Therapeutic Approaches Targeting Inflammation in Cardiovascular Disorders
Abstract
:1. Introduction
2. Atherosclerosis
2.1. The use of Inflammatory Biomarkers in Atherosclerosis
2.2. The Use of Anti-Inflammatory Therapies in Atherosclerosis
3. Myocardial Infarction
3.1. The Use of Inflammatory Biomarkers in Myocardial Infarction
3.2. The Use of Anti-Inflammatory Therapies in Myocardial Infarction
4. Reperfusion Strategies
Inflammation and Anti-Inflammatory Strategies in Reperfusion Techniques
5. Heart Failure
5.1. Inflammation in Heart Failure
5.2. The Use of Inflammatory Biomarkers in Heart Failure
5.3. The Use of Anti-Inflammatory Therapies in Heart Failure
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Braunwald, E. Cardiovascular Medicine at the Turn of the Millennium: Triumphs, Concerns, and Opportunities. N. Engl. J. Med. 1997, 337, 1360–1369. [Google Scholar] [CrossRef] [PubMed]
- Ross, R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993, 362, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Ross, R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Frangogiannis, N.G. The immune system and the remodelling infarcted heart: Cell biology insights and therapeutic opportunities. J. Cardiovasc. Pharmacol. 2014, 63, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Heymans, S.; Hirsch, E.; Anker, S.D.; Aukrust, P.; Balligand, J.L.; Cohen-Tervaert, J.W.; Drexler, H.; Filippatos, G.; Felix, S.B.; Gullestad, L.; et al. Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2009, 11, 119–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iriz, E. The organ effects of systemic inflammation response activated during open heart surgery and current treatment methods. Anadolu Kardiyoloji Dergisi 2004, 3, 231–235. [Google Scholar]
- Katayama, T. Significance of acute-phase inflammatory reactants as an indicator of prognosis after acute myocardial infarction: Which is the most useful predictor? J. Cardiol. 2003, 42, 49–56. [Google Scholar] [PubMed]
- Pearson, T.A. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Ignacio, M. Anti-inflammatory strategies for ventricular remodelling following ST-segment elevation acute myocardial infarction. J. Am. Coll. Cardiol. 2014, 16, 1593–1603. [Google Scholar]
- Mann, D. Innate immunity and the failing heart: The cytokine hypothesis revisited. Circ. Res. 2015, 116, 1254–1268. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Lüscher, T.F. Anti-inflammatory therapies for cardiovascular disease. Eur. Heart J. 2014, 27, 1782–1791. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.; Glomset, J.A. The pathogenesis of atherosclerosis. N. Engl. J. Med. 1976, 420, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Croce, K.; Libby, P. Intertwining of thrombosis and inflammation in atherosclerosis. Curr. Opin. Hematol. 2007, 14, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Dahlof, B. Cardiovascular disease risk factors: Epidemiology and risk assessment. Am. J. Cardiol. 2010, 105, 3A–9A. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Rifai, N.; Pfeffer, M.A.; Sacks, F.; Braunwald, E. The Cholesterol and Recurrent Events (CARE) Investigators: Long-term effects of pravastatin on plasma concentration of C-reactive protein. Circulation 1999, 100, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Cannon, C.P.; Morrow, D.; Rifai, N.; Rose, L.M.; McCabe, C.H.; Pfeffer, M.A.; Braunwald, E. Pravastatin or Atorvastatin Evaluation and Infection Therapy–Thrombolysis in Myocardial Infarction 22 (PROVE IT–TIMI 22) Investigators: C-reactive protein levels and outcomes after statin therapy. N. Engl. J. Med. 2005, 352, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.H.; Genest, J.; Gottto, A.M.; Kastelein, J.J.P.