Antimicrobial Activity of Chrysoeriol 7 and Chochlioquinone 9, White-Backed Planthopper-Resistant Compounds, Against Rice Pathogenic Strains
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. WBPH Breeding and Plant Material
2.2. Bacterial and Fungal Pathogens
2.3. Extraction and Separation of Compounds
2.4. LC/MS for Identification
2.5. Antimicrobial Activity Test of the Compounds
2.6. Statistical Analysis
2.7. Polymerase Chain Reaction Protocol and Sequencing
2.8. Phylogenetic Analysis
3. Results
3.1. Extraction Efficiency by Variety
3.2. LC/MS Data
3.3. Antimicrobial Activity Test of C7 and C9
3.4. Phylogenetic Tree
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Matthews, R.B.; Kropff, M.J.; Horie, T.; Bachelet, D. Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation. Agric. Syst. 1997, 54, 399–425. [Google Scholar] [CrossRef]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [Green Version]
- Seo, B.Y.; Kwon, Y.H.; Jung, J.K.; Kim, G.H. Electrical penetration graphic waveforms in relation to the actual positions of the stylet tips of Nilaparvata lugens in rice tissue. J. Asia Pac. Entomol. 2009, 12, 89–95. [Google Scholar] [CrossRef]
- Lee, Y.; Ra, D.; Yeh, W.; Choi, H.; Myung, I.; Lee, S.; Lee, Y.; Han, S.; Shim, H. Survey of major disease incidence of rice in Korea during 1999–2008. Res. Plant. Dis. 2010, 16, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Liu, J.; Triplett, L.; Leach, J.E.; Wang, G.L. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu. Rev. Phytopathol. 2014, 52, 213–241. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, M. Characteristics of recent population growth patterns of the whitebacked planthopper, Sogatella furcifera Horvath in the Hokuriku district (in Japanese). Proc. Assoc. Plant. Prot. Hokuriku 1991, 39, 47–50. [Google Scholar]
- Turner, R.; Song, Y.-H.; Uhm, K.-B. Numerical model simulations of brown planthopper Nilaparvata lugens and white-backed planthopper Sogatella furcifera (Homoptera: Delphacidae) migration. Bull. Entomol. Res. 1999, 89, 557–568. [Google Scholar] [CrossRef] [Green Version]
- Ha, H.Y.; Ra, D.S.; Shin, W.C.; Im, G.J.; Park, J.E. Survey of pesticide use in fruit vegetables, fruits, and rice cultivation areas in Korea. J. Korean Phys. Ther. 2012, 16, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Backman, P.A.; Sikora, R.A. Endophytes: An emerging tool for biological control. Biol. Control 2008, 46, 1–3. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, Z.; Li, Y.; Li, Y.; Xu, H. Anti-insect activity of the methanol extracts of fern and gymnosperm. Agric. Sci. China 2010, 9, 249–256. [Google Scholar] [CrossRef]
