Protein Deimination and Extracellular Vesicle Profiles in Antarctic Seabirds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Seabird Plasma
2.2. Extracellular Vesicle Isolation and NTA Analysis
2.3. Transmission Electron Microscopy (TEM)
2.4. Western Blotting
2.5. Immunoprecipitation and Protein Identification
2.6. Statistical Analysis
3. Results
3.1. Extracellular Vesicle Analysis in Seabird Plasma
3.2. Deiminated Proteins and PAD in Seabird Plasma
3.3. Protein–protein Network Interaction Analysis for Deiminated Proteins in Seabird Plasma
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vossenaar, E.R.; Zendman, A.J.; van Venrooij, W.J.; Pruijn, G.J. PAD, a Growing Family of Citrullinating Enzymes: Genes, Features and Involvement in Disease. Bioessays 2003, 25, 1106–1118. [Google Scholar] [CrossRef] [PubMed]
- György, B.; Toth, E.; Tarcsa, E.; Falus, A.; Buzas, E.I. Citrullination: A Posttranslational Modification in Health and Disease. Int. J. Biochem. Cell Biol. 2006, 38, 1662–1677. [Google Scholar] [CrossRef] [PubMed]
- Bicker, K.L.; Thompson, P.R. The Protein Arginine Deiminases: Structure, Function, Inhibition, and Disease. Biopolymers 2013, 99, 155–163. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y. Peptidylarginine Deiminases in Citrullination, Gene Regulation, Health and Pathogenesis. Biochim. Biophys. Acta 2013, 1829, 1126–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, S.; Gallagher, M.; Kholia, S.; Kosgodage, U.S.; Hristova, M.; Hardy, J.; Inal, J.M. Peptidylarginine Deiminases-Roles in Cancer and Neurodegeneration and Possible Avenues for Therapeutic Intervention via Modulation of Exosome and Microvesicle (EMV) Release? Int. J. Mol. Sci. 2017, 18, 1196. [Google Scholar] [CrossRef] [PubMed]
- Magnadottir, B.; Hayes, P.; Hristova, M.; Bragason, B.Þ.; Nicholas, A.P.; Dodds, A.W.; Gudmundsdottir, S.; Lange, S. Post-translational Protein Deimination in Cod (Gadus morhua L.) Ontogeny-Novel Roles in Tissue Remodelling and Mucosal Immune Defences? Dev. Comp. Immunol. 2018, 87, 157–170. [Google Scholar] [CrossRef]
- Magnadottir, B.; Bragason, B.T.; Bricknell, I.R.; Bowden, T.; Nicholas, A.P.; Hristova, M.; Gudmundsdottir, S.; Dodds, A.W.; Lange, S. Peptidylarginine Deiminase and Deiminated Proteins are detected throughout Early Halibut Ontogeny-Complement Components C3 and C4 are Post-Translationally Deiminated in Halibut (Hippoglossus hippoglossus L.). Dev. Comp. Immunol. 2019, 92, 1–19. [Google Scholar] [CrossRef]
- Magnadottir, B.; Kraev, I.; Guðmundsdóttir, S.; Dodds, A.W.; Lange, S. Extracellular Vesicles from Cod (Gadus morhua L.) Mucus Contain Innate Immune Factors and Deiminated Protein Cargo. Dev. Comp. Immunol. 2019, 99, 103397. [Google Scholar] [CrossRef]
- Criscitiello, M.F.; Kraev, I.; Lange, S. Deiminated Proteins in Extracellular Vesicles and Plasma of Nurse Shark (Ginglymostoma cirratum)-Novel Insights into Shark Immunity. Fish Shellfish Immunol. 2019, 92, 249–255. [Google Scholar] [CrossRef]
- Criscitiello, M.F.; Kraev, I.; Lange, S. Deiminated Proteins in Extracellular Vesicles and Serum of Llama (Lama glama)-Novel Insights into Camelid Immunity. Mol. Immunol. 2020, 117, 37–53. [Google Scholar] [CrossRef]
- Pamenter, M.E.; Uysal-Onganer, P.; Huynh, K.W.; Kraev, I.; Lange, S. Post-translational Deimination of Immunological and Metabolic Protein Markers in Plasma and Extracellular Vesicles of Naked Mole-Rat (Heterocephalus glaber). Int. J. Mol. Sci. 2019, 20, 5378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witalison, E.E.; Thompson, P.R.; Hofseth, L.J. Protein Arginine Deiminases and Associated Citrullination: Physiological Functions and Diseases Associated with Dysregulation. Curr. Drug Targets 2015, 16, 700–710. [Google Scholar] [CrossRef] [PubMed]
- Henderson, B.; Martin, A.C. Protein Moonlighting: A New Factor in Biology and Medicine. Biochem. Soc. Trans. 2014, 42, 1671–1678. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, C.J. Protein Moonlighting: What is it, and Why is it Important? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20160523. [Google Scholar] [CrossRef]
- Rebl, A.; Köllner, B.; Anders, E.; Wimmers, K.; Goldammer, T. Peptidylarginine Deiminase Gene is Differentially Expressed in Freshwater and Brackish Water Rainbow Trout. Mol. Biol. Rep. 2010, 37, 2333–2339. [Google Scholar] [CrossRef]
- Lange, S.; Gögel, S.; Leung, K.Y.; Vernay, B.; Nicholas, A.P.; Causey, C.P.; Thompson, P.R.; Greene, N.D.; Ferretti, P. Protein Deiminases: New Players in the Developmentally Regulated Loss of Neural Regenerative Ability. Dev. Biol. 2011, 355, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Bielecka, E.; Scavenius, C.; Kantyka, T.; Jusko, M.; Mizgalska, D.; Szmigielski, B.; Potempa, B.; Enghild, J.J.; Prossnitz, E.R.; Blom, A.M.; et al. Peptidyl Arginine Deiminase from Porphyromonas gingivalis Abolishes Anaphylatoxin C5a Activity. J. Biol. Chem. 2014, 289, 32481–32487. [Google Scholar] [CrossRef] [Green Version]
- Kosgodage, U.S.; Matewele, P.; Mastroianni, G.; Kraev, I.; Brotherton, D.; Awamaria, B.; Nicholas, A.P.; Lange, S.; Inal, J.M. Peptidylarginine Deiminase Inhibitors Reduce Bacterial Membrane Vesicle Release and Sensitize Bacteria to Antibiotic Treatment. Front. Cell. Infect. Microbiol. 2019, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Gavinho, B.; Rossi, I.V.; Evans-Osses, I.; Lange, S.; Ramirez, M.I. Peptidylarginine Deiminase Inhibition Abolishes the Production of Large Extracellular Vesicles from Giardia intestinalis, Affecting Host-Pathogen Interactions by Hindering Adhesion to Host Cells. bioRxiv 2019, 586438. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.S.A.; Shindia, A.A.; AbouZaid, A.A.; Yassin, A.M.; Ali, G.S.; Sitohy, M.Z. Biochemical Characterization of Peptidylarginine Deiminase-Like Orthologs from Thermotolerant Emericella Dentata and Aspergillus Nidulans. Enzyme Microb. Technol. 2019, 124, 41–53. [Google Scholar] [CrossRef]
- Lange, S.; Rocha-Ferreira, E.; Thei, L.; Mawjee, P.; Bennett, K.; Thompson, P.R.; Subramanian, V.; Nicholas, A.P.; Peebles, D.; Hristova, M.; et al. Peptidylarginine Deiminases: Novel Drug Targets for Prevention of Neuronal Damage following Hypoxic Ischemic Insult (HI) in Neonates. J. Neurochem. 2014, 130, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Lange, S. Peptidylarginine Deiminases as Drug Targets in Neonatal Hypoxic-Ischemic Encephalopathy. Front. Neurol. 2016, 7, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnadottir, B.; Hayes, P.; Gísladóttir, B.; Bragason, B.; Hristova, M.; Nicholas, A.P.; Guðmundsdóttir, S.; Lange, S. Pentraxins CRP-I and CRP-II are Post-Translationally Deiminated and Differ in Tissue Specificity in Cod (Gadus morhua L.) Ontogeny. Dev. Comp. Immunol. 2018, 87, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Magnadottir, B.; Uysal-Onganer, P.; Kraev, I.; Svansson, V.; Lange, S. Deiminated Proteins and Extracellular Vesicles-Novel Serum Biomarkers in Whales and Orca. Comp. Biochem. Physiol. Part D 2020. under review. [Google Scholar]
- Kholia, S.; Jorfi, S.; Thompson, P.R.; Causey, C.P.; Nicholas, A.P.; Inal, J.M.; Lange, S. A Novel Role for Peptidylarginine Deiminases in Microvesicle Release Reveals Therapeutic potential of PAD Inhibition in Sensitizing Prostate Cancer Cells to Chemotherapy. J. Extracell. Vesicles 2015, 4, 26192. [Google Scholar] [CrossRef] [Green Version]
- Kosgodage, U.S.; Trindade, R.P.; Thompson, P.R.; Inal, J.M.; Lange, S. Chloramidine/Bisindolylmaleimide-I-Mediated Inhibition of Exosome and Microvesicle Release and Enhanced Efficacy of Cancer Chemotherapy. Int. J. Mol. Sci. 2017, 18, 1007. [Google Scholar] [CrossRef]
- Kosgodage, U.S.; Onganer, P.U.; Maclatchy, A.; Nicholas, A.P.; Inal, J.M.; Lange, S. Peptidylarginine Deiminases Post-translationally Deiminate Prohibitin and Modulate Extracellular Vesicle Release and miRNAs 21 and 126 in Glioblastoma Multiforme. Int. J. Mol. Sci. 2018, 20, 103. [Google Scholar] [CrossRef] [Green Version]
- Inal, J.M.; Ansa-Addo, E.A.; Lange, S. Interplay of Host-Pathogen Microvesicles and Their Role in Infectious Disease. Biochem. Soc. Trans. 2013, 41, 258–262. [Google Scholar] [CrossRef] [Green Version]
- Colombo, M.; Raposo, G.; Théry, C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annu. Rev. Cell Dev. Biol. 2014, 30, 255–289. [Google Scholar] [CrossRef]
- Turchinovich, A.; Drapkina, O.; Tonevitsky, A. Transcriptome of Extracellular Vesicles: State-of-the-Art. Front. Immunol. 2019, 10, 202. [Google Scholar] [CrossRef] [Green Version]
- Vagner, T.; Chin, A.; Mariscal, J.; Bannykh, S.; Engman, D.M.; Di Vizio, D. Protein Composition Reflects Extracellular Vesicle Heterogeneity. Proteomics 2019, 19, e1800167. [Google Scholar] [CrossRef] [PubMed]
- Hessvik, N.P.; Llorente, A. Current knowledge on Exosome Biogenesis and Release. Cell Mol. Life Sci. 2018, 75, 193–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, S.H.; Andrews, A.M.; Paul, D.; Pachter, J.S. Extracellular Vesicles: Mediators and Biomarkers of Pathology along CNS Barriers. Fluids Barriers CNS 2018, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Iliev, D.; Strandskog, G.; Nepal, A.; Aspar, A.; Olsen, R.; Jørgensen, J.; Wolfson, D.; Ahluwalia, B.S.; Handzhiyski, J.; Mironova, R. Stimulation of Exosome Release by Extracellular DNA is Conserved Across Multiple Cell Types. FEBS J. 2018, 285, 3114–3133. [Google Scholar] [CrossRef]
- Lange, S.; Kraev, I.; Magnadóttir, B.; Dodds, A.W. Complement Component C4-Like Protein in Atlantic Cod (Gadus morhua L.)-Detection in Ontogeny and Identification of Post-Translational Deimination in Serum and Extracellular Vesicles. Dev. Comp. Immunol. 2019, 101, 103437. [Google Scholar] [CrossRef]
- Sun, Y.; Saito, K.; Saito, Y. Lipid Profile Characterization and Lipoprotein Comparison of Extracellular Vesicles from Human Plasma and Serum. Metabolites 2019, 9, 259. [Google Scholar] [CrossRef] [Green Version]