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 2008, 359, 2195–2207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riedel, M.; Lafitte, M.; Pucheu, Y.; Latry, K.; Couffinhal, T. Prognostic value of high-sensitivity C-reactive protein in a population of post-acute coronary syndrome patients receiving optimal medical treatment. Eur. J. Prev. Cardiol. 2012, 19, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Tardif, J.C.; Grégoire, J.; L’Allier, P.L.; Ibrahim, R.; Anderson, T.J.; Reeves, F.; Title, L.M.; Schampaert, E.; LeMay, M.; Lespérance, J.; et al. Effects of the antioxidant succinobucol (AGI-1067) on human atherosclerosis in a randomized clinical trial. Atherosclerosis 2008, 197, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Dick, S.; Epelman, S. Chronic heart failure and inflammation. Circ. Res. 2016, 119, 159–176. [Google Scholar] [CrossRef] [PubMed]
- Stulnig, T.M. C-reactive protein, fibrinogen, and cardiovascular risk. NEJM 2013, 368, 84–85. [Google Scholar] [PubMed]
- Belge, K.U.; Dayyani, F.; Horelt, A.; Siedlar, M.; Frankenberger, M.; Frankenberger, B.; Espevik, T.; Ziegler-Heitbrock, L. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J. Immunol. 2002, 168, 3536–3542. [Google Scholar] [CrossRef] [PubMed]
- Imanishi, T.; Ikejima, H.; Tsujioka, H.; Kuroi, A.; Ishibashi, K.; Komukai, K.; Tanimoto, T.; Ino, Y.; Takeshita, T.; Akasaka, T. Association of monocyte subset counts with coronary fibrous cap thickness in patients with unstable angina pectoris. Atherosclerosis 2010, 212, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Kashiwaga, M.; Imanishi, T.; Tsujioka, H.; Ikejima, H.; Kuroi, A.; Ozaki, Y.; Ishibashi, K.; Komukai, K.; Tanimoto, T.; Ino, Y.; et al. Association of monocyte subsets with vulnerability characteristics of coronary plaques as assessed by 64-slice multidetector computed tomography in patients with stable angina pectoris. Atherosclerosis 2010, 212, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Rogacev, K.S.; Cremers, B.; Zawada, A.M.; Seiler, S.; Binder, N.; Ege, P.; Große-Dunker, G.; Heisel, I.; Hornof, F.; Jeken, J.; et al. CD14++CD16+ monocytes independently predict cardiovascular events: A cohort study of 951 patients referred for elective coronary angiography. J. Am. Coll. Cardiol. 2012, 60, 1512–1520. [Google Scholar] [CrossRef] [PubMed]
- Rogacev, K.S.; Seiler, S.; Zawada, A.M.; Reichart, B.; Herath, E.; Roth, D.; Ulrich, C.; Fliser, D.; Heine, G.H. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur. Heart J. 2011, 32, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Rogacev, K.S.; Ulrich, C.; Blömer, L.; Hornof, F.; Oster, K.; Ziegelin, M.; Cremers, B.; Grenner, Y.; Geisel, J.; Schlitt, A.; et al. Monocyte heterogeneity in obesity and subclinical atherosclerosis. Eur. Heart J. 2010, 31, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Tardif, J.C.; McMurray, J.J.; Klug, E.; Small, R.; Schumi, J.; Choi, J.; Cooper, J.; Scott, R.; Lewis, E.F.; L’Allier, P.L.; et al. Effects of succinobucol (AGI-1067) after an acute coronary syndrome: A randomised, double-blind, placebo-controlled trial. Lancet 2008, 371, 1761–1768. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Hislop, C.; McConnell, D.; Elliott, M.; Stasiv, Y.; Wang, N.; Waters, D.D.; PLASMA Investigators. Effects of 1-H-indole-3-glyoxamide (A-002) on concentration of secretory phospholipase A2 (PLASMA study): A phase II double-blind, randomised, placebo-controlled trial. Lancet 2009, 373, 649–658. [Google Scholar] [CrossRef]
- White, H.D.; Held, C.; Stewart, R.; Tarka, E.; Brown, R.; Davies, R.Y.; Budaj, A.; Harrington, R.A.; Steg, P.G.; Ardissino, D.; et al. Darapladib for preventing ischemic events in stable coronary heart disease. NEJM 2014, 370, 1702–1711. [Google Scholar] [PubMed]