- Gupta, S.; Dikshit, A.K. Biopesticides: An ecofriendly approach for pest control. J. Biopestic. 2010, 3, 186. [Google Scholar]
- Arnason, J.T.; Philogène, B.J.R.; Morand, P.; Imrie, K.; Iyengar, S.; Duval, F.; Soucy-Breau, C.; Scaiano, J.C.; Werstiuk, N.H.; Hasspieler, B.; et al. Naturally occurring and synthetic thiophenes as photoactivated insecticides. ACS Symp. Ser. 1989, 387, 164–172. [Google Scholar] [CrossRef]
- Schröder, G.; Wehinger, E.; Lukačin, R.; Wellmann, F.; Seefelder, W.; Schwab, W.; Schröder, J. Flavonoid methylation: A novel 4′-O-methyltransferase from Catharanthus roseus, and evidence that partially methylated flavanones are substrates of four different flavonoid dioxygenases. Phytochemistry 2004, 65, 1085–1094. [Google Scholar] [CrossRef]
- Kim, K.M.; Park, Y.H. Studies of the life cycle and rearing methods of Whitebacked planthopper (Sogatella furcifera Horvath). J. Life Sci. 2018, 28, 357–360. [Google Scholar] [CrossRef]
- Teubert, H.; Wünsche, G.; Herrmann, K. Flavonols and flavones of vegetables. VIII. Flavones of carrot leaves (author’s transl). Z. Lebensm-Unters. Und-Forsch. 1977, 165, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Harborne, J.B.; Williams, C.A. Flavonoid patterns in the fruits of the Umbelliferae. Phytochemistry 1972, 11, 1741–1750. [Google Scholar] [CrossRef]
- Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets 2008, 8, 634–646. [Google Scholar] [CrossRef]
- José Angelo, S.Z.; Pierre, H.C.; Jean-Charles, Q.; Henri-Philippe, H.; Adam, K.; Pascal, R. Production of Sinorhizobium meliloti nod gene activator and repressor flavonoids from Medicago sativa roots. Mol. Plant. Microbe Interact. 1998, 11, 784–794. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.F.; Luthria, D.L.; Sasaki, T.; Heyerick, A. Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules 2010, 15, 3135–3170. [Google Scholar] [CrossRef] [Green Version]
- Tagousop, C.N.; Ekom, S.E.; Ngnokam, D.; Voutquenne-Nazabadioko, L. Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC Complement. Altern. Med. 2018, 18, 1–10. [Google Scholar] [CrossRef]
- Han, L.; Gao, X.; Xia, T.; Zhang, X.; Li, X.; Gao, W. Effect of digestion on the phenolic content and antioxidant activity of celery leaf and the antioxidant mechanism via Nrf2/HO-1 signaling pathways against Dexamethasone. J. Food Biochem. 2019, 43, e12875. [Google Scholar] [CrossRef]
- Choi, D.Y.; Lee, J.Y.; Kim, M.R.; Woo, E.R.; Kim, Y.G.; Kang, K.W. Chrysoeriol potently inhibits the induction of nitric oxide synthase by blocking AP-1 activation. J. Biomed. Sci. 2005, 12, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Boucias, D.G.; Zhou, Y.; Huang, S.; Keyhani, N.O. Microbiota in insect fungal pathology. Appl. Microbiol. Biotechnol. 2018, 102, 5873–5888. [Google Scholar] [CrossRef]
