romanazzi, G., & Félix, M. d. R. (2020). Endophytic Fungi as Potential Biological Control Agents against Grapevine Trunk Diseases in Alentejo Region. Biology, 9(12), 420. https://doi.org/10.3390/biology9120420