- Popa, C.; Netea, M.G.; Radstake, T.; Van der Meer, J.W.; Stalenhoef, A.F.; van Riel, P.L.; Barerra, P. Influence of anti-tumour necrosis factor therapy on cardiovascular risk factors in patients with active rheumatoid arthritis. Ann. Rheum. Dis. 2005, 64, 303–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suissa, S.; Bernatsky, S.; Hudson, M. Antirheumatic drug use and the risk of acute myocardial infarction. Arthritis Rheum. 2006, 55, 531–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridker, P.M.; Thuren, T.; Zalewski, A.; Libby, P. Interleukin-1â inhibition and the prevention of recurrent cardiovascular events: Rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am. Heart J. 2011, 162, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Boring, L.; Gosling, J.; Cleary, M.; Charo, I.F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998, 394, 894–897. [Google Scholar] [CrossRef] [PubMed]
- Braunersreuther, V.; Zernecke, A.; Arnaud, C.; Liehn, E.A.; Steffens, S.; Shagdarsuren, E.; Bidzhekov, K.; Burger, F.; Pelli, G.; Luckow, B.; et al. CCR5 but not CCR1 deficiency reduces development of diet-induced atherosclerosis in mice. Arter. Thromb. Vasc. Boil. 2007, 27, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Veillard, N.R.; Kwak, B.; Pelli, G.; Mulhaupt, F.; James, R.W.; Proudfoot, A.E.; Mach, F. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ. Res. 2003, 94, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Bursill, C.A.; Choudhury, R.P.; Ali, Z.; Greaves, D.R.; Channon, K.M. Broad-spectrum CC-chemokine blockade by gene transfer inhibits macrophage recruitment and atherosclerotic plaque formation in apolipoprotein E-knockout mice. Circulation 2004, 110, 2460–2466. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Simoons, M.L.; Chaitman, B.R.; White, H.D.; Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction; Katus, H.A.; Lindahl, B.; Morrow, D.A.; et al. Third universal definition of myocardial infarction. Circulation 2012, 126, 2020–2035. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.bhf.org.uk/publications/statistics/cvd-stats-2015 (accessed on 10 November 2018).
- Sheikh, A.S.; Yahya, S.; Sheikh, N.S.; Sheikh, A.A. C-reactive protein as a predictor of adverse outcome in patients with acute coronary syndrome. Heart Views 2012, 13, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Gururajan, P.; Gurumurthy, P.; Nayar, P.; Srinivasa, G.; Rao, N.; Sai Babu, R.; Sarasabharati, A.; Cheriang, K.M. Pregnancy associated plasma protein-A (PAPP-A) as an early marker for the diagnosis of acute coronary syndrome. Indian Heart J. 2012, 64, 141–145. [Google Scholar] [CrossRef] [Green Version]
- Bodi, V.; Sanchis, J.; Llacer, A.; Fácila, L.; Núñez, J.; Pellicer, M.; Bertomeu, V.; Ruiz, V.; Chorro, F.J. Multimarker risk strategy for predicting 1-month and 1-year major events in non-ST-elevation acute coronary syndromes. Am. Heart J. 2005, 149, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Moore, X.; Dart, A.M.; Wang, L. Systemic inflammatory response following acute myocardial infarction. J. Geriatr. Cardiol. 2015, 12, 305–312. [Google Scholar] [PubMed]
- Chan, W.; White, D.A.; Wang, X.Y.; Bai, R.F.; Liu, Y.; Yu, H.Y.; Zhang, Y.Y.; Fan, F.; Schneider, H.G.; Duffy, S.J.; et al. Macrophage migration inhibitory factor for the early prediction of infarct size. J. Am. Heart Assoc. 2013, 2, e000226. [Google Scholar] [CrossRef] [PubMed]