- Boucias, D.G.; Lietze, V.U.; Teal, P. Chemical signals that mediate insect-fungal interactions. In Biocommunication of Fungi; Springer: Dordrecht, The Netherlands, 2012; pp. 305–306. [Google Scholar] [CrossRef]
- Bicalho, B.; Gonçalves, R.A.; Zibordi, A.P.; Manfio, G.P.; Marsaioli, A.J. Antimicrobial compounds of fungi vectored by Clusia spp. (Clusiaceae) pollinating bees. Z. Naturforsch. C J. Biosci. 2003, 58, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Canonica, L.; Beretta, M.G.; Colombo, L.; Gennari, C.; Ranzi, B.M.; Scolastico, C. Biosynthesis of cochlioquinones. J. Chem. Soc. Perkin Trans. 1 1980, 2686–2690. [Google Scholar] [CrossRef]
- Yoganathan, K.; Yang, L.K.; Rossant, C.; Huang, Y.; Ng, S.; Butler, M.S.; Buss, A.D. Cochlioquinones and epi-cochlioquinones. J. Antibiot. 2004, 57, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, J.M.; Frazier, E.G.; Bergstrom, A.R.; Williamson, J.M.; Liesch, J.M.; Goetz, M.A. Cochlioquinone A, a nematocidal agent which competes for specific [3H] ivermectin binding sites. J. Antibiot. 1990, 43, 1179–1182. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.J.; Lee, H.B.; Lim, C.H.; Kim, C.J.; Kwon, H.J. Cochlioquinone A1, a new anti-angiogenic agent from Bipolaris zeicola. Bioorg. Med. Chem. 2003, 11, 4743–4747. [Google Scholar] [CrossRef]
- Kim, T.H.; Kim, K.M.; Manigbas, N.L.; Yi, G.H.; Sohn, J.K. Identification of quantitative trait loci for resistance to whitebacked planthopper (Sogatella furcifera) in rice with Milyang 46 (“Cheongcheong”) background. Philipp. J. Crop. Sci. 2013, 38, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Park, S.G.; Kiswara, G.; Lee, G.H.; Yang, W.H.; Chang, A.; Kim, K.M. Analysis of QTL associated with WBPH and identification of WBPH mediated compounds in rice (Oryza sativa L.). Korean Breed. Sci. 2014, 132. [Google Scholar]
- Kim, S.W.; Jung, J.H.; Lamsal, K.; Kim, Y.S.; Min, J.S.; Lee, Y.S. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 2012, 40, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.K.; Lee, J.J.; Moon, J.M.; Bock, P.S. Fumigant activities of Arctium lappa extracts against Callosobruchus chinensis adult. J. Agric. Life Sci. 2014, 45, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Walia, S.; Saha, S.; Tripathi, V.; Sharma, K.K. Phytochemical biopesticides: Some recent developments. Phytochem. Rev. 2017, 16, 989–1007. [Google Scholar] [CrossRef]
- Tewari, S.N.; Nayak, M. Activity of four plant leaf extracts against three fungal pathogens of rice. Trop. Agric. 1991, 68, 373–375. [Google Scholar]