- Kosgodage, U.S.; Matewele, P.; Awamaria, B.; Kraev, I.; Warde, P.; Mastroianni, G.; Nunn, A.V.; Guy, G.W.; Bell, J.D.; Inal, J.M.; et al. Cannabidiol Is a Novel Modulator of Bacterial Membrane Vesicles. Front. Cell Infect. Microbiol. 2019, 9, 324. [Google Scholar] [CrossRef]
- Magnadottir, B.; Uysal-Onganer, P.; Kraev, I.; Dodds, A.W.; Gudmundsdottir, S.; Lange, S. Extracellular Vesicles, Deiminated Protein Cargo and microRNAs are Novel Serum Biomarkers for Environmental Rearing Temperature in Atlantic cod (Gadus morhua L.). Aquac. Rep. 2020, 16, 100245. [Google Scholar] [CrossRef]
- Anderson, O.R.J.; Phillips, R.A.; McDonald, R.A.; Shore, R.F.; McGill, R.A.R.; Bearhop, S. Influence of Trophic Position and Foraging Range on Mercury Levels within a Seabird Community. Mar. Ecol. Prog. Ser. 2009, 375, 277–288. [Google Scholar] [CrossRef]
- Phillips, R.A.; Gales, R.; Baker, G.B.; Double, M.C.; Favero, M.; Quintana, F.; Tasker, M.L.; Weimerskirch, H.; Uhart, M.; Wolfaardt, A. The Conservation Status and Priorities for Albatrosses and Large Petrels. Biol. Conserv. 2016, 201, 169–183. [Google Scholar] [CrossRef]
- Dias, M.P.; Martin, R.; Pearmain, E.J.; Burfield, I.J.; Small, C.; Phillips, R.A.; Yates, O.; Lascelles, B.; Borboroglu, P.G.; Croxall, J.P. Threats to Seabirds: A Global Assessment. Biol. Conserv. 2019, 237, 525–537. [Google Scholar] [CrossRef]
- Barbraud, C.; Rivalan, P.; Inchausti, P.; Nevoux, M.; Rolland, V.; Weimerskirch, H. Contrasted Demographic Responses Facing Future Climate Change in Southern Ocean Seabirds. J. Anim. Ecol. 2011, 80, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Grecian, W.J.; Taylor, G.A.; Loh, G.; McGill, R.A.R.; Miskelly, C.M.; Phillips, R.A.; Thompson, D.R.; Furness, R.W. Contrasting Migratory Responses of Two Closely-Related Seabirds to Long-Term Climate Change. Mar. Ecol. Prog. Ser. 2016, 559, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Pardo, D.; Forcada, J.; Wood, A.G.; Tuck, G.N.; Ireland, L.; Pradel, R.; Croxall, J.P.; Phillips, R.A. Additive Effects of Climate and Fisheries Drive Ongoing Declines in Multiple Albatross species. Proc. Natl. Acad. Sci. USA 2017, 114, E10829–E10837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, O.R.J.; Phillips, R.A.; Shore, R.F.; McGill, R.A.R.; McDonald, R.A.; Bearhop, S. Element Patterns in Albatrosses and Petrels: Influence of Trophic Position, Foraging Range, and Prey Type. Environ. Pollut. 2010, 158, 98–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leat, E.H.K.; Bourgeon, S.; Magnusdottir, E.; Gabrielsen, G.W.; Grecian, W.J.; Hanssen, S.A.; Olafsdottir, K.; Petersen, A.; Phillips, R.A.; Strøm, H.; et al. The Influence of Wintering Area on Concentration and Pattern of Persistent Organic Pollutants in a Breeding Migratory Seabird. Mar. Ecol. Prog. Ser. 2013, 491, 277–293. [Google Scholar] [CrossRef] [Green Version]
- Cherel, Y.; Barbraud, C.; Lahournat, M.; Jaeger, A.; Jaquemet, S.; Wanless, R.M.; Phillips, R.A.; Thompson, D.R.; Bustamante, P. Accumulate or Eliminate? Seasonal Mercury Dynamics in Albatrosses, the Most Contaminated Family of Birds. Environ. Pollut. 2018, 241, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Uhart, M.M.; Gallo, L.; Quintana, F. Review of Diseases (Pathogen Isolation, Direct Recovery and Antibodies) in Albatrosses and Large Petrels Worldwide. Bird Conserv. Int. 2018, 28, 169–196. [Google Scholar] [CrossRef] [Green Version]
- Leotta, G.A.; Rivas, M.; Chinen, I.; Vigo, G.B.; Moredo, F.A.; Coria, N.; Wolcott, M.J. Avian Cholera in a Southern Giant Petrel (Macronectes Giganteus) from Antarctica. J. Wildl. Dis. 2003, 39, 732–735. [Google Scholar] [CrossRef] [Green Version]
- Descamps, S.; Jenouvrier, S.; Gilchrist, H.G.; Forbes, M.R. Avian Cholera, a Threat to the Viability of an Arctic Seabird Colony? PLoS ONE 2012, 7, e29659. [Google Scholar] [CrossRef]
- Jaeger, A.; Lebarbenchon, C.; Bourret, V.; Bastien, M.; Lagadec, E.; Thiebot, J.B.; Boulinier, T.; Delord, K.; Barbraud, C.; Marteau, C.; et al. Avian Cholera Outbreaks Threaten Seabird Species on Amsterdam Island. PLoS ONE 2018, 13, e0197291. [Google Scholar] [CrossRef] [PubMed]
- Gamble, A.; Garnier, R.; Jaeger, A.; Gantelet, H.; Thibault, E.; Tortosa, P.; Bourret, V.; Thiebot, J.B.; Delord, K.; Weimerskirch, H.; et al. Exposure of Breeding Albatrosses to the Agent of Avian Cholera: Dynamics of Antibody Levels and Ecological Implications. Oecologia 2019, 189, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Tompkins, E.M.; Anderson, D.J.; Pabilonia, K.L.; Huyvaert, K.P. Avian Pox Discovered in the Critically Endangered Waved Albatross. J. Wildl. Dis. 2017. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, D.A.; Dietrich, M.; Lebarbenchon, C.; Jaeger, A.; Le Rouzic, C.; Bastien, M.; Lagadec, E.; McCoy, K.D.; Pascalis, H.; Le Corre, M.; et al. Massive Infection of Seabird Ticks with Bacterial Species Related to Coxiella burnetii. Appl. Environ. Microbiol. 2014, 80, 3327–3333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnal, A.; Vittecoq, M.; Pearce-Duvet, J.; Gauthier-Clerc, M.; Boulinier, T.; Jourdain, E. Laridae: A neglected Reservoir that could Play a Major Role in Avian Influenza Virus Epidemiological Dynamics. Crit. Rev. Microbiol. 2015, 41, 508–519. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, A.; Lecollinet, S.; Beck, C.; Bastien, M.; Le Corre, M.; Dellagi, K.; Pascalis, H.; Boulinier, T.; Lebarbenchon, C. Serological Evidence for the Circulation of Flaviviruses in Seabird Populations of the Western Indian Ocean. Epidemiol. Infect. 2016, 144, 652–660. [Google Scholar] [CrossRef] [Green Version]
- Dupraz, M.; Toty, C.; Devillers, E.; Blanchon, T.; Elguero, E.; Vittecoq, M.; Moutailler, S.; McCoy, K.D. Population Structure of the Soft Tick Ornithodoros maritimus and its Associated Infectious Agents within a Colony of its Seabird Host Larus Michahellis. Int. J. Parasitol. Parasites Wildl. 2017, 6, 122–130. [Google Scholar] [CrossRef]
- Ayadi, T.; Selmi, S.; Hammouda, A.; Reis, S.; Boulinier, T.; Loiseau, C. Diversity, Prevalence and Host Specificity of Avian Parasites in Southern Tunisian Oases. Parasitology 2018, 145, 971–978. [Google Scholar] [CrossRef] [Green Version]
- Gamble, A.; Ramos, R.; Parra-Torres, Y.; Mercier, A.; Galal, L.; Pearce-Duvet, J.; Villena, I.; Montalvo, T.; González-Solís, J.; Hammouda, A.; et al. Exposure of Yellow-Legged gulls to Toxoplasma Gondii along the Western Mediterranean Coasts: Tales from a Sentinel. Int. J. Parasitol. Parasites Wildl. 2019, 8, 221–228. [Google Scholar] [CrossRef]
- Khan, J.S.; Provencher, J.F.; Forbes, M.R.; Mallory, M.L.; Lebarbenchon, C.; McCoy, K.D. Parasites of Seabirds: A Survey of Effects and Ecological Implications. Adv. Mar. Biol. 2019, 82, 1–50. [Google Scholar]
- Sanz-Aguilar, A.; Payo-Payo, A.; Rotger, A.; Yousfi, L.; Moutailler, S.; Beck, C.; Dumarest, M.; Igual, J.M.; Miranda, M.Á.; Viñas Torres, M.; et al. Infestation of small seabirds by Ornithodoros maritimus Ticks: Effects on Chick Body Condition, Reproduction and Associated Infectious agents. Ticks Tick Borne Dis. 2019, 2019, 101281. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, M.; Grasman, K.A.; Croll, D.A.; Tershy, B.; Smith, D.R. Immune Function of Cryopreserved Avian Peripheral White Blood Cells: Potential Biomarkers of Contaminant Effects in Wild Birds. Arch. Environ. Contam. Toxicol. 2003, 44, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, M.E.; Grasman, K.A.; Croll, D.A.; Tershy, B.R.; Keitt, B.S.; Jarman, W.M.; Smith, D.R. Contaminant-Associated Alteration of Immune Function in Black-Footed Albatross (Phoebastria nigripes), a North Pacific Predator. Environ. Toxicol. Chem. 2007, 26, 1896–1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourgeon, S.; Leat, E.H.; Magnusdóttir, E.; Fisk, A.T.; Furness, R.W.; Strøm, H.; Hanssen, S.A.; Petersen, A.; Olafsdóttir, K.; Borgå, K.; et al. Individual Variation in Biomarkers of Health: Influence of Persistent Organic Pollutants in Great Skuas (Stercorarius skua) Breeding at Different Geographical Locations. Environ. Res. 2012, 118, 31–39. [Google Scholar] [CrossRef]
- Provencher, J.F.; Forbes, M.R.; Hennin, H.L.; Love, O.P.; Braune, B.M.; Mallory, M.L.; Gilchrist, H.G. Implications of Mercury and Lead Concentrations on Breeding Physiology and Phenology in an Arctic Bird. Environ. Pollut. 2016, 218, 1014–1022. [Google Scholar] [CrossRef]
- Sebastiano, M.; Eens, M.; Angelier, F.; Pineau, K.; Chastel, O.; Costantini, D. Corticosterone, Inflammation, Immune Status and Telomere Length in Frigatebird Nestlings Facing a Severe Herpesvirus Infection. Conserv. Physiol. 2017, 5, cow073. [Google Scholar] [CrossRef]
- O’Reilly, E.L.; Eckersall, P.D. Acute Phase Proteins: A Review of Their Function, Behaviour and Measurement in Chickens. Worlds Poult. Sci. J. 2014, 70, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Zulkifli, I.; Najafi, P.; Nurfarahin, A.J.; Soleimani, A.F.; Kumari, S.; Aryani, A.A.; O’Reilly, E.L.; Eckersall, P.D. Acute Phase Proteins, Interleukin 6, and Heat Shock Protein 70 in Broiler Chickens Administered with Corticosterone. Poult. Sci. 2014, 93, 3112–3118. [Google Scholar] [CrossRef]
- Horvatić, A.; Guillemin, N.; Kaab, H.; McKeegan, D.; O’Reilly, E.; Bain, M.; Kuleš, J.; Eckersall, P.D. Integrated Dataset on Acute Phase Protein Response in Chicken Challenged with Escherichia coli Lipopolysaccharide Endotoxin. Data Brief 2018, 21, 684–699. [Google Scholar] [CrossRef]
- O’Reilly, E.L.; Bailey, R.A.; Eckersall, P.D. A Comparative Study of Acute-Phase Protein Concentrations in Historical and Modern Broiler Breeding Lines. Poult. Sci. 2018, 97, 3847–3853. [Google Scholar] [CrossRef]