- Nunez, J.; Nunez, E.; Bodi, V.; Sanchis, J.; Miñana, G.; Mainar, L.; Santas, E.; Merlos, P.; Rumiz, E.; Darmofal, H.; et al. Usefulness of the neutrophil to lymphocyte ratio in predicting long-term mortality in ST segment elevation myocardial infarction. Am. J. Cardiol. 2008, 101, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Tapp, L.D.; Shantsila, E.; Wrigley, B.J. The CD14++CD16+ monocyte subset and monocyte-platelet interactions in patients with ST-elevation myocardial infarction. J. Thromb. Haemost. 2012, 10, 1231–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giugliano, G.R.; Giugliano, R.P.; Gibson, R.E.; Kuntz, R.E. Meta-analysis of corticosteroid treatment in acute myocardial infarction. Am. J. Cardiol. 2003, 91, 1055–1059. [Google Scholar] [CrossRef]
- Steg, P.G.; James, S.K.; Atar, D.; Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC); Blömstrom-Lundqvist, C.; Borger, M.A.; Di Mario, C.; Dickstein, K.; Ducrocq, G.; Fernandez-Aviles, F.; et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC). Eur. Heart J. 2012, 33, 2569–2619. [Google Scholar] [PubMed]
- Gibson, C.M.; Pride, Y.B.; Aylward, P.E.; Col, J.J.; Goodman, S.G.; Gulba, D.; Bergovec, M.; Kunadian, V.; Zorkun, C.; Buros, J.L.; et al. Association of non-steroidal anti-inflammatory drugs with outcomes in patients with ST-segment elevation myocardial infarction treated with fibrinolytic therapy: An ExTRACT-TIMI 25 analysis. J. Thromb. Thrombolysis 2009, 27, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Altman, R.; Luciardi, H.L.; Muntaner, J.; Del Rio, F.; Berman, S.G.; Lopez, R.; Gonzalez, C. Efficacy assessment of meloxicam, a preferential cyclooxygenase-2 inhibitor, in acute coronary syndromes without ST-segment elevation: The nonsteroidal anti-inflammatory drugs in unstable angina treatment-2 (NUT-2) pilot study. Circulation 2002, 106, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Kearney, P.; Baigent, C.; Godwin, J.; Halls, H.; Emberson, J.R.; Patrono, C. Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ 2006, 332, 1302–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granger, C.B.; Mahaffey, K.W.; Weaver, W.D.; Theroux, P.; Hochman, J.S.; Filloon, T.G.; Rollins, S.; Todaro, T.G.; Nicolau, J.C.; Ruzyllo, W.; et al. Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in acute myocardial infarction: The COMplement inhibition in Myocardial infarction treated with Angioplasty (COMMA) trial. Circulation 2003, 108, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, P.; Granger, C.; Adams, P.; APEX AMI Investigators; Hamm, C.; Holmes, D.; O’Neill, W.W.; Todaro, T.G.; Vahanian, A.; Van de Werf, F. Pexelizumab for Acute ST-Elevation Myocardial Infarction in patients undergoing PCI. J. Am. Med Assoc. 2007, 297, 43–51. [Google Scholar]
- Abbate, A.; Salloum, F.N.; Vecile, E.; Das, A.; Hoke, N.N.; Straino, S.; Biondi-Zoccai, G.G.; Houser, J.E.; Qureshi, I.Z.; Ownby, E.D.; et al. Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation 2008, 117, 2670–2683. [Google Scholar] [CrossRef] [PubMed]
- Abbate, A.; Kontos, M.C.; Grizzard, J.D.; Biondi-Zoccai, G.G.; Van Tassell, B.W.; Robati, R.; Roach, L.M.; Arena, R.A.; Roberts, C.S.; Varma, A.; et al. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodelling after acute myocardial infarction: The Virginia Commonwealth University Anakinra Remodelling Trial (VCU-ART) pilot study. Am. J. Cardiol. 2010, 105, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Abbate, A.; Tassell, B.W.; Biondi-Zoccai, G.; Kontos, M.C.; Grizzard, J.D.; Spillman, D.W.; Oddi, C.; Roberts, C.S.; Melchior, R.D.; Mueller, G.H.; et al. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodelling and heart failure after acute myocardial infarction (VCU-ART2). Am. J. Cardiol. 2013, 111, 1394–1400. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://clinicaltrials.gov/ct2/show/NCT01950299 (accessed on 10 November 2018).