- Nabavi, S.F.; Braidy, N.; Gortzi, O.; Sobarzo-Sanchez, E.; Daglia, M.; Skalicka-Woźniak, K.; Nabavi, S.M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull. 2015, 119, 1–11. [Google Scholar] [CrossRef]
- Luo, Y.; Shang, P.; Li, D. Luteolin: A flavonoid that has multiple cardio-protective effects and its molecular mechanisms. Front. Pharmacol. 2017, 8, 692. [Google Scholar] [CrossRef] [Green Version]
- Miski, M.; Ulubelen, A.; Johansson, C.; Mabry, T.J. Antibacterial activity studies of flavonoids from Salvia palaestina. J. Nat. Prod. 1983, 46, 874–875. [Google Scholar] [CrossRef]
- Mishra, B.; Priyadarsini, K.I.; Kumar, M.S.; Unnikrishnan, M.K.; Mohan, H. Effect of O-glycosilation on the antioxidant activity and free radical reactions of a plant flavonoid, chrysoeriol. Bioorg. Med. Chem. 2003, 11, 2677–2685. [Google Scholar] [CrossRef]
- Bashyal, P.; Parajuli, P.; Pandey, R.P.; Sohng, J.K. Microbial biosynthesis of antibacterial chrysoeriol in recombinant Escherichia coli and bioactivity assessment. Catalysts 2019, 9, 112. [Google Scholar] [CrossRef] [Green Version]
- Arayama, M.; Nehira, T.; Maeda, H.; Tanaka, K.; Miyagawa, H.; Ueno, T.; Hosokawa, S.; Hashimoto, M. Isolation, ECD assisted structural analyses, biosynthetic discussions, and biological activities of epi-cochlioquinones D and its derivatives. Tetrahedron 2015, 71, 4788–4794. [Google Scholar] [CrossRef]
- Kim, K.M.; Yun, B.W. Method for Isolating Flavonoids from Rice Plant Inoculated with Whitebacked Planthopper. U.S. Patent No. 10,562,911, 18 February 2020. [Google Scholar]
- Lane, D.J.; Pace, B.; Olsen, G.J.; Stahl, D.A.; Sogin, M.L.; Pace, N.R. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 1985, 82, 6955–6959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suga, H.; Hasegawa, T.; Mitsui, H.; Kageyama, K.; Hyakumachi, M. Phylogenetic analysis of the phytopathogenic fungus Fusarium solani based on the rDNA-ITS region. Mycol. Res. 2000, 104, 1175–1183. [Google Scholar] [CrossRef]
- Goswami, R.S.; Kistler, H.C. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant. Pathol. 2004, 5, 515–525. [Google Scholar] [CrossRef]
- Chung, H.S. Cereal scab causing mycotoxicoses in Korea and present status of mycotoxin researches. Korean J. Mycol. 1975, 3, 31–36. [Google Scholar]
- Tanaka, T.; Hasegawa, A.; Yamamoto, S.; Lee, U.-S.; Sugiura, Y.; Ueno, Y. Worldwide contamination of cereals by the fusarium mycotoxins nivalenol, deoxynivalenol, and zearalenone. 1. Survey of 19 Countries. J. Agric. Food Chem. 1988, 36, 979–983. [Google Scholar] [CrossRef]
- Chaibub, A.A.; Sousa, T.P.; Araújo, L.G.; Filippi, M.C.C. Molecular and morphological characterization of rice phylloplane fungi and determination of the antagonistic activity against rice pathogens. Microbiol. Res. 2020, 231, 126353. [Google Scholar] [CrossRef]