- Horvatić, A.; Guillemin, N.; Kaab, H.; McKeegan, D.; O’Reilly, E.; Bain, M.; Kuleš, J.; Eckersall, P.D. Quantitative Proteomics Using Tandem Mass Tags in Relation to the Acute Phase Protein Response in Chicken Challenged with Escherichia coli Lipopolysaccharide Endotoxin. J. Proteom. 2019, 192, 64–77. [Google Scholar]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soo, C.Y.; Song, Y.; Zheng, Y.; Campbell, E.C.; Riches, A.C.; Gunn-Moore, F.; Zheng, Y.; Powis, S.J. Nanoparticle Tracking Analysis Monitors Microvesicle and Exosome Secretion from Immune Cells. Immunology 2012, 136, 192–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholas, A.P.; Whitaker, J.N. Preparation of a Monoclonal Antibody to Citrullinated Epitopes: Its Characterization and Some Applications to Immunohistochemistry in Human Brain. Glia 2002, 37, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Peters, T., Jr. All about Albumin. Biochemistry, Genetics, and Medical Applications; Academic Press, Inc.: Cambridge, MA, USA, 1996. [Google Scholar]
- White, C.R.; Datta, G.; Giordano, S. High-Density Lipoprotein Regulation of Mitochondrial Function. Adv. Exp. Med. Biol. 2017, 982, 407–429. [Google Scholar] [PubMed] [Green Version]
- Arciello, A.; Piccoli, R.; Monti, D.M. Apolipoprotein A-I: The Dual Face of a Protein. FEBS Lett. 2016, 590, 4171–4179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenne, D.E.; Lowin, B.; Peitsch, M.C.; Böttcher, A.; Schmitz, G.; Tschopp, J. Clusterin (Complement Lysis Inhibitor) Forms a High Density Lipoprotein Complex with Apolipoprotein A-I in Human Plasma. J. Biol. Chem. 1991, 266, 11030–11036. [Google Scholar]
- Hamilton, K.K.; Zhao, J.; Sims, P.J. Interaction between Apolipoproteins A-I and A-II and the Membrane Attack Complex of Complement. Affinity of the Apoproteins for Polymeric C9. J. Biol. Chem. 1993, 268, 3632–3638. [Google Scholar]
- Magnadottir, B.; Lange, S. Is Apolipoprotein A-I a Regulating Protein for the Complement System of Cod (Gadus morhua L.)? Fish Shellfish Immunol. 2004, 16, 265–269. [Google Scholar] [CrossRef]
- Qu, J.; Ko, C.W.; Tso, P.; Bhargava, A. Apolipoprotein A-IV: A Multifunctional Protein Involved in Protection against Atherosclerosis and Diabetes. Cells 2019, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Peterson, M.M.; Mack, J.L.; Hall, P.R.; Alsup, A.A.; Alexander, S.M.; Sully, E.K.; Sawires, Y.S.; Cheung, A.L.; Otto, M.; Gresham, H.D. Apolipoprotein B is an Innate Barrier Against Invasive Staphylococcus Aureus Infection. Cell Host Microbe 2008, 4, 555–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Q.; Tsai, J.; Xu, E.; Qiu, W.; Bereczki, E.; Santha, M.; Adeli, K. Apolipoprotein B100 Acts as a Molecular Link between Lipid-Induced Endoplasmic Reticulum Stress and Hepatic Insulin Resistance. Hepatology 2009, 50, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.H.; Miserez, A.R.; Ahmad, Z.; Andersen, R.L. Familial Defective Apolipoprotein B-100: A Review. J. Clin. Lipidol. 2016, 10, 1297–1302. [Google Scholar] [CrossRef] [PubMed]
- Tiscia, G.L.; Margaglione, M. Human Fibrinogen: Molecular and Genetic Aspects of Congenital Disorders. Int. J. Mol. Sci. 2018, 19, 1597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco-Abad, V.; Noia, M.; Valle, A.; Fontenla, F.; Folgueira, I.; De Felipe, A.P.; Pereiro, P.; Leiro, J.; Lamas, J. The Coagulation System Helps Control Infection Caused by the Ciliate Parasite Philasterides dicentrarchi in the Turbot Scophthalmus maximus (L.). Dev. Comp. Immunol. 2018, 87, 147–156. [Google Scholar] [CrossRef]
- Kiriake, A.; Ohta, A.; Suga, E.; Matsumoto, T.; Ishizaki, S.; Nagashima, Y. Comparison of Tetrodotoxin Uptake and Gene Expression in the Liver between Juvenile and Adult Tiger Pufferfish, Takifugu Rubripes. Toxicon 2016, 111, 6–12. [Google Scholar] [CrossRef]
- Weisel, J.W.; Litvinov, R.I. Mechanisms of Fibrin Polymerization and Clinical Implications. Blood 2013, 121, 1712–1719. [Google Scholar] [CrossRef] [Green Version]
- Muller, S.; Radic, M. Citrullinated Autoantigens: From Diagnostic Markers to Pathogenetic Mechanisms. Clin. Rev. Allergy Immunol. 2015, 49, 232–239. [Google Scholar] [CrossRef]
- Blachère, N.E.; Parveen, S.; Frank, M.O.; Dill, B.D.; Molina, H.; Orange, D.E. High-Titer Rheumatoid Arthritis Antibodies Preferentially Bind Fibrinogen Citrullinated by Peptidylarginine Deiminase 4. Arthritis Rheumatol. 2017, 69, 986–995. [Google Scholar] [CrossRef]
- Hofman, Z.L.M.; De Maat, S.; Maas, C. High-Molecular-Weight Kininogen: Breaking Bad in Lethal Endotoxemia. J. Thromb. Haemost. 2018, 16, 193–195. [Google Scholar] [CrossRef] [Green Version]
- Al Hariri, M.; Elmedawar, M.; Zhu, R.; Jaffa, M.A.; Zhao, J.; Mirzaei, P.; Ahmed, A.; Kobeissy, F.; Ziyadeh, F.N.; Mechref, Y. Proteome Profiling in the Aorta and Kidney of Type 1 Diabetic Rats. PLoS ONE 2017, 12, e0187752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, P.B.; Quigley, J.P. Alpha2-Macroglobulin: An Evolutionarily Conserved Arm of the Innate Immune System. Dev. Comp. Immunol. 1999, 23, 375. [Google Scholar] [CrossRef]
- Davies, S.G.; Sim, R.B. Intramolecular General Acid Catalysis in the Binding Reactions of Alpha 2-Macroglobulin and Complement Components C3 and C4. Biosci. Rep. 1981, 1, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Sottrup-Jensen, L.; Stepanik, T.M.; Kristensen, T.; Lønblad, P.B.; Jones, C.M.; Wierzbicki, D.M.; Magnusson, S.; Domdey, H.; Wetsel, R.A.; Lundwall, A.; et al. Common Evolutionary Origin of Alpha 2-Macroglobulin and Complement Components C3 and C4. Proc. Natl. Acad. Sci. USA 1985, 82, 9–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodds, A.W.; Law, S.K. The Phylogeny and Evolution of the Thioester Bond-Containing Proteins C3, C4 and Alpha 2-Macroglobulin. Immunol. Rev. 1998, 166, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Fishelson, Z.; Attali, G.; Mevorach, D. Complement and Apoptosis. Mol. Immunol. 2001, 38, 207–219. [Google Scholar] [CrossRef]
- Dodds, A.W. Which Came First, the Lectin/Classical Pathway or the Alternative Pathway of Complement? Immunobiology 2002, 205, 340–354. [Google Scholar] [CrossRef]
- Lange, S.; Dodds, A.W.; Gudmundsdóttir, S.; Bambir, S.H.; Magnadottir, B. The Ontogenic Transcription of Complement Component C3 and Apolipoprotein A-I tRNA in Atlantic Cod (Gadus morhua L.)—A Role in Development and Homeostasis? Dev. Comp. Immunol. 2005, 29, 1065–1077. [Google Scholar] [CrossRef]
- Lange, S.; Bambir, S.H.; Dodds, A.W.; Bowden, T.; Bricknell, I.; Espelid, S.; Magnadottir, B. Complement Component C3 Transcription in Atlantic Halibut (Hippoglossus hippoglossus L.) Larvae. Fish Shellfish Immunol. 2006, 20, 285–294. [Google Scholar] [CrossRef]
- Boshra, H.; Li, J.; Sunyer, J.O. Recent Advances on the Complement System of Teleost Fish. Fish Shellfish Immunol. 2006, 20, 239–262. [Google Scholar] [CrossRef]
- Nakao, M.; Tsujikura, M.; Ichiki, S.; Vo, T.K.; Somamoto, T. The Complement System in Teleost Fish: Progress of Post-Homolog-Hunting Researches. Dev. Comp. Immunol. 2011, 35, 1296–1308. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, D.; Clarke, A.; Heesom, K.; Murphy, D.; Eggleton, P. Carbamylation/Citrullination of IgG Fc in Bronchiectasis, Established RA with Bronchiectasis and RA Smokers: A Potential Risk Factor for Disease. ERJ Open Res. 2017, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundqvist, M.L.; Middleton, D.L.; Radford, C.; Warr, G.W.; Magor, K.E. Immunoglobulins of the Non-Galliform Birds: Antibody Expression and Repertoire in the Duck. Dev. Comp. Immunol. 2006, 30, 93–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de los Rios, M.; Criscitiello, M.F.; Smider, V.V. Structural and Genetic Diversity in Antibody Repertoires from Diverse Species. Curr. Opin. Struct. Biol. 2015, 33, 27–41. [Google Scholar] [CrossRef]
- Akula, S.; Hellman, L. The Appearance and Diversification of Receptors for IgM during Vertebrate Evolution. Curr. Top. Microbiol. Immunol. 2017, 408, 1–23. [Google Scholar]
- Zhang, X.; Calvert, R.A.; Sutton, B.J.; Doré, K. IgY: A Key Isotype in Antibody Evolution. Biol. Rev. Camb. Philos. Soc. 2017, 92, 2144–2156. [Google Scholar] [CrossRef]
- Hellman, N.E.; Gitlin, J.D. Ceruloplasmin Metabolism and Function. Annu. Rev. Nutr. 2002, 22, 439–458. [Google Scholar] [CrossRef]
- Das, S.; Sahoo, P.K. Ceruloplasmin, a Moonlighting Protein in Fish. Fish Shellfish Immunol. 2018, 82, 460–468. [Google Scholar] [CrossRef]
- Lee, K.A.; Goetting, V.S.; Tell, L.A. Inflammatory Markers Associated with Trauma and Infection in Red-Tailed Hawks (Buteo Jamaicensis) in the USA. J. Wildl. Dis. 2015, 51, 860–867. [Google Scholar] [CrossRef]
- Pankov, R.; Yamada, K.M. Fibronectin at a Glance. J. Cell Sci. 2002, 115, 3861–3863. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Nagatoshi, K.; Hamano, A.; Imamura, Y.; Huss, D.; Uchida, S.; Lansford, R. Basal Filopodia and Vascular Mechanical Stress Organize Fibronectin into Pillars Bridging the Mesoderm-Endoderm Gap. Development 2017, 144, 281–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rick, J.W.; Chandra, A.; Dalle Ore, C.; Nguyen, A.T.; Yagnik, G.; Aghi, M.K. Fibronectin in Malignancy: Cancer-Specific Alterations, Protumoral Effects, and Therapeutic Implications. Semin. Oncol. 2019, 46, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Kimura, E.; Kanzaki, T.; Tahara, K.; Hayashi, H.; Hashimoto, S.; Suzuki, A.; Yamada, R.; Yamamoto, K.; Sawada, T. Identification of Citrullinated Cellular Fibronectin in Synovial Fluid from Patients with Rheumatoid Arthritis. Mod. Rheumatol. 2014, 24, 766–769. [Google Scholar] [CrossRef] [PubMed]
- Stefanelli, V.L.; Choudhury, S.; Hu, P.; Liu, Y.; Schwenzer, A.; Yeh, C.R.; Chambers, D.M.; Pesson, K.; Li, W.; Segura, T.; et al. Citrullination of Fibronectin Alters Integrin Clustering and Focal Adhesion Stability Promoting Stromal Cell Invasion. Matrix Biol. 2019, 82, 86–104. [Google Scholar] [CrossRef] [PubMed]
- Giansanti, F.; Leboffe, L.; Pitari, G.; Ippoliti, R.; Antonini, G. Physiological Roles of Ovotransferrin. Biochim. Biophys. Acta 2012, 1820, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Lambert, L.A. Molecular Evolution of the Transferrin Family and Associated Receptors. Biochim. Biophys. Acta 2012, 1820, 244–255. [Google Scholar] [CrossRef]
- Kushner, I.; Mackiewicz, A. The Acute Phase Response: An Overview. Acute-Phase Glycoproteins: Molecular Biology, Biochemistry and Clinical Applications; CRC Press: Boca Raton, FL, USA, 1993; pp. 3–19. [Google Scholar]