- Zakkar, M.; Ascione, R.; James, A.F.; Angelini, G.D.; Suleiman, M.S. Inflammation, oxidative stress and postoperative atrial fibrillation in cardiac surgery. Pharmacol. Ther. 2015, 154, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Jukema, J.W.; Ahmed, T.A.N.; Verschuren, J.J.W.; Quax, P.H.A. Restenosis after PCI. Part 2: Prevention and therapy. Nat. Rev. Cardiol. 2012, 9, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Paparella, D.; Yau, T.M.; Young, E. Cardiopulmonary bypass induced inflammation: Pathophysiology and treatment. An update. Eur. J. Cardiothorac. Surg. 2002, 21, 232–244. [Google Scholar] [CrossRef]
- Serrano, C.V.; Souza, J.; Lopes, N.; Fernandes, J.L.; Nicolau, J.C.; Blotta, M.H.; Ramires, J.; Hueb, W. Reduced expression of systemic pro-inflammatory and myocardial biomarkers after off-pump versus on-pump coronary artery bypass surgery: A prospective randomized study. J. Crit. Care 2010, 25, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Galea, R.; Cardillo, M.T.; Caroli, A.; Marini, M.G.; Sonnino, C.; Narducci, M.L.; Biasucci, L.M. Inflammation and C-reactive protein in atrial fibrillation: Cause or effect? Tex. Heart Inst. J. 2014, 41, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Landis, R.C.; Brown, J.R.; Fitzgerald, D.; Likosky, D.S.; Shore-Lesserson, L.; Baker, R.A.; Hammon, J.W. Attenuating the systemic inflammatory response to adult cardiopulmonary bypass: A critical review of the evidence base. J. Extra-Corpor. Technol. 2014, 46, 197–211. [Google Scholar] [PubMed]
- Dieleman, J.M.; van Paassen, J.; van Dijk, D.; Arbous, M.S.; Kalkman, C.J.; Vandenbroucke, J.P.; van der Heijden, G.J.; Dekkers, O.M. Prophylactic corticosteroids for cardiopulmonary bypass in adults. Cochrane Database Syst. Rev. 2011, 5, CD005566. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Jayaram, R.; Jiang, L.; Emberson, J.; Zhao, Y.; Li, Q.; Du, J.; Guarguagli, S.; Hill, M.; Chen, Z.; et al. Perioperative rosuvastatin in cardiac surgery. NEJM 2016, 374, 1744–1753. [Google Scholar] [CrossRef] [PubMed]
- Gol, M.K.; Nisanoglu, V.; Iscan, Z.; Balci, M.; Kandemir, O.; Tasdemir, O. Inhibition of systemic inflammatory response with sodium nitroprusside in open heart surgery. J. Cardiovasc. Surg. 2002, 43, 803–809. [Google Scholar]
- Fujii, M.; Miyagi, Y.; Bessho, R.; Nitta, T.; Ochi, M.; Shimizu, K. Effect of a neutrophil elastase inhibitor on acute lung injury after cardiopulmonary bypass. Interact. Cardiovasc. Thorac. Surg. 2010, 10, 859–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niccoli, G.; Montone, R.A.; Ferrante, G.; Crea, F. The evolving role of inflammatory biomarkers in risk assessment after stent implantation. J. Am. Coll. Cardiol. 2010, 56, 1783–1793. [Google Scholar] [CrossRef] [PubMed]
- Kornowski, R. In-stent restenosis: Contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J. Am. Coll. Cardiol. 1998, 31, 224–230. [Google Scholar] [CrossRef]
- Stettler, C.; Wandel, S.; Allemann, S.; Kastrati, A.; Morice, M.C.; Schömig, A.; Pfisterer, M.E.; Stone, G.W.; Leon, M.B.; de Lezo, J.S.; et al. Outcomes associated with drug-eluting and bare-metal stents: A collaborative network meta-analysis. Lancet 2007, 370, 937–948. [Google Scholar] [CrossRef]