- Kobori, H.; Tojo, M.; Hasunuma, N.; Ohki, S.T. Materials of Pythium flora in Japan (XI): Characterization of Pythium graminicola causing seedling blight in rice. Sci. Rep. Grad. Sch. Agric. Biol. Sci. Osaka Pref. Univ. 2004, 56, 1–5. [Google Scholar] [CrossRef]
- Ling, Y.; Xia, J.; Koji, K.; Zhang, X.; Li, Z. First report of damping-off caused by Pythium arrhenomanes on rice in China. Plant Dis. 2018, 102, 2382. [Google Scholar] [CrossRef]
Pathogens | Scientific Name | Disease Name | KACC No. | Media | Temperature (°C) |
---|---|---|---|---|---|
Bacteria | Acidovorax avenae subsp. avenae | Bacterial Stripes | 16205 | LB | 28 |
Xanthomonas campestris pv. campestris | Bacterial Leaf Blight | 10377 | LB | 30 | |
Fungi | Cladosporium herbarum | False Rice Blast | 42599 | PDA | 26 |
Alternaria tenuissima | Ear Blight | 40968 | PDA | 30 | |
Cladosporium cladosporioides | Ear Blight | 40934 | PDA | 25 | |
Curvularia lunata | Ear Blight | 40392 | PDA | 24 | |
Fusarium moniliforme | Ear Blight | 40386 | PDA | 25 | |
Alternaria padwickii | Ear Blight | 43247 | PDA | 25 | |
Gibberella zeae | Scab | 46523 | PDA | 25 | |
Fusarium graminearum | Scab | 41040 | PDA | 25 | |
Pythium graminicola | Damping-off | 40155 | PDA | 25 | |
Pythium ultimum | Damping-off | 40705 | PDA | 25 | |
Rhizoctonia cerealis | Sheath Eyespot | 40153 | PDA | 25 |
Species | Inhibition Rate (%) | |||||
---|---|---|---|---|---|---|
1 Week | 2 Weeks | |||||
100 ppm | 500 ppm | 1000 ppm | 100 ppm | 500 ppm | 1000 ppm | |
A. avenae subsp. avenae | −4.5 | −1.5 | 2.6 | 2.2 | −1.4 | −3.2 |
X. campestris pv. campestris | −13.5 | −1.4 | −16.3 | −15.0 | −3.5 | −14.5 |
C. herbarum | 2.2 | 21.9 | 4.7 | 0.2 | 2.8 | −0.6 |
A. tenuissima | 9.6 | −21.1 | 3.5 | −10.3 | −20.5 | −10.3 |
C. cladosporioides | 9.9 | 3.3 | 10.9 | 2.9 | 10.2 | 8.2 |
C. lunata | −21.1 | −16.6 | −7.1 | 0.0 | 0.0 | 0.0 |
F. moniliforme | −0.6 | −18.1 | −29.0 | −19.4 | −16.6 | −11.4 |
A. padwickii | −3.2 | −3.8 | −1.6 | 0.0 | 0.0 | 0.0 |
G. zeae | −0.2 | −5.7 | 2.1 | 0.0 | 0.0 | 0.0 |
F. graminearum | 10.9 | 26.6 | 28.7 | 0.0 | 0.0 | 0.0 |
P. graminicola | 22.6 | 48.5 | 62.3 | 0.2 | 1.9 | 5.1 |
R. cerealis | −4.4 | 3.4 | 4.8 | 0.0 | 0.0 | 0.0 |
Species | Diameter (mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 Week | 2 Weeks | |||||||||
Control | 100 ppm | 500 ppm | 1000 ppm | p Value | Control | 100 ppm | 500 ppm | 1000 ppm | p Value | |
A. avenae subsp. avenae | 20.1 ± 0.4b z | 21.1 ± 1.3a | 20.4 ± 0.4ab | 19.6 ± 0.3b | 0.019 * | 21.7 ± 0.5b | 21.3 ± 1.0ab | 22.0 ± 0.3a | 22.4 ± 0.5a | 0.025* |
X. campestris pv. campestris | 20.3 ± 1.3b | 23.0 ± 1.8a | 20.5 ± 1.2b | 23.5 ± 0.8a | <0.001 ** | 25.1 ± 1.8b | 28.9 ± 1.6a | 26.0 ± 1.9b | 28.8 ± 1.2a | 0.001 ** |