- Gettins, P.G. Serpin Structure, Mechanism, and Function. Chem. Rev. 2002, 102, 4751–4804. [Google Scholar] [CrossRef]
- Guttman, O.; Baranovski, B.M.; Schuster, R.; Kaner, Z.; Freixo-Lima, G.S.; Bahar, N.; Mizrahi, M.I.; Brami, I.; Ochayon, D.E.; Lewis, E.C. Acute-Phase Protein α1-Anti-Trypsin: Diverting Injurious Innate and Adaptive Immune Responses from Non-Authentic Threats. Clin. Exp. Immunol. 2015, 179, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Mostert, V. Selenoprotein P: Properties, Functions, and Regulation. Arch. Biochem. Biophys. 2000, 376, 433–438. [Google Scholar] [CrossRef]
- Kolarich, D.; Weber, A.; Turecek, P.L.; Schwarz, H.P.; Altmann, F. Comprehensive Glyco-Proteomic Analysis of Human Alpha1-Antitrypsin and Its Charge Isoforms. Proteomics 2006, 6, 3369–3380. [Google Scholar] [CrossRef]
- Burk, R.F.; Hill, K.E. Selenoprotein P-Expression, Functions, and Roles in Mammals. Biochim. Biophys. Acta 2009, 1790, 1441–1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, N.; Li, W.; Li, B.; Tian, Y.; Xu, D. Transcriptome Profiling Reveals the Immune Response of Goose T Cells under Selenium Stimuli. Anim. Sci. J. 2017, 88, 2001–2009. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Q.; Ren, F.Z.; Jiang, Y.Y.; Xiao, C.; Lei, X.G. Selenoproteins Protect Against Avian Nutritional Muscular Dystrophy by Metabolizing Peroxides and Regulating Redox/Apoptotic Signaling. Free Radic. Biol. Med. 2015, 83, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Xiao, X.; Zhan, X.A. Antagonistic Effects of Different Selenium Sources on Growth Inhibition, Oxidative Damage, and Apoptosis Induced by Fluorine in Broilers. Poult. Sci. 2018, 97, 3207–3217. [Google Scholar] [CrossRef]
- Lobanov, A.V.; Hatfield, D.L.; Gladyshev, V.N. Reduced Reliance on the Trace Element Selenium during Evolution of Mammals. Genome Biol. 2008, 9, R62. [Google Scholar] [CrossRef] [Green Version]
- Tamburrini, M.; Riccio, A.; Romano, M.; Giardina, B.; di Prisco, G. Structural and Functional Analysis of the Two Haemoglobins of the Antarctic Seabird Catharacta maccormicki Characterization of an additional Phosphate Binding Site by Molecular Modelling. Eur. J. Biochem. 2000, 267, 6089–6098. [Google Scholar] [CrossRef]
- Riccio, A.; Tamburrini, M.; Giardina, B.; di Prisco, G. Molecular Dynamics Analysis of a Second Phosphate Site in the Hemoglobins of the Seabird, South Polar Skua. Is there a Site-Site Migratory Mechanism along the Central Cavity? Biophys. J. 2001, 81, 1938–1946. [Google Scholar] [CrossRef] [Green Version]
- Bikle, D.D.; Schwartz, J. Vitamin D Binding Protein, Total and Free Vitamin D Levels in Different Physiological and Pathophysiological Conditions. Front. Endocrinol. 2019, 10, 317. [Google Scholar] [CrossRef] [Green Version]
- Verboven, C.; Rabijns, A.; De Maeyer, M.; Van Baelen, H.; Bouillon, R.; De Ranter, C. A Structural Basis for the Unique Binding Features of the Human Vitamin D-Binding Protein. Nat. Struct. Biol. 2002, 9, 131–136. [Google Scholar] [CrossRef]
- Yen, C.F.; Lin, E.C.; Wang, Y.H.; Wang, P.H.; Lin, H.W.; Hsu, J.C.; Wu, L.S.; Jiang, Y.N.; Ding, S.T. Abundantly Expressed Hepatic Genes and Their Differential Expression in Liver of Prelaying and Laying Geese. Poult. Sci. 2009, 88, 1955–1962. [Google Scholar] [CrossRef]
- Yamamoto, N.; Suyama, H.; Yamamoto, N. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF. Transl. Oncol. 2008, 1, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarighi, S.; Najafi, M.; Hossein-Nezhad, A.; Ghaedi, H.; Meshkani, R.; Moradi, N.; Fadaei, R.; Kazerouni, F.; Shanaki, M. Association Between Two Common Polymorphisms of Vitamin D Binding Protein and the Risk of Coronary Artery Disease: A Case-Control Study. J. Med. Biochem. 2017, 36, 349–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilpatrick, L.E.; Phinney, K.W. Quantification of Total Vitamin-D-Binding Protein and the Glycosylated Isoforms by Liquid Chromatography-Isotope Dilution Mass Spectrometry. J. Proteome Res. 2017, 16, 4185–4195. [Google Scholar] [CrossRef] [PubMed]
- Leavesley, D.I.; Kashyap, A.S.; Croll, T.; Sivaramakrishnan, M.; Shokoohmand, A.; Hollier, B.G.; Upton, Z. Vitronectin-Master Controller or Micromanager? IUBMB Life 2013, 65, 807–818. [Google Scholar] [CrossRef] [Green Version]
- Felding-Habermann, B.; Cheresh, D.A. Vitronectin and Its Receptors. Curr. Opin. Cell Biol. 1993, 5, 864–868. [Google Scholar] [CrossRef]
- Mikrou, A.; Zarkadis, I.K. Cloning of the Sixth Complement Component and, Spatial and Temporal Expression Profile of MAC Structural and Regulatory Genes in Chicken. Dev. Comp. Immunol. 2010, 34, 485–490. [Google Scholar] [CrossRef]
- Preissner, K.T.; Seiffert, D. Role of Vitronectin and its Receptors in Haemostasis and Vascular Remodeling. Thrombosis. Res. 1998, 89, 1–21. [Google Scholar] [CrossRef]
- Hurt, E.M.; Chan, K.; Serrat, M.A.D.; Thomas, S.B.; Veenstra, T.D.; Farrar, W.L. Identification of Vitronectin as an Extrinsic Inducer of Cancer Stem Cell Differentiation and Tumor Formation. Stem. Cells 2010, 28, 390–398. [Google Scholar] [CrossRef] [Green Version]
- Rice, H.C.; Townsend, M.; Bai, J.; Suth, S.; Cavanaugh, W.; Selkoe, D.J.; Young-Pearse, T.L. Pancortins Interact with Amyloid Precursor Protein and Modulate Cortical Cell Migration. Development 2012, 139, 3986–3996. [Google Scholar] [CrossRef] [Green Version]
- Pronker, M.F.; Bos, T.G.; Sharp, T.H.; Thies-Weesie, D.M.; Janssen, B.J. Olfactomedin-1 Has a V-shaped Disulfide-Linked Tetrameric Structure. J. Biol. Chem. 2015, 290, 15092–15101. [Google Scholar] [CrossRef] [Green Version]
- Pandya, N.J.; Seeger, C.; Babai, N.; Gonzalez-Lozano, M.A.; Mack, V.; Lodder, J.C.; Gouwenberg, Y.; Mansvelder, H.D.; Danielson, U.H.; Li, K.W.; et al. Noelin1 Affects Lateral Mobility of Synaptic AMPA Receptors. Cell Rep. 2018, 24, 1218–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.; Ye, Z.; Zhuang, L.; Li, Y.; Shuai, W.; Zuo, Z.; Mao, X.; Liu, R.; Wu, J.; Chen, S.; et al. Olfactomedin 1 Negatively Regulates NF-κB Signalling and Suppresses the Growth and Metastasis of Colorectal Cancer Cells. J. Pathol. 2016, 240, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Lencinas, A.; Chhun, D.C.; Dan, K.P.; Ross, K.D.; Hoover, E.A.; Antin, P.B.; Runyan, R.B. Olfactomedin-1 Activity Identifies a Cell Invasion Checkpoint during Epithelial-Mesenchymal Transition in the Chick Embryonic Heart. Dis. Model Mech. 2013, 6, 632–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakabayashi, S. New Insights into the Functions of Histidine-Rich Glycoprotein. Int. Rev. Cell Mol. Biol. 2013, 304, 467–493. [Google Scholar] [PubMed]
- Jones, A.L.; Hulett, M.D.; Parish, C.R. Histidine-Rich Glycoprotein: A Novel Adaptor Protein in Plasma that Modulates the Immune, Vascular and Coagulation Systems. Immunol. Cell Biol. 2005, 83, 106–118. [Google Scholar] [CrossRef]
- Blank, M.; Shoenfeld, Y. Histidine-Rich Glycoprotein Modulation of Immune/Autoimmune, Vascular, and Coagulation Systems. Clin. Rev. Allergy Immunol. 2008, 34, 307–312. [Google Scholar] [CrossRef]
- Poon, I.K.; Patel, K.K.; Davis, D.S.; Parish, C.R.; Hulett, M.D. Histidine-Rich Glycoprotein: The Swiss Army Knife of Mammalian Plasma. Blood 2011, 117, 2093–2101. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.D.; Goubran, H.A.; Kotb, R.R. Histidine Rich Glycoprotein and Cancer: A Multi-Faceted Relationship. Anticancer Res. 2014, 34, 593–603. [Google Scholar]
- Wisniewska, M.; Happonen, L.; Kahn, F.; Varjosalo, M.; Malmström, L.; Rosenberger, G.; Karlsson, C.; Cazzamali, G.; Pozdnyakova, I.; Frick, I.M.; et al. Functional and Structural Properties of a Novel Protein and Virulence Factor (Protein sHIP) in Streptococcus pyogenes. J. Biol. Chem. 2014, 289, 18175–18188. [Google Scholar] [CrossRef] [Green Version]
- Jaken, S.; Parker, P.J. Protein Kinase C Binding Partners. Bioessays 2000, 22, 245–254. [Google Scholar] [CrossRef]
- Matsuhashi, S.; Noji, S.; Koyama, E.; Myokai, F.; Ohuchi, H.; Taniguchi, S.; Hori, K. New Gene, Nel, Encoding a Mr 91 K Protein with EGF-Like Repeats is Strongly Expressed in Neural Tissues of Early Stage Chick Embryos. Dev. Dyn. 1996, 207, 233–234. [Google Scholar] [PubMed]
- Nakamura, R.; Nakamoto, C.; Obama, H.; Durward, E.; Nakamoto, M. Structure-Function Analysis of Nel, a Thrombospondin-1-Like Glycoprotein Involved in Neural Development and Functions. J. Biol. Chem. 2012, 287, 3282–3291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silverman, G.A.; Bird, P.I.; Carrell, R.W.; Church, F.C.; Coughlin, P.B.; Gettins, P.G.; Irving, J.A.; Lomas, D.A.; Luke, C.J.; Moyer, R.W.; et al. The Serpins are an Expanding Superfamily of Structurally Similar but Functionally Diverse proteins. Evolution, Mechanism of Inhibition, Novel Functions, and a Revised Nomenclature. J. Biol. Chem. 2001, 276, 33293–33296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, R.H.; Zhang, Q.; McGowan, S.; Buckle, A.M.; Silverman, G.A.; Wong, W.; Rosado, C.J.; Langendorf, C.G.; Pike, R.N.; Bird, P.I.; et al. An Overview of the Serpin Superfamily. Genome Biol. 2006, 7, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whisstock, J.C.; Bottomley, S.P. Molecular Gymnastics: Serpin Structure, Folding and Misfolding. Curr. Opin. Struct. Biol. 2006, 16, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Njålsson, R.; Norgren, S. Physiological and Pathological Aspects of GSH Metabolism. Acta Paediatr. 2005, 94, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Nitto, T.; Inoue, T.; Node, K. Alternative Spliced Variants in the Pantetheinase Family of Genes Expressed in Human Neutrophils. Gene 2008, 426, 57–64. [Google Scholar] [CrossRef]
- Bartucci, R.; Salvati, A.; Olinga, P.; Boersma, Y.L. Vanin 1: Its Physiological Function and Role in Diseases. Int. J. Mol. Sci. 2019, 20, 3891. [Google Scholar] [CrossRef] [Green Version]
- Naquet, P.; Pitari, G.; Duprè, S.; Galland, F. Role of the Vnn1 Pantetheinase in Tissue Tolerance to Stress. Biochem. Soc. Trans. 2014, 42, 1094–1100. [Google Scholar] [CrossRef]