- Ferrante, G.; Niccoli, G.; Biasucci, L.M.; Liuzzo, G.; Burzotta, F.; Galiuto, L.; Trani, C.; Rebuzzi, A.G.; Crea, F. Association between C-reactive protein and angiographic restenosis after bare metal stents: An updated and comprehensive meta-analysis of 2747 patients. Cardiovasc. Revascularization Med. 2008, 9, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Serruys, P.W. Coronary stents: Looking forward. J. Am. Coll. Cardiol. 2010, 56, 43–78. [Google Scholar] [CrossRef] [PubMed]
- Versaci, F.; Gaspardone, A.; Tomai, F.; Ribichini, F.; Russo, P.; Proietti, I.; Ghini, A.S.; Ferrero, V.; Chiariello, L.; Gioffrè, P.A.; et al. Immunosuppressive Therapy for the Prevention of Restenosis after Coronary Artery Stent Implantation (IMPRESS Study). J. Am. Coll. Cardiol. 2002, 40, 1935–1942. [Google Scholar] [CrossRef]
- Ribichini, F.; Tomai, F.; Pesarini, G.; Zivelonghi, C.; Rognoni, A.; De Luca, G.; Boccuzzi, G.; Presbitero, P.; Ferrero, V.; Ghini, A.S.; et al. Long-term clinical follow-up of the multicentre, randomized study to test immunosuppressive therapy with oral prednisone for the prevention of restenosis after percutaneous coronary interventions: Cortisone plus BMS or DES veRsus BMS alone to EliminAte Restenosis (CEREA-DES). Eur. Heart J. 2013, 34, 1740–1748. [Google Scholar] [PubMed]
- Levine, B.; Kalman, J.; Mayer, L.; Fillit, H.M.; Packer, M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N. Engl. J. Med. 1990, 323, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, B.; Kribbs, S.B.; Clubb, F.J., Jr.; Michael, L.H.; Didenko, V.V.; Hornsby, P.J.; Seta, Y.; Oral, H.; Spinale, F.G.; Mann, D.L. Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodelling in rats. Circulation 1998, 97, 1382–1391. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, S.D. Cytokine-induced modulation of cardiac function. Circ. Res. 2004, 95, 1140–1153. [Google Scholar] [CrossRef] [PubMed]
- Sivasubramanian, N.; Coker, M.L.; Kurrelmeyer, K.M.; MacLellan, W.R.; DeMayo, F.J.; Spinale, F.G.; Mann, D.L. Left ventricular remodelling in transgenic mice with cardiac restricted overexpression of tumour necrosis factor. Circulation 2001, 104, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chancey, A.L.; Tzeng, H.P.; Zhou, Z.; Lavine, K.J.; Gao, F.; Sivasubramanian, N.; Barger, P.M.; Mann, D.L. The development of myocardial fibrosis in transgenic mice with targeted overexpression of tumour necrosis factor requires mast cell-fibroblast interactions. Circulation 2011, 124, 2106–2116. [Google Scholar] [CrossRef] [PubMed]
- Anand, I.S.; Latini, R.; Florea, V.G.; Kuskowski, M.A.; Rector, T.; Masson, S.; Signorini, S.; Mocarelli, P.; Hester, A.; Glazer, R.; et al. C-reactive protein in heart failure: Prognostic value and the effect of valsartan. Circulation 2005, 112, 1428–1434. [Google Scholar] [CrossRef] [PubMed]
- Hartupee, J.; Mann, D.L. Positioning of inflammatory biomarkers in the heart failure landscape. J. Cardiovasc. Transl. Res. 2013, 6, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Latini, R.; Gullestad, L.; Masson, S.; Nymo, S.H.; Ueland, T.; Cuccovillo, I.; Vårdal, M.; Bottazzi, B.; Mantovani, A.; Lucci, D.; et al. Pentraxin-3 in chronic heart failure: The CORONA and GISSI-HF trials. Eur. J. Heart Fail. 2012, 14, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Barisione, C.; Garibaldi, S.; Ghigliotti, G.; Fabbi, P.; Altieri, P.; Casale, M.C.; Spallarossa, P.; Bertero, G.; Balbi, M.; Corsiglia, L.; et al. CD14CD16 monocyte subset levels in heart failure patients. Dis. Markers 2010, 28, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Sliwa, K.; Skudicky, D.; Candy, G.; Wisenbaugh, T.; Sareli, P. Randomised investigation of effects of pentoxifylline on left-ventricular performance in idiopathic dilated cardiomyopathy. Lancet 1998, 351, 1091–1093. [Google Scholar] [CrossRef]