C. herbarum | 18.2 ± 1.3a | 17.8 ± 2.3a | 14.2 ± 1.0b | 17.3 ± 1.7a | 0.002 ** | 32.1 ± 1.8 | 32.1 ± 2.2 | 31.3 ± 1.6 | 32.4 ± 1.3 | 0.722 |
A. tenuissima | 36.7 ± 1.0b | 33.2 ± 1.1bc | 44.4 ± 1.1a | 35.4 ± 1.8b | <0.001 ** | 71.2 ± 3.3c | 78.6 ± 3.0b | 85.8 ± 1.5a | 78.6 ± 1.8b | <0.001 ** |
C. cladosporioides | 30.2 ± 2.2a | 27.2 ± 1.0b | 29.2 ± 1.5a | 26.9 ± 1.6b | 0.006 ** | 60.1 ± 2.7a | 58.4 ± 1.1ab | 54.0 ± 4.3bc | 55.2 ± 4.4c | 0.020 * |
C. lunata | 48.6 ± 1.5d | 58.9 ± 1.7a | 56.7 ± 2.0b | 52.1 ± 1.5c | <0.001 ** | 87.0 ± 0.0 | 87.0 ± 0.0 | 87.0 ± 0.0 | 87.0 ± 0.0 | 1.000 |
F. moniliforme | 29.5 ± 0.3c | 29.7 ± 1.2c | 34.9 ± 0.3b | 38.1 ± 2.5a | <0.001 ** | 74.1 ± 6.3c | 88.5 ± 0.0a | 86.4 ± 1.2ab | 82.6 ± 2.0b | <0.001 ** |
A. padwickii | 74.4 ± 0.8c | 76.7 ± 0.7ab | 77.1 ± 1.3a | 75.6 ± 1.3bc | 0.001 ** | 87.0 ± 0.0 | 87.0 ± 0.0 | 87.0 ± 0.0 | 87.0 ± 0.0 | 1.000 |
G. zeae | 58.2 ± 1.8b | 58.3 ± 3.4b | 61.5 ± 1.4a | 57.0 ± 2.5b | 0.024 * | 87.0 ± 0.0 | 87.0 ± 0.0 | 87.0 ± 0.0 | 87.0 ± 0.0 | 1.000 |
F. graminearum | 70.6 ± 7.0a | 62.9 ± 5.7a | 51.8 ± 3.9b | 50.4 ± 11.1b | <0.001 ** | 87.0 ± 0.0 | 87.0 ± 0.0 | 87.0 ± 0.0 | 87.0 ± 0.0 | 1.000 |
P. graminicola | 87.0 ± 0.8a | 67.4 ± 0.2b | 44.8 ± 0.5c | 32.8 ± 0.4d | <0.001 ** | 64.9 ± 0.7a | 64.8 ± 0.4a | 63.7 ± 0.4b | 61.6 ± 0.6c | <0.001 ** |
R. cerealis | 69.7 ± 0.7b | 72.7 ± 1.2a | 67.3 ± 1.2c | 66.3 ± 1.1c | <0.001 ** | 87.0 ± 0.0 | 87.0 ± 0.0 | 87.0 ± 0.0 | 87.0 ± 0.0 | 1.000 |
Species | Inhibition Rate (%) | |||||
---|---|---|---|---|---|---|
1 Week | 2 Weeks | |||||
100 ppm | 500 ppm | 1000 ppm | 100 ppm | 500 ppm | 1000 ppm | |
A. avenae subsp. avenae | 3.6 | 4.8 | 3.9 | 1.7 | 4.5 | 2.1 |
X. campestris pv. campestris | −16.8 | −14.3 | −21.5 | −18.5 | −17.6 | −24.5 |
C. herbarum | 5.0 | 9.9 | 10.1 | 2.3 | 4.3 | 8.0 |
A. tenuissima | −6.4 | 6.3 | 7.1 | −5.6 | −6.7 | −4.7 |
C. cladosporioides | 12.4 | 14.3 | 15.5 | 3.6 | 6.4 | 12.0 |
C. lunata | −4.9 | 6.8 | −9.5 | 0.0 | 0.0 | 0.0 |
F. moniliforme | −3.9 | −3.6 | −27.1 | 22.2 | 18.7 | 20.0 |
A. padwickii | −2.5 | −1.9 | −2.6 | 0.0 | 0.0 | 0.0 |
G. zeae | 7.5 | 8.1 | 24.6 | 0.0 | 0.0 | 0.0 |
F. graminearum | 9.7 | 11.3 | 20.7 | 0.0 | 0.0 | 0.0 |
P. graminicola | 26.4 | 27.3 | 36.2 | 20.0 | 44.8 | 52.4 |
R. cerealis | 3.4 | 2.1 | 0.4 | 0.0 | 0.0 | 0.0 |
Species | Diameter (mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 Week | 2 Weeks | |||||||||
Control | 100 ppm | 500 ppm | 1000 ppm | p Value | Control | 100 ppm | 500 ppm | 1000 ppm | p Value | |
A. avenae subsp. avenae | 19.0 ± 0.2a z | 18.3 ± 0.4b | 18.1 ± 0.3b | 18.3 ± 0.6b | 0.006 ** | 20.5 ± 0.5a | 20.2 ± 0.3ab | 19.6 ± 0.2c | 20.1 ± 0.3b | 0.025 * |