- Martin, F.; Malergue, F.; Pitari, G.; Philippe, J.M.; Philips, S.; Chabret, C.; Granjeaud, S.; Mattei, M.G.; Mungall, A.J.; Naquet, P.; et al. Vanin Genes are Clustered (Human 6q22-24 and Mouse 10A2B1) and Encode Isoforms of Pantetheinase Ectoenzymes. Immunogenetics 2001, 53, 296–306. [Google Scholar] [CrossRef]
- Nitto, T.; Onodera, K. Linkage between Coenzyme a Metabolism and Inflammation: Roles of Pantetheinase. J. Pharmacol. Sci. 2013, 123, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, P.A.; Kamsteeg, M.; Rodijk-Olthuis, D.; van Vlijmen-Willems, I.M.; de Jongh, G.J.; Bergers, M.; Tjabringa, G.S.; Zeeuwen, P.L.; Schalkwijk, J. Expression of the Vanin Gene Family in Normal and Inflamed Human Skin: Induction by Proinflammatory Cytokines. J. Investig. Dermatol. 2009, 129, 2167–2174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Qin, X.; Cao, Y.; Liang, B.; Yu, K.; Ye, H. Plasma Vascular Non-Inflammatory Molecule 3 is Associated with Gastrointestinal Acute Graft-Versus-Host Disease in Mice. J. Inflamm. 2018, 15, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonnell, T.; Artim-Esen, B.; Wincup, C.; Ripoll, V.M.; Isenberg, D.; Giles, I.P.; Rahman, A.; Pericleous, C. Antiphospholipid Antibodies to Domain I of Beta-2-Glycoprotein I Show Different Subclass Predominance in Comparison to Antibodies to Whole Beta-2-glycoprotein I. Front. Immunol. 2018, 9, 2244. [Google Scholar] [CrossRef]
- El-Assaad, F.; Krilis, S.A.; Giannakopoulos, B. Posttranslational Forms of beta 2-Glycoprotein I in the Pathogenesis of the Antiphospholipid Syndrome. Thromb. J. 2016, 14 (Suppl. 1), 20. [Google Scholar] [CrossRef] [Green Version]
- El-Assaad, F.; Qi, M.; Gordon, A.K.; Qi, J.; Dong, S.; Passam, F.; Weaver, J.C.; Giannakopoulos, B.; Krilis, S.A. Beta 2-Glycoprotein I Protects Mice Against Gram-Negative Septicaemia in a Sexually Dimorphic Manner. Sci. Rep. 2017, 7, 8201. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, G.; Qi, M.; El-Assaad, F.; Wang, Y.; Dong, S.; Chen, L.; Yu, D.; Weaver, J.C.; Beretov, J.; et al. Gram Negative Bacterial Inflammation Ameliorated by the Plasma Protein Beta 2-Glycoprotein I. Sci. Rep. 2016, 6, 33656. [Google Scholar] [CrossRef]
- McDonnell, T.; Wincup, C.; Buchholz, I.; Pericleous, C.; Giles, I.; Ripoll, V.; Cohen, H.; Delcea, M.; Rahman, A. The Role of Beta-2-Glycoprotein I in Health and Disease Associating Structure with Function: More than just APS. Blood Rev. 2019, 16, 100610. [Google Scholar] [CrossRef]
- Shi, X.; Ohta, Y.; Liu, X.; Shang, J.; Morihara, R.; Nakano, Y.; Feng, T.; Huang, Y.; Sato, K.; Takemoto, M.; et al. Acute Anti-Inflammatory Markers ITIH4 and AHSG in Mice Brain of a Novel Alzheimer’s Disease Model. J. Alzheimers Dis. 2019, 68, 1667–1675. [Google Scholar] [CrossRef]
- Zhuo, L.; Hascall, V.C.; Kimata, K. Inter-Alpha-Trypsin Inhibitor, a Covalent Protein-Glycosaminoglycan-Protein Complex. J. Biol. Chem. 2004, 279, 38079–38082. [Google Scholar] [CrossRef] [Green Version]
- Barrios-Anderson, A.; Chen, X.; Nakada, S.; Chen, R.; Lim, Y.P.; Stonestreet, B.S. Inter-Alpha Inhibitor Proteins Modulate Neuroinflammatory Biomarkers after Hypoxia-Ischemia in Neonatal Rats. J. Neuropathol. Exp. Neurol. 2019, 29, 742–755. [Google Scholar]
- Stober, V.P.; Lim, Y.P.; Opal, S.; Zhuo, L.; Kimata, K.; Garantziotis, S. Inter-α-Inhibitor Ameliorates Endothelial Inflammation in Sepsis. Lung 2019, 197, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Htwe, S.S.; Wake, H.; Liu, K.; Teshigawara, K.; Stonestreet, B.S.; Lim, Y.P.; Nishibori, M. Inter-α Inhibitor Proteins Maintain Neutrophils in a Resting State by Regulating Shape and Reducing ROS Production. Blood Adv. 2018, 2, 1923–1934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sondheimer, N.; Fang, J.K.; Polyak, E.; Falk, M.J.; Avadhani, N.G. Leucine-Rich Pentatricopeptide-Repeat Containing Protein Regulates Mitochondrial Transcription. Biochemistry 2010, 49, 7467–7473. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Godínez, M.A.; Cruz-Domínguez, M.P.; Jara, L.J.; Domínguez-López, A.; Jarillo-Luna, R.A.; Vera-Lastra, O.; Montes-Cortes, D.H.; Campos-Rodríguez, R.; López-Sánchez, D.M.; Mejía-Barradas, C.M.; et al. Expression of NLRP3 Inflammasome, Cytokines and Vascular Mediators in the Skin of Systemic Sclerosis Patients. Isr. Med. Assoc. J. 2015, 17, 5–10. [Google Scholar]
- Kang, W.; Reid, K.B. DMBT1, a Regulator of Mucosal Homeostasis through the Linking of Mucosal Defense and Regeneration? FEBS Lett. 2003, 540, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Ligtenberg, A.J.; Karlsson, N.G.; Veerman, E.C. Deleted in Malignant Brain Tumors-1 Protein (DMBT1): A Pattern Recognition Receptor with Multiple Binding Sites. Int. J. Mol. Sci. 2010, 11, 5212–5233. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Metruccio, M.M.E.; Evans, D.J.; Fleiszig, S.M.J. Mucosal Fluid Glycoprotein DMBT1 Suppresses Twitching Motility and Virulence of the Opportunistic Pathogen Pseudomonas aeruginosa. PLoS Pathog. 2017, 13, e1006392. [Google Scholar]
- Deng, H.; Gao, Y.B.; Wang, H.F.; Jin, X.L.; Xiao, J.C. Expression of Deleted in Malignant Brain Tumours 1 (DMBT1) Relates to the Proliferation and Malignant Transformation of Hepatic Progenitor Cells in Hepatitis B Virus-Related Liver Diseases. Histopathology 2012, 60, 249–260. [Google Scholar] [CrossRef]
- Rosenstiel, P.; Sina, C.; End, C.; Renner, M.; Lyer, S.; Till, A.; Hellmig, S.; Nikolaus, S.; Fölsch, U.R.; Helmke, B.; et al. Regulation of DMBT1 via NOD2 and TLR4 in Intestinal Epithelial Cells Modulates Bacterial Recognition and Invasion. J. Immunol. 2007, 178, 8203–8211. [Google Scholar] [CrossRef] [Green Version]
- Mollenhauer, J.; Wiemann, S.; Scheurlen, W.; Korn, B.; Hayashi, Y.; Wilgenbus, K.K.; von Deimling, A.; Poustka, A. DMBT1, a New Member of the SRCR Superfamily, on Chromosome 10q25.3-26.1 is Deleted in Malignant Brain Tumours. Nat. Genet. 1997, 17, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Shiraishi, T.; Tanaka, S.; Yamagata, M.; Mafune, K.; Tanaka, Y.; Ueo, H.; Barnard, G.F.; Sugimachi, K. Lack of DMBT1 Expression in Oesophageal, Gastric and Colon Cancers. Br. J. Cancer 1999, 79, 211–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mollenhauer, J.; Herbertz, S.; Helmke, B.; Kollender, G.; Krebs, I.; Madsen, J.; Holmskov, U.; Sorger, K.; Schmitt, L.; Wiemann, S.; et al. Deleted in Malignant Brain Tumors 1 is a Versatile Mucin-Like Molecule Likely to Play a Differential Role in Digestive Tract Cancer. Cancer Res. 2001, 61, 8880–8886. [Google Scholar] [PubMed]
- Robbe, C.; Paraskeva, C.; Mollenhauer, J.; Michalski, J.C.; Sergi, C.; Corfield, A. DMBT1 Expression and Glycosylation during the Adenoma-Carcinoma Sequence in Colorectal Cancer. Biochem. Soc. Trans. 2005, 33, 730–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuttolomondo, M.; Casella, C.; Hansen, P.L.; Polo, E.; Herda, L.M.; Dawson, K.A.; Ditzel, H.J.; Mollenhauer, J. Human DMBT1-Derived Cell-Penetrating Peptides for Intracellular siRNA Delivery. Mol. Ther. Nucleic Acids 2017, 8, 264–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarrias, M.R.; Grønlund, J.; Padilla, O.; Madsen, J.; Holmskov, U.; Lozano, F. The Scavenger Receptor Cysteine-Rich (SRCR) Domain: An Ancient and Highly Conserved Protein Module of the Innate Immune System. Crit. Rev. Immunol. 2004, 24, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Bessa Pereira, C.; Bocková, M.; Santos, R.F.; Santos, A.M.; Martins de Araújo, M.; Oliveira, L.; Homola, J.; Carmo, A.M. The Scavenger Receptor SSc5D Physically Interacts with Bacteria through the SRCR-Containing N-Terminal Domain. Front. Immunol. 2016, 13, 416. [Google Scholar]
- Balakrishnan, L.; Bhattacharjee, M.; Ahmad, S.; Nirujogi, R.S.; Renuse, S.; Subbannayya, Y.; Marimuthu, A.; Srikanth, S.M.; Raju, R.; Dhillon, M.; et al. Differential Proteomic Analysis of Synovial Fluid from Rheumatoid Arthritis and Osteoarthritis Patients. Clin. Proteom. 2014, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Meyer, E.J.; Nenke, M.A.; Rankin, W.; Lewis, J.G.; Torpy, D.J. Corticosteroid-Binding Globulin: A Review of Basic and Clinical Advances. Horm. Metab. Res. 2016, 48, 359–371. [Google Scholar] [CrossRef]
- Bae, Y.J.; Kratzsch, J. Corticosteroid-Binding Globulin: Modulating Mechanisms of Bioavailability of Cortisol and Its Clinical Implications. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 761–772. [Google Scholar] [CrossRef]
- Lattin, C.R.; Breuner, C.W.; Michael Romero, L. Does Corticosterone Regulate the Onset of Breeding in Free-living Birds? The CORT-Flexibility Hypothesis and Six Potential Mechanisms for Priming Corticosteroid Function. Horm. Behav. 2016, 78, 107–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rensel, M.A.; Schlinger, B.A. Determinants and Significance of Corticosterone Regulation in the Songbird Brain. Gen. Comp. Endocrinol. 2016, 227, 136–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quadro, L.; Hamberger, L.; Colantuoni, V.; Gottesman, M.E.; Blaner, W.S. Understanding the Physiological Role of Retinol-Binding Protein in Vitamin A Metabolism Using Transgenic and Knockout Mouse Models. Mol. Asp. Med. 2003, 24, 421–430. [Google Scholar] [CrossRef]
- Yang, Q.; Graham, T.E.; Mody, N.; Preitner, F.; Peroni, O.D.; Zabolotny, J.M.; Kotani, K.; Quadro, L.; Kahn, B.B. Serum Retinol Binding Protein 4 Contributes to Insulin Resistance in Obesity and Type 2 Diabetes. Nature 2005, 436, 356–362. [Google Scholar] [CrossRef]
- Moraes-Vieira, P.M.; Yore, M.M.; Dwyer, P.M.; Syed, I.; Aryal, P.; Kahn, B.B. RBP4 Activates Antigen-Presenting Cells, Leading to Adipose Tissue Inflammation and Systemic Insulin Resistance. Cell Metab. 2014, 19, 512–526. [Google Scholar] [CrossRef] [Green Version]
- Herman, M.A.; Kahn, B.B. Glucose Transport and Sensing in the Maintenance of Glucose Homeostasis and Metabolic Harmony. J. Clin. Investig. 2006, 116, 1767–1775. [Google Scholar] [CrossRef] [Green Version]