- Gullestad, L.; Ueland, T.; Fjeld, J.G.; Holt, E.; Gundersen, T.; Breivik, K.; Følling, M.; Hodt, A.; Skårdal, R.; Kjekshus, J.; et al. Effect of thalidomide on cardiac remodelling in chronic heart failure: Results of a double-blind, placebo-controlled study. Circulation 2005, 112, 3408–3414. [Google Scholar] [CrossRef] [PubMed]
- Mann, D.L.; McMurray, J.J.; Packer, M.; Swedberg, K.; Borer, J.S.; Colucci, W.S.; Djian, J.; Drexler, H.; Feldman, A.; Kober, L.; et al. Targeted anti-cytokine therapy in patients with chronic heart failure: Results of the Randomized EtaNercept Worldwide evaluation (RENEWAL). Circulation 2004, 109, 1594–1602. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.S.; Packer, M.; Lo, K.H.; Fasanmade, A.A.; Willerson, J.T.; Anti-TNF Therapy Against Congestive Heart Failure Investigators. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumour necrosis factor-alpha, in patients with moderate-to-severe heart failure: Results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 2003, 107, 3133–3140. [Google Scholar] [PubMed]
- Parrillo, J.E.; Cunnion, R.E.; Epstein, S.E.; Parker, M.M.; Suffredini, A.F.; Brenner, M.; Schaer, G.L.; Palmeri, S.T.; Cannon, R.O.; Alling, D.; et al. A prospective randomized controlled trial of prednisone for dilated cardiomyopathy. NEJM. 1989, 321, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.K.; Jhund, P.S.; Perez, A.C.; Böhm, M.; Cleland, J.G.; Gullestad, L.; Kjekshus, J.; van Veldhuisen, D.J.; Wikstrand, J.; Wedel, H.; et al. Effect of rosuvastatin on repeat heart failure hospitalizations: The CORONA trial (Controlled Rosuvastatin Multinational Trial in Heart Failure). J. Am. Coll. Cardiol. Heart Fail. 2014, 2, 289–297. [Google Scholar]
- Tavazzi, L.; Maggioni, A.P.; Marchioli, R.; Barlera, S.; Franzosi, M.G.; Latini, R.; Lucci, D.; Nicolosi, G.L.; Porcu, M.; Tognoni, G.; Gissi-HF Investigators. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial: A randomised, double-blind, placebo-controlled trial. Lancet 2008, 372, 1231–1239. [Google Scholar] [PubMed]
- McMurray, J.J.; Kjekshus, J.; Gullestad, L.; Dunselman, P.; Hjalmarson, A.; Wedel, H.; Lindberg, M.; Waagstein, F.; Grande, P.; Hradec, J.; et al. Effects of statin therapy according to plasma high-sensitivity C-reactive protein concentration in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA): A retrospective analysis. Circulation 2009, 120, 2188–2196. [Google Scholar] [CrossRef] [PubMed]
- Moreira, D.M.; Vieira, J.L.; Gottschall, C.A. The effects of METhotrexate therapy on the physical capacity of patients with ISchemic heart failure: A randomized double-blind, placebo controlled trial (METIS trial). J. Card. Fail. 2009, 15, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Cardiovascular Inflammation Reduction Trial (CIRT). Available online: https://clinicaltrials.gov/ct2/show/NCT01594333 (accessed on 10 November 2018).