X. campestris pv. campestris | 18.5 ± 0.9b | 21.6 ± 1.3a | 21.1 ± 1.0a | 22.5 ± 1.4a | <0.001 ** | 23.2 ± 1.3b | 27.5 ± 1.1a | 27.2 ± 1.0a | 28.8 ± 1.8a | 0.001 ** |
C. herbarum | 17.6 ± 0.8 | 16.7 ± 1.7 | 15.8 ± 0.5 | 15.8 ± 0.8 | 0.107 | 30.1 ± 1.1a | 29.4 ± 0.9ab | 28.8 ± 1.2bc | 27.7 ± 0.3 | 0.722 |
A. tenuissima | 34.8 ± 1.3b | 37.0 ± 1.4a | 32.6 ± 2.7a | 32.3 ± 2.5a | <0.001 ** | 66.0 ± 3.1b | 69.7 ± 3.7ab | 70.5 ± 2.7a | 69.2 ± 3.3ab | <0.001 ** |
C. cladosporioides | 28.2 ± 2.1a | 24.7 ± 2.2b | 24.1 ± 1.2b | 23.8 ± 0.8b | 0.001 ** | 56.8 ± 2.7a | 54.7 ± 2.1ab | 53.1 ± 0.9b | 49.9 ± 0.4c | 0.020 * |
C. lunata | 45.5 ± 1.3d | 47.8 ± 1.8b | 42.4 ± 1.2c | 49.9 ± 1.0a | <0.001 ** | 83.0 ± 0.0 | 83.0 ± 0.0 | 83.0 ± 0.0 | 83.0 ± 0.0 | 1.000 |
F. moniliforme | 27.0 ± 0.3c | 28.1 ± 0.9b | 28.0 ± 0.7b | 34.3 ± 0.6a | <0.001 ** | 82.8 ± 0.0a | 64.4 ± 7.9b | 67.3 ± 0.6b | 66.2 ± 1.2b | <0.001 ** |
A. padwickii | 69.7 ± 0.6 | 71.4 ± 2.8 | 71.0 ± 1.2 | 71.5 ± 0.5 | 0.185 | 85.3 ± 0.0 | 85.3 ± 0.0 | 85.3 ± 0.0 | 85.3 ± 0.0 | 1.000 |
G. zeae | 55.0 ± 2.2ab | 50.9 ± 2.9b | 50.6 ± 1.6b | 41.5 ± 2.9c | <0.001 ** | 85.3 ± 0.0 | 85.3 ± 0.0 | 85.3 ± 0.0 | 85.3 ± 0.0 | 1.000 |
F. graminearum | 67.5 ± 6.2a | 61.0 ± 4.4ab | 59.9 ± 6.4bc | 53.5 ± 6.3c | 0.005 ** | 85.3 ± 0.0 | 85.3 ± 0.0 | 85.3 ± 0.0 | 85.3 ± 0.0 | 1.000 |
P. graminicola | 73.7 ± 0.3a | 54.2 ± 0.6b | 53.6 ± 0.4c | 47.0 ± 0.5d | <0.001 ** | 79.6 ± 0.4a | 63.7 ± 0.6b | 44.0 ± 0.5c | 37.9 ± 0.5d | <0.001 ** |
R. cerealis | 64.9 ± 0.7a | 62.7 ± 0.9b | 63.6 ± 1.2ab | 64.6 ± 1.5a | 0.010 ** | 85.3 ± 0.0 | 85.3 ± 0.0 | 85.3 ± 0.0 | 85.3 ± 0.0 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, Y.-H.; Park, J.-R.; Kim, K.-M. Antimicrobial Activity of Chrysoeriol 7 and Chochlioquinone 9, White-Backed Planthopper-Resistant Compounds, Against Rice Pathogenic Strains. Biology 2020, 9, 382. https://doi.org/10.3390/biology9110382
Jang Y-H, Park J-R, Kim K-M. Antimicrobial Activity of Chrysoeriol 7 and Chochlioquinone 9, White-Backed Planthopper-Resistant Compounds, Against Rice Pathogenic Strains. Biology. 2020; 9(11):382. https://doi.org/10.3390/biology9110382
Chicago/Turabian StyleJang, Yoon-Hee, Jae-Ryoung Park, and Kyung-Min Kim. 2020. "Antimicrobial Activity of Chrysoeriol 7 and Chochlioquinone 9, White-Backed Planthopper-Resistant Compounds, Against Rice Pathogenic Strains" Biology 9, no. 11: 382. https://doi.org/10.3390/biology9110382
APA StyleJang, Y. -H., Park, J. -R., & Kim, K. -M. (2020). Antimicrobial Activity of Chrysoeriol 7 and Chochlioquinone 9, White-Backed Planthopper-Resistant Compounds, Against Rice Pathogenic Strains. Biology, 9(11), 382. https://doi.org/10.3390/biology9110382