- Jaconi, S.; Rose, K.; Hughes, G.J.; Saurat, J.H.; Siegenthaler, G. Characterization of Two Post-Translationally Processed Forms of Human Serum Retinol-Binding Protein: Altered Ratios in Chronic Renal Failure. J. Lipid Res. 1995, 36, 1247–1253. [Google Scholar]
- Fang, Y.; Shen, X. Ubiquitin Carboxyl-Terminal Hydrolases: Involvement in Cancer Progression and Clinical Implications. Cancer Metastasis Rev. 2017, 36, 669–682. [Google Scholar] [CrossRef]
- Bishop, P.; Rocca, D.; Henley, J.M. Ubiquitin C-Terminal Hydrolase L1 (UCH-L1): Structure, Distribution and Roles in Brain Function and Dysfunction. Biochem. J. 2016, 473, 2453–2462. [Google Scholar] [CrossRef] [Green Version]
- Thelin, E.; Al Nimer, F.; Frostell, A.; Zetterberg, H.; Blennow, K.; Nyström, H.; Svensson, M.; Bellander, B.M.; Piehl, F.; Nelson, D.W. A Serum Protein Biomarker Panel Improves Outcome Prediction in Human Traumatic Brain Injury. J. Neurotrauma 2019, 36, 2850–2862. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Wang, K.; Liu, H.; Li, K.; Lin, B.; Fang, Z.; Han, J.; Li, N.; Yang, H.; Bian, L.; et al. UCH-L1 Mitigates Neurotoxicity Induced by ZnO Particles via Stabilizing the Inhibitor of NF-Kappa B Signaling, IκB-α. Ecotoxicol. Environ. Saf. 2019, 180, 259–268. [Google Scholar] [CrossRef]
- Matuszczak, E.; Tylicka, M.; Dębek, W.; Sankiewicz, A.; Gorodkiewicz, E.; Hermanowicz, A. Overexpression of Ubiquitin Carboxyl-Terminal Hydrolase L1 (UCHL1) in Serum of Children after Thermal Injury. Adv. Med. Sci. 2017, 62, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.K.; Baek, S.H.; Lee, J.I.; Yoo, Y.J.; Cho, C.M.; Kang, M.S.; Chung, C.H. Purification and Characterization of a New Ubiquitin C-Terminal Hydrolase (UCH-1) with Isopeptidase Activity from Chick Skeletal Muscle. J. Biochem. 1997, 121, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Vigier, S.; Gagnon, H.; Bourgade, K.; Klarskov, K.; Fülöp, T.; Vermette, P. Composition and Organization of the Pancreatic Extracellular Matrix by Combined Methods of Immunohistochemistry, Proteomics and Scanning Electron Microscopy. Curr. Res. Transl. Med. 2017, 65, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, T.K.; van der Ende, M.; Döpp, E.A.; Kraal, G.; Dijkstra, C.D. Localization of Beta 1 Integrins and Their Extracellular Ligands in Human Lymphoid Tissues. Am. J. Pathol. 1993, 143, 1098–1110. [Google Scholar] [PubMed]
- Cai, Y.; Beziau, A.; Sich, M.; Kleppel, M.M.; Gubler, M.C. Collagen Distribution in Human Membranous Glomerulonephritis. Pediatr. Nephrol. 1996, 10, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Moriggi, M.; Pastorelli, L.; Torretta, E.; Tontini, G.E.; Capitanio, D.; Bogetto, S.F.; Vecchi, M.; Gelfi, C. Contribution of Extracellular Matrix and Signal Mechanotransduction to Epithelial Cell Damage in Inflammatory Bowel Disease Patients: A Proteomic Study. Proteomics 2017, 17, 23–24. [Google Scholar] [CrossRef]
- Schaeffer, J.; Tannahill, D.; Cioni, J.M.; Rowlands, D.; Keynes, R. Identification of the Extracellular Matrix Protein Fibulin-2 as a Regulator of Spinal Nerve Organization. Dev. Biol. 2018, 442, 101–114. [Google Scholar] [CrossRef]
- Calpena, E.; Palau, F.; Espinós, C.; Galindo, M.I. Evolutionary History of the Smyd Gene Family in Metazoans: A Framework to Identify the Orthologs of Human Smyd Genes in Drosophila and Other Animal Species. PLoS ONE 2015, 10, e0134106. [Google Scholar] [CrossRef] [Green Version]
- Du, S.J.; Tan, X.; Zhang, J. SMYD Proteins: Key Regulators in Skeletal and Cardiac Muscle Development and Function. Anat. Rec. 2014, 297, 1650–1662. [Google Scholar] [CrossRef]
- Tracy, C.; Warren, J.S.; Szulik, M.; Wang, L.; Garcia, J.; Makaju, A.; Russell, K.; Miller, M.; Franklin, S. The Smyd Family of Methyltransferases: Role in Cardiac and Skeletal Muscle Physiology and Pathology. Curr. Opin. Physiol. 2018, 1, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Liu, Y.; Chen, Q.; Yang, J.; Jiang, Z.; Zhang, H.; Liu, Z.; Jin, B. Expression Patterns and the Prognostic Value of the SMYD Family Members in Human Breast Carcinoma Using Integrative Bioinformatics Analysis. Oncol. Lett. 2019, 17, 3851–3861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Protein Name | Species Name | Common Name | Total Score (p < 0.05) ⱡ |
---|---|---|---|
* A0A093J7B4_FULGA Myeloid protein 1 | Fulmarus glacialis | Northern fulmar | 196 |
* A0A091UTV5_NIPNI Ig lambda-1 chain C regions | Nipponia nippon | Japanese crested ibis | 155 |
* A0A2P4TBI3_BAMTH Uncharacterized protein | Bambusicola thoracicus | Chinese bamboo partridge | 121 |
A0A093IER0_FULGA Fibrinogen beta chain | Fulmarus glacialis | Northern fulmar | 1102 |
A0A093INM3_FULGA Fibrinogen alpha chain | Fulmarus glacialis | Northern fulmar | 1060 |
A0A1V4JT39_PATFA Fibrinogen beta chain | Patagioenas fasciata monilis | Band-tailed pigeon (western) | 924 |
A0A0Q3PZX3_AMAAE Fibrinogen gamma chain | Amazona aestiva | Turquoise-fronted parrot | 916 |
A0A093FHI9_GAVST Serum albumin | Gavia stellata | Red-throated loon | 841 |
A0A093P0F9_PYGAD Serum albumin | Pygoscelis adeliae | Adélie penguin | 841 |
A0A0A0A3R1_CHAVO Apolipoprotein A-I | Charadrius vociferus | Killdeer | 786 |
A0A093LU79_FULGA Fibronectin | Fulmarus glacialis | Northern fulmar | 676 |
A0A093GBQ7_DRYPU Fibronectin | Dryobates pubescens | Downy woodpecker | 664 |
A0A0Q3LVM5_AMAAE Apolipoprotein A-I | Amazona aestiva | Turquoise-fronted parrot | 597 |
A0A087VRD9_BALRE Serum albumin | Balearica regulorum gibbericeps | Grey crowned crane | 596 |
A0A091SMJ2_PELCR Serum albumin | Pelecanus crispus | Dalmatian pelican | 585 |
A0A087R4G9_APTFO Alpha-2-macroglobulin | Aptenodytes forsteri | Emperor penguin | 572 |
A0A093KX01_FULGA Alpha-2-macroglobulin | Fulmarus glacialis | Northern fulmar | 550 |
A0A091KH67_9GRUI Serum albumin | Chlamydotis macqueenii | MacQueen’s bustard | 542 |
A0A093IHU9_FULGA Fibrinogen gamma chain | Fulmarus glacialis | Northern fulmar | 470 |
A0A091WH83_NIPNI Serum albumin | Nipponia nippon | Japanese crested ibis | 458 |
A0A1V4JT04_PATFA Fibrinogen gamma chain | Patagioenas fasciata monilis | Band-tailed pigeon (western) | 437 |
A0A091PM78_LEPDC Apolipoprotein A-I | Leptosomus discolor | Cuckoo roller | 432 |
A0A093KM83_FULGA Ovotransferrin | Fulmarus glacialis | Northern fulmar | 431 |
A0A2I0UMY8_LIMLA Fibrinogen gamma chain | Limosa lapponica baueri | Bar-tailed godwit | 428 |
A0A087RJ23_APTFO Kininogen-1 | Aptenodytes forsteri | Emperor penguin | 398 |
A0A091PXP6_HALAL Fibrinogen alpha chain | Haliaeetus albicilla | White-tailed eagle | 368 |
A0A093CUQ3_9AVES Fibrinogen alpha chain | Pterocles gutturalis | Yellow-throated sandgrouse | 367 |
A0A091I8G9_CALAN Serum albumin | Calypte anna | Anna’s hummingbird | 353 |
A0A093PBF1_PYGAD Alpha-2-macroglobulin | Pygoscelis adeliae | Adélie penguin | 346 |
U3K0Q3_FICAL Serum albumin | Ficedula albicollis | Collared flycatcher | 344 |
R7VRC4_COLLI Complement C3 | Columba livia | Rock dove | 337 |
A0A0Q3US23_AMAAE Kininogen-1 | Amazona aestiva | Turquoise-fronted parrot | 330 |
A0A093NZR4_PYGAD Kininogen-1 | Pygoscelis adeliae | Adélie penguin | 325 |
A0A099ZYE0_CHAVO Alpha-2-macroglobulin | Charadrius vociferus | Killdeer | 318 |
A0A093ISV2_FULGA IgGFc-binding protein | Fulmarus glacialis | Northern fulmar | 298 |
A0A093JJA1_STRCA Apolipoprotein A-I | Struthio camelus australis | South African ostrich | 267 |
G1MPR2_MELGA Complement C3 | Meleagris gallopavo | Wild turkey | 264 |
A0A087RBR7_APTFO Ceruloplasmin | Aptenodytes forsteri | Emperor penguin | 264 |
A0A099ZCF9_TINGU Alpha-2-macroglobulin | Tinamus guttatus | White-throated tinamou | 259 |
A0A093FI89_GAVST Alpha-1-antiproteinase 2 | Gavia stellata | Red-throated loon | 251 |
A0A091FFS0_9AVES Apolipoprotein A-I | Cuculus canorus | Common cuckoo | 246 |
A0A094K5H2_ANTCR Ceruloplasmin | Antrostomus carolinensis | Chuck-will’s-widow | 239 |
A0A093IJM0_FULGA IgGFc-binding protein | Fulmarus glacialis | Arctic fulmar | 225 |
A0A493T9F7_ANAPP Complement C3 | Anas platyrhynchos platyrhynchos | Mallard | 223 |
A0A218ULE2_9PASE Alpha-2-macroglobulin | Lonchura striata domestica | Bengalese finch | 191 |
A0A093TAA7_PHACA Serum albumin | Phalacrocorax carbo | Great cormorant | 185 |
A0A2I0TTX4_LIMLA Kininogen-1 | Limosa lapponica baueri | Bar-tailed godwit | 182 |
A0A093NV14_PYGAD Complement factor H | Pygoscelis adeliae | Adélie penguin | 155 |
A0A091HFG6_BUCRH Complement factor H | Buceros rhinoceros silvestris | Rhinoceros hornbill | 154 |
A0A087R546_APTFO Alpha-1-antiproteinase 2 | Aptenodytes forsteri | Emperor penguin | 129 |
A0A0Q3NFW7_AMAAE Alpha-1-antiproteinase 2-like protein | Amazona aestiva | Turquoise-fronted parrot | 124 |
A0A091V0T3_NIPNI IgGFc-binding protein | Nipponia nippon | Japanese crested ibis | 122 |
A0A087QPM6_APTFO Complement receptor type 2 | Aptenodytes forsteri | Emperor penguin | 117 |
A0A0Q3PU08_AMAAE Ig gamma-1 chain C region, membrane-bound form | Amazona aestiva | Turquoise-fronted parrot | 84 |
A0A087QSZ7_APTFO Selenoprotein P | Aptenodytes forsteri | Emperor penguin | 83 |
A0A091RRK2_NESNO Complement C3 | Nestor notabilis | Kea | 77 |
R0L2Q3_ANAPL IgGFc-binding protein | Anas platyrhynchos | Mallard | 76 |
A0A1V4KDF4_PATFA Complement C1q tumor necrosis factor-related protein 3 isoform A | Patagioenas fasciata monilis | Band-tailed pigeon (western) | 75 |
A0A087V351_BALRE Ig heavy chain V-III region KOL | Balearica regulorum gibbericeps | Grey crowned crane | 73 |
A0A087R4G1_APTFO Apolipoprotein B-100 | Aptenodytes forsteri | Emperor penguin | 69 |
A0A091J8Z6_EGRGA Ig heavy chain V-III region VH26 | Egretta garzetta | Little egret | 61 |
A0A093DRD7_9AVES Hemoglobin subunit alpha-A | Pterocles gutturalis | Yellow-throated sandgrouse | 55 |
A0A226NM49_CALSU Uncharacterized protein | Callipepla squamata | Scaled quail | 52 |
A0A091FXD5_9AVES Histidine-rich glycoprotein | Cuculus canorus | Common cuckoo | 50 |
A0A2I0TNP2_LIMLA Selenoprotein pb-like | Limosa lapponica baueri | Bar-tailed godwit | 50 |
Protein Name | Species Name | Common Name | Total Score (p < 0.05) ⱡ |
---|---|---|---|