Trial | Intervention | Design | Outcome |
---|---|---|---|
ARISE | Succinobucol in those with previous acute coronary syndrome | Double-blinded randomised controlled trial (RCT) with placebo as control; n = 6144 | No significant clinical benefits over placebo |
JUPITER | Rosuvastatin in those without hyperlipidaemia but with elevated CRP | Double blinded RCT with placebo as control; n = 17,802 | Rosuvasatin significantly reduced rates of stroke, MI or cardiovascular death |
STABILITY | Darapladib (PLA2 inhibitor) in stable coronary heart disease | Double blinded RCT with placebo as control; n = 15,828 | Darapladib did not significantly affect rates of MI, stroke, or cardiovascular death |
CANTOS | Canakinumab (Il-1 inhibitor) in those with previous MI and raised baseline CRP | Double blinded RCT with different dose groups and placebo as control; n = 10,061 | Canakinumab doses of 150 mg or more reduced rates of MI but not overall mortality |
Trial/Meta-Analysis | Intervention | Design | Outcome |
---|---|---|---|
NUT-2 | Meloxicam (COX2 inhibitor) plus standard treatment in ACS patients | Single blinded RCT with standard treatment as control; n = 120 | Significant reduction in recurrent MI and deaths with meloxicam |
APEX-AMI | Pexelizumab (anti-C5) in patients receiving PCI for MI | Double blinded RCT with placebo as control; n = 5745 | No significant differences between treatment or placebo |
FRISC-II | Early invasive strategy post-MI for those with significant risk factors including IL-6/CRP levels | Risk stratification into intervention or normal treatment. Raised IL-6/CRP levels as risk factors; n = 2457 | Early invasive strategy in these patients significantly reduced rates of MI but not mortality |
Pooled results of VCU-ART1 and VCU-ART2 | Anakinra (IL-1 antagonist) for post MI patients | Double blinded RCTs with placebo as control; combined n = 70 | Significant reduction in developing heart failure post MI with anakinra |
Meta-analysis of corticosteroid treatment in MI | Glucocorticoids in post-MI patients | Meta-analysis of 11 controlled studies of glucocorticoids versus placebo | No significant clinical benefits with glucocorticoids |
Meta-analysis of COX-2 inhibitor use | COX-2 inhibitors in a variety of patient populations | Met-analysis of 138 RCTs of COX-2 inhibitors versus placebo/NSAID/both | COX-2 inhibitors significantly increase risk of MI |
Trial/Meta-Analysis | Intervention | Design | Outcome |
---|---|---|---|
STICS | Rosuvastatin in elective cardiac surgery | Double blinded RCT with a placebo as control; n = 1922 | Rosuvastatin did reduce CRP but did not significantly affect post-operative outcomes |
CEREA-DES | Prednisone with bare metal stents in PCI | Single blinded RCT with drug eluting stents and bare metal stents without prednisone as other treatments; n = 375 | Bare metal stents with prednisone and drug eluting stents both have higher event free survival compared to bare metal stents only |
Meta-analysis of corticosteroids in cardiac surgery | High dose prophylactic steroids administered in on-pump CABG | 54 RCTS included of variable quality; total n = 3615 | No significant clinical benefits with corticosteroids |
Trial | Intervention | Design | Outcome |
---|---|---|---|
RENEWAL | Etanercept in