* U3JY34_FICAL Uncharacterized protein | Ficedula albicollis | Collared flycatcher | 403 |
* A0A091EPY9_CORBR Protein NEL | Corvus brachyrhynchos | American crow | 266 |
* U3K9W1_FICAL Uncharacterized protein | Ficedula albicollis | Collared flycatcher | 189 |
* A0A2I0UHP4_LIMLA Uncharacterized protein | Limosa lapponica baueri | Bar-tailed godwit | 182 |
* A0A2I0U6I0_LIMLA Complement component c9 | Limosa lapponica baueri | Bar-tailed godwit | 181 |
* A0A0A0A0R4_CHAVO Complement component C9 | Charadrius vociferus | Killdeer | 159 |
* A0A091U8P6_PHORB Complement component C9 | Phoenicopterus ruber ruber | American flamingo | 157 |
* A0A087VFS5_BALRE Plasma serine protease inhibitor | Balearica regulorum gibbericeps | Grey crowned crane | 144 |
* A0A2I0TEM1_LIMLA C4b-binding protein alpha chain | Limosa lapponica baueri | Bar-tailed godwit | 111 |
* A0A1V4KDF8_PATFA Complement component C9 | Patagioenas fasciata monilis | Band-tailed pigeon (western) | 107 |
* U3JJN2_FICAL Uncharacterized protein | Ficedula albicollis | Collared flycatcher | 99 |
* U3JJN2_FICAL Uncharacterized protein | Ficedula albicollis | Collared flycatcher | 99 |
* A0A091EHN6_CORBR Plasma serine protease inhibitor | Corvus brachyrhynchos | American crow | 97 |
* A0A087R6D3_APTFO Pantetheinase | Aptenodytes forsteri | Emperor penguin | 88 |
* A0A091NIR3_9PASS Uncharacterized protein | Acanthisitta chloris | Rifleman | 79 |
* A0A091U4S2_PHORB Vascular non-inflammatory molecule 3 | Phoenicopterus ruber ruber | American flamingo | 78 |
* U3JSQ8_FICAL Apolipoprotein A4 | Ficedula albicollis | Collared flycatcher | 74 |
* A0A087RA43_APTFO Beta-2-glycoprotein 1 | Aptenodytes forsteri | Emperor penguin | 69 |
* A0A087QMI5_APTFO Inter-alpha-trypsin inhibitor heavy chain H2 | Aptenodytes forsteri | Emperor penguin | 69 |
* A0A091KRT6_COLST Alpha-1-antitrypsin-like GS55-MS | Colius striatus | Speckled mousebird | 67 |
* A0A091KJ46_9GRUI Ovoinhibitor | Chlamydotis macqueenii | MacQueen’s bustard | 66 |
* A0A087VN55_BALRE Pantetheinase | Balearica regulorum gibbericeps | Grey crowned crane | 56 |
* A0A091JHT9_EGRGA Leucine-rich repeat-containing protein 49 | Egretta garzetta | Little egret | 51 |
* A0A226PWY7_COLVI Uncharacterized protein | Colinus virginianus | Northern bobwhite | 50 |
* A0A093BZB9_9AVES Zinc finger protein 518A | Pterocles gutturalis | Yellow-throated sandgrouse | 45 |
A0A0A0AN62_CHAVO Serum albumin | Charadrius vociferus | Killdeer | 1363 |
A0A091LDB0_CATAU Alpha-2-macroglobulin | Cathartes aura | Turkey vulture | 1265 |
A0A0A0A1J2_CHAVO Alpha-2-macroglobulin | Charadrius vociferus | Killdeer | 1259 |
A0A093F817_TYTAL Serum albumin | Tyto alba | Barn owl | 1225 |
A0A093RKW8_PYGAD Alpha-2-macroglobulin | Pygoscelis adeliae | Adélie penguin | 1129 |
A0A1V4JAY4_PATFA Alpha-2-macroglobulin | Patagioenas fasciata monilis | Band-tailed pigeon (western) | 1063 |
A0A094L652_ANTCR Serum albumin | Antrostomus carolinensis | Chuck-will’s-widow | 961 |
A0A226MDX7_CALSU Serum albumin | Callipepla squamata | Scaled quail | 930 |
A0A087VRD9_BALRE Serum albumin | Balearica regulorum gibbericeps | Grey crowned crane | 915 |
A0A0A0A3R1_CHAVO Apolipoprotein A-I | Charadrius vociferus | Killdeer | 912 |
A0A091MMC9_CARIC Serum albumin | Cariama cristata | Red-legged seriema | 892 |
A0A091RWK1_9GRUI Serum albumin | Chlamydotis macqueenii | MacQueen’s bustard | 877 |
A0A093H6Z2_DRYPU Apolipoprotein A-I | Dryobates pubescens | Downy woodpecker | 863 |
A0A0Q3X9Z0_AMAAE Serum albumin-like protein | Amazona aestiva | Turquoise-fronted parrot | 840 |
A0A091TRL5_PHALP Alpha-2-macroglobulin | Phaethon lepturus | White-tailed tropicbird | 820 |
R0M0W6_ANAPL Serum albumin | Anas platyrhynchos | Mallard | 802 |
A0A2I0MH12_COLLI Albumin | Columba livia | Rock dove | 758 |
A0A091MK58_CARIC Alpha-1-antiproteinase 2 | Cariama cristata | Red-legged seriema | 754 |
A0A0Q3LVM5_AMAAE Apolipoprotein A-I | Amazona aestiva | Turquoise-fronted parrot | 749 |
A0A091G8Y4_9AVES Serum albumin | Cuculus canorus | Common cuckoo | 718 |
A0A2I0UH92_LIMLA Alpha-1-antiproteinase 2-like | Limosa lapponica baueri | Bar-tailed godwit | 716 |
A0A091PEU7_LEPDC Fibronectin | Leptosomus discolor | Cuckoo roller | 695 |
A0A091KH67_9GRUI Serum albumin | Chlamydotis macqueenii | MacQueen’s bustard | 660 |
A0A094L9Z6_PODCR Serum albumin | Podiceps cristatus | Great crested grebe | 657 |
A0A093I422_STRCA Serum albumin | Struthio camelus australis | South African ostrich | 648 |
A0A099ZYE0_CHAVO Alpha-2-macroglobulin | Charadrius vociferus | Killdeer | 642 |
A0A0Q3TBH9_AMAAE Fibronectin isoform X1 | Amazona aestiva | Turquoise-fronted parrot | 631 |
A0A091WH83_NIPNI Serum albumin | Nipponia nippon | Japanese crested ibis | 626 |
U3K0Q3_FICAL Serum albumin | Ficedula albicollis | Collared flycatcher | 620 |
A0A099ZCF9_TINGU Alpha-2-macroglobulin | Tinamus guttatus | White-throated tinamou | 551 |
A0A091PLB4_APAVI Alpha-1-antiproteinase 2 | Apaloderma vittatum | Bar-tailed trogon | 512 |
R7VRC4_COLLI Complement C3 | Columba livia | Rock dove | 448 |
A0A093B942_CHAPE Apolipoprotein A-I | Chaetura pelagica | Chimney swift | 441 |
A0A093SYV6_PHACA Ceruloplasmin | Phalacrocorax carbo | Great cormorant | 404 |
A0A087RBR7_APTFO Ceruloplasmin | Aptenodytes forsteri | Emperor penguin | 401 |
P02118|HBB_ANSIN Hemoglobin subunit beta | Anser indicus | Bar-headed goose | 392 |
A0A093GD58_DRYPU Serum albumin | Dryobates pubescens | Downy woodpecker | 387 |
A0A493T9F7_ANAPP Complement C3 | Anas platyrhynchos platyrhynchos | Mallard | 349 |
A0A091KTR5_COLST Alpha-2-macroglobulin | Colius striatus | Speckled mousebird | 348 |
A0A091P984_HALAL Ovotransferrin | Haliaeetus albicilla | White-tailed eagle | 315 |
A0A091K9S4_COLST Fibrinogen beta chain | Colius striatus | Speckled mousebird | 258 |
A0A091EDU9_CORBR Alpha-1-antiproteinase 2 | Corvus brachyrhynchos | American crow | 252 |
A0A094LH36_PODCR Ovotransferrin | Podiceps cristatus | Great crested grebe | 252 |
A0A091LCI0_CATAU Plasminogen | Cathartes aura | Turkey vulture | 240 |
A0A091SCH1_NESNO Ovotransferrin | Nestor notabilis | Kea | 240 |
A0A091VG30_PHORB Ceruloplasmin | Phoenicopterus ruber ruber | American flamingo | 229 |
P82111|HBA1_CATMA Hemoglobin subunit alpha-1 | Catharacta maccormicki | South polar skua | 227 |
A0A091UEL8_PHORB Ovotransferrin | Phoenicopterus ruber ruber | American flamingo | 220 |
A0A093PT75_9PASS Ovotransferrin | Manacus vitellinus | Golden-collared manakin | 218 |
A0A3L8SW70_CHLGU Fibrinogen alpha chain | Chloebia gouldiae | Gouldian finch | 199 |
G1MPR2_MELGA Complement C3 | Meleagris gallopavo | Wild turkey | 194 |
A0A091J7H5_EGRGA Ig heavy chain V region 5A | Egretta garzetta | Little egret | 188 |
S5MN40_ANTVP Complement component 3d | Antigone vipio | White-naped crane | 182 |
A0A093Q6I9_9PASS Ceruloplasmin | Manacus vitellinus | Golden-collared manakin | 158 |
A0A093KTV7_EURHL Complement factor H | Eurypyga helias | Sunbittern | 153 |
A0A226NSR6_COLVI Fibrinogen gamma chain | Colinus virginianus | Northern bobwhite | 148 |
A0A0A0AI07_CHAVO Apolipoprotein B-100 | Charadrius vociferus | Killdeer | 143 |
A0A091SMJ2_PELCR Serum albumin | Pelecanus crispus | Dalmatian pelican | 130 |
A0A091P1L3_HALAL Ig heavy chain V-III region GAL | Haliaeetus albicilla | White-tailed eagle | 130 |
A0A087REW6_APTFO Glutathione peroxidase | Aptenodytes forsteri | Emperor penguin | 129 |
A0A093ELS8_TYTAL Complement factor H | Tyto alba | Barn owl | 123 |
A0A091IHM8_CALAN Complement factor H | Calypte anna | Anna’s hummingbird | 121 |
A0A087VMC1_BALRE Alpha-1-antiproteinase | Balearica regulorum gibbericeps | Grey crowned crane | 120 |
A0A1V4JT28_PATFA Fibrinogen alpha chain | Patagioenas fasciata monilis | Band-tailed pigeon (western) | 119 |
A0A087VMC3_BALRE Alpha-1-antiproteinase 2 | Balearica regulorum gibbericeps | Grey crowned crane | 113 |
A0A087QKE2_APTFO Complement C1q subcomponent subunit A | Aptenodytes forsteri | Emperor penguin | 104 |
A0A091LYH7_CARIC Complement receptor type 2 | Cariama cristata | Red-legged seriema | 98 |
A0A3M0JM35_HIRRU Histidine-rich glycoprotein | Hirundo rustica rustica | Barn swallow | 93 |
A0A091RP12_9GRUI Selenoprotein P | Chlamydotis macqueenii | MacQueen’s bustard | 93 |
A0A087QZ39_APTFO Retinol-binding protein 4 | Aptenodytes forsteri | Emperor penguin | 90 |
A0A087QPM6_APTFO Complement receptor type 2 | Aptenodytes forsteri | Emperor penguin | 88 |
A0A2I0TTX4_LIMLA Kininogen-1 | Limosa lapponica baueri | Bar-tailed godwit | 87 |
A0A493T828_ANAPP Complement C9 | Anas platyrhynchos platyrhynchos | Mallard | 84 |
A0A093KM83_FULGA Ovotransferrin | Fulmarus glacialis | Northern fulmar | 84 |
A0A091IQJ3_EGRGA Ig heavy chain V-III region VH26 | Egretta garzetta | Little egret | 66 |
A0A087VGQ5_BALRE Ovotransferrin | Balearica regulorum gibbericeps | Grey crowned crane | 62 |
A0A2I0T8K5_LIMLA Complement c3 | Limosa lapponica baueri | Bar-tailed godwit | 58 |
A0A0A0ANE6_CHAVO Ig heavy chain V-III region VH26 | Charadrius vociferus | Killdeer | 56 |
A0A0A0APT8_CHAVO Ig heavy chain V-III region HIL | Charadrius vociferus | Killdeer | 48 |
A0A0Q3U0C5_AMAAE Alpha-tectorin-like protein | Amazona aestiva | Turquoise-fronted parrot | 44 |
Q9PRR6_9AVES Apolipoprotein AI | Anser anser | Greylag goose | 44 |
A0A218V306_9PASE Alpha-1-antiproteinase | Lonchura striata domestica | Bengalese finch | 41 |
A0A091TC37_PHALP Ovoinhibitor | Phaethon lepturus | White-tailed tropicbird | 41 |
Protein Name | Species Name | Common Name | Total Score (p < 0.05) ⱡ |
---|---|---|---|
* A0A091VZN2_NIPNI Uncharacterized protein | Nipponia nippon | Japanese crested ibis | 942 |
* A0A093HL59_STRCA Uncharacterized protein | Struthio camelus australis | South African ostrich | 658 |
* A0A493T350_ANAPP Uncharacterized protein | Anas platyrhynchos platyrhynchos | Mallard | 388 |
* A0A091LY76_CATAU Deleted in malignant brain tumours 1 protein | Cathartes aura | Turkey vulture | 299 |
* A0A2I0TFB3_LIMLA Soluble scavenger receptor cysteine-rich domain-containing protein ssc5d-like | Limosa lapponica baueri | Bar-tailed godwit | 245 |
* A0A160F7C0_TAEGU Corticosteroid binding globulin | Taeniopygia guttata | Zebra finch | 226 |
* A0A226MDB4_CALSU Uncharacterized protein | Callipepla squamata | Scaled quail | 203 |
* A0A3Q3B296_CHICK Uncharacterized protein | Gallus gallus | Chicken | 187 |
* A0A3L8SF82_CHLGU Uncharacterized protein | Chloebia gouldiae | Gouldian finch | 181 |
* A0A068L966_STRCA Beta-actin | Struthio camelus australis | South African ostrich | 138 |
* A0A0Q3MUK2_AMAAE Uncharacterized protein | Amazona aestiva | turquoise-fronted parrot | 127 |
* A0A087QIW1_APTFO Ig lambda chain V-1 region | Aptenodytes forsteri | Emperor penguin | 117 |
* A0A0Q3PU08_AMAAE Ig gamma-1 chain C region, membrane-bound form | Amazona aestiva | Turquoise-fronted parrot | 100 |
* A0A091W8Q2_OPIHO Vitamin D-binding protein | Opisthocomus hoazin | Hoatzin (skunk bird, Canje pheasant) | 92 |
* A0A3M0L7R0_HIRRU Uncharacterized protein | Hirundo rustica rustica | Barn swallow | 68 |
* A0A226N4C8_CALSU Apolipoprotein AIV | Callipepla squamata | Scaled quail | 68 |
* A0A087QM54_APTFO Complement C4 | Aptenodytes forsteri | Emperor penguin | 64 |
* A0A087QZU5_APTFO Vitronectin | Aptenodytes forsteri | Emperor penguin | 62 |
* A0A1V4KQ91_PATFA Lipid phosphate phosphatase-related protein type 3-like | Patagioenas fasciata monilis | Band-tailed pigeon (western) | 60 |
* A0A087QZ39_APTFO Retinol-binding protein 4 | Aptenodytes forsteri | Emperor penguin | 54 |
* A0A493T0F4_ANAPP Uncharacterized protein | Anas platyrhynchos platyrhynchos | Mallard | 53 |
* A0A493U126_ANAPP Uncharacterized protein | Anas platyrhynchos platyrhynchos | Mallard | 51 |
* A0A091GEI4_9AVES Ubiquitin carboxyl-terminal hydrolase | Cuculus canorus | Common cuckoo | 47 |
* A0A087R4Q6_APTFO Noelin | Aptenodytes forsteri | Emperor penguin | 47 |
* A0A091ECG6_CORBR Coiled-coil domain-containing protein 112 | Corvus brachyrhynchos | American crow | 45 |
* A0A099ZM42_TINGU Collagen alpha-4 (VI) chain | Tinamus guttatus | White-throated tinamou | 45 |
* A0A3L8SDK7_CHLGU Outer dense fiber protein 2 | Chloebia gouldiae | Gouldian finch | 45 |
* A0A094K563_ANTCR SET and MYND domain-containing protein 4 | Antrostomus carolinensis | Chuck-will’s-widow | 44 |
A0A093P0F9_PYGAD Serum albumin | Pygoscelis adeliae | Adélie penguin | 1696 |
A0A093FHI9_GAVST Serum albumin | Gavia stellata | Red-throated loon | 1587 |
A0A087R4G9_APTFO Alpha-2-macroglobulin | Aptenodytes forsteri | Emperor penguin | 1400 |
A0A093F817_TYTAL Serum albumin | Tyto alba | Barn owl | 1376 |
A0A091UPZ3_PHALP Serum albumin | Phaethon lepturus | White-tailed tropicbird | 1180 |
A0A0Q3X9Z0_AMAAE Serum albumin-like protein | Amazona aestiva | Turquoise-fronted parrot | 1163 |
A0A0Q3PZX3_AMAAE Fibrinogen | Amazona aestiva | Turquoise-fronted parrot | 1162 |
A0A094KA73_ANTCR Beta-fibrinogen | Antrostomus carolinensis | Chuck-will’s-widow | 1068 |
A0A0A0A1J2_CHAVO Alpha-2-macroglobulin | Charadrius vociferus | Killdeer | 1033 |
A0A094L652_ANTCR Serum albumin | Antrostomus carolinensis | Chuck-will’s-widow | 1004 |
A0A091LFY3_9GRUI Fibrinogen | Chlamydotis macqueenii | MacQueen’s bustard | 961 |
A0A093KX01_FULGA Alpha-2-macroglobulin | Fulmarus glacialis | Northern fulmar | 957 |
A0A087VH79_BALRE Fibrinogen | Balearica regulorum gibbericeps | Grey crowned crane | 923 |
R0M0W6_ANAPL Serum albumin | Anas platyrhynchos | Mallard | 873 |
A0A087RBR7_APTFO Ceruloplasmin | Aptenodytes forsteri | Emperor penguin | 828 |
A0A087VA40_BALRE Fibronectin | Balearica regulorum gibbericeps | Grey crowned crane | 820 |
A0A1V4JT04_PATFA Fibrinogen gamma chain | Patagioenas fasciata monilis | Band-tailed pigeon (western) | 759 |
A0A099ZCF9_TINGU Alpha-2-macroglobulin | Tinamus guttatus | White-throated tinamou | 748 |
A0A091SGY4_PELCR Ceruloplasmin | Pelecanus crispus | Dalmatian pelican | 747 |
A0A0A0A3R1_CHAVO Apolipoprotein A-I | Charadrius vociferus | Killdeer | 737 |
P19121|ALBU_CHICK Serum albumin | Gallus gallus | Chicken | 727 |
A0A093GBQ7_DRYPU Fibronectin | Dryobates pubescens | Downy woodpecker | 635 |
A0A093INM3_FULGA Fibrinogen alpha chain | Fulmarus glacialis | Northern fulmar | 634 |
A0A2I0UMY8_LIMLA Fibrinogen gamma chain | Limosa lapponica baueri | Bar-tailed godwit | 628 |
A0A093PBF1_PYGAD Alpha-2-macroglobulin | Pygoscelis adeliae | Adélie penguin | 599 |
A0A093FGC0_GAVST Fibrinogen alpha chain | Gavia stellata | Red-throated loon | 589 |
A0A093G3Z1_DRYPU Fibrinogen alpha chain | Dryobates pubescens | Downy woodpecker | 588 |
A0A0Q3LVM5_AMAAE Apolipoprotein A-I | Amazona aestiva | turquoise-fronted parrot | 551 |
A0A087RJ23_APTFO Kininogen-1 | Aptenodytes forsteri | Emperor penguin | 523 |
A0A2I0TGV4_LIMLA Serum albumin | Limosa lapponica baueri | Bar-tailed godwit | 521 |
O42296|APOA1_ANAPL Apolipoprotein A-I | Anas platyrhynchos | Mallard | 515 |
A0A093QN86_9PASS Serum albumin | Manacus vitellinus | Golden-collared manakin | 492 |
A0A091SMJ2_PELCR Serum albumin | Pelecanus crispus | Dalmatian pelican | 460 |
A0A0Q3US23_AMAAE Kininogen-1 | Amazona aestiva | turquoise-fronted parrot | 438 |
A0A091VCC2_NIPNI Apolipoprotein A-I | Nipponia nippon | Japanese crested ibis | 431 |
A0A087R543_APTFO Alpha-1-antiproteinase 2 | Aptenodytes forsteri | Emperor penguin | 399 |
A0A099ZYE0_CHAVO Alpha-2-macroglobulin | Charadrius vociferus | Killdeer | 382 |
A0A093BVV9_TAUER Kininogen-1 | Tauraco erythrolophus | Red-crested turaco | 377 |
A0A3M0KRB0_HIRRU Fibrinogen | Hirundo rustica rustica | Barn swallow | 374 |
A0A091EST7_CORBR Alpha-2-macroglobulin | Corvus brachyrhynchos | American crow | 352 |
A0A093BMK0_9AVES Ovotransferrin | Pterocles gutturalis | Yellow-throated sandgrouse | 349 |
A0A093CUQ3_9AVES Fibrinogen alpha chain | Pterocles gutturalis | Yellow-throated sandgrouse | 346 |
A0A091LXC5_CARIC Alpha-2-macroglobulin | Cariama cristata | Red-legged seriema | 336 |
A0A087VCN6_BALRE Alpha-1-antiproteinase 2 | Balearica regulorum gibbericeps | Grey crowned crane | 326 |
A0A087R9I5_APTFO Complement factor H | Aptenodytes forsteri | Emperor penguin | 302 |
A0A087RBW2_APTFO IgGFc-binding protein | Aptenodytes forsteri | Emperor penguin | 288 |
A0A093Q6I9_9PASS Ceruloplasmin | Manacus vitellinus | Golden-collared manakin | 285 |
A0A093NV14_PYGAD Complement factor H | Pygoscelis adeliae | Adélie penguin | 269 |
R7VRC4_COLLI Complement C3 | Columba livia | Rock dove | 259 |
A0A0A0AI70_CHAVO Ovotransferrin | Charadrius vociferus | Killdeer | 238 |
A0A1D5P6F4_CHICK IgGFc-binding protein | Gallus gallus | Chicken | 230 |
A0A0Q3U0C5_AMAAE Alpha-tectorin-like protein | Amazona aestiva | Turquoise-fronted parrot | 226 |
A0A091P984_HALAL Ovotransferrin | Haliaeetus albicilla | White-tailed eagle | 224 |
A0A087RBW1_APTFO IgGFc-binding protein | Aptenodytes forsteri | Emperor penguin | 198 |
A0A091P1L3_HALAL Ig heavy chain V-III region GAL | Haliaeetus albicilla | White-tailed eagle | 195 |
A0A087REW6_APTFO Glutathione peroxidase | Aptenodytes forsteri | Emperor penguin | 186 |
A0A087QH18_APTFO Plasminogen | Aptenodytes forsteri | Emperor penguin | 176 |
A0A093IJM0_FULGA IgGFc-binding protein | Fulmarus glacialis | Northern fulmar | 174 |
A0A093GZX5_GAVST Ovotransferrin | Gavia stellata | Red-throated loon | 173 |
A0A091V0T3_NIPNI IgGFc-binding protein | Nipponia nippon | Japanese crested ibis | 169 |
A0A091GDA6_9AVES Keratin, type I cytoskeletal 42 | Cuculus canorus | Common cuckoo | 155 |
A0A091KHK5_9GRUI IgGFc-binding protein | Chlamydotis macqueenii | MacQueen’s bustard | 155 |
A0A2I0LGF9_COLLI Alpha-2-macroglobulin-like | Columba livia | Rock dove | 153 |
A0A493T9F7_ANAPP Complement C3 | Anas platyrhynchos platyrhynchos | Mallard | 150 |
A0A091SZR3_PELCR Ig heavy chain V region C3 | Pelecanus crispus | Dalmatian pelican | 147 |
A0A1V4KDF4_PATFA Complement C1q tumor necrosis factor-related protein 3 isoform A | Patagioenas fasciata monilis | Band-tailed pigeon (western) | 143 |
A0A093ISV2_FULGA IgGFc-binding protein | Fulmarus glacialis | Northern fulmar | 136 |
A0A091W577_NIPNI IgGFc-binding protein | Nipponia nippon | Japanese crested ibis | 128 |
A0A087V679_BALRE Selenoprotein P | Balearica regulorum gibbericeps | Grey crowned crane | 111 |
A0A087R546_APTFO Alpha-1-antiproteinase 2 | Aptenodytes forsteri | Emperor penguin | 111 |
A0A091HFG6_BUCRH Complement factor H | Buceros rhinoceros silvestris | Rhinoceros hornbill | 102 |
R0L2Q3_ANAPL IgGFc-binding protein | Anas platyrhynchos | Mallard | 94 |
A0A093CFV7_9AVES Ig heavy chain V-III region CAM | Pterocles gutturalis | Yellow-throated sandgrouse | 74 |
I6UVI9_STRCA Immunonoglobulin heavy chain variable region | Struthio camelus australis | South African ostrich | 56 |
A0A087R544_APTFO Alpha-1-antiproteinase 2 | Aptenodytes forsteri | Emperor penguin | 52 |
A0A226NM49_CALSU Uncharacterized protein | Callipepla squamata | Scaled quail | 52 |
A0A091EVY3_CORBR Ig heavy chain V region C3 | Corvus brachyrhynchos | American crow | 47 |
A0A2I0TNP2_LIMLA Selenoprotein pb-like | Limosa lapponica baueri | Bar-tailed godwit | 47 |
A0A091S5G4_NESNO Complement C1q subcomponent subunit C | Nestor notabilis | Kea | 45 |
A0A093HG08_GAVST Complement C1q subcomponent subunit A | Gavia stellata | Red-throated loon | 44 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phillips, R.A.; Kraev, I.; Lange, S. Protein Deimination and Extracellular Vesicle Profiles in Antarctic Seabirds. Biology 2020, 9, 15. https://doi.org/10.3390/biology9010015
Phillips RA, Kraev I, Lange S. Protein Deimination and Extracellular Vesicle Profiles in Antarctic Seabirds. Biology. 2020; 9(1):15. https://doi.org/10.3390/biology9010015
Chicago/Turabian StylePhillips, Richard A., Igor Kraev, and Sigrun Lange. 2020. "Protein Deimination and Extracellular Vesicle Profiles in Antarctic Seabirds" Biology 9, no. 1: 15. https://doi.org/10.3390/biology9010015
APA StylePhillips, R. A., Kraev, I., & Lange, S. (2020). Protein Deimination and Extracellular Vesicle Profiles in Antarctic Seabirds. Biology, 9(1), 15. https://doi.org/10.3390/biology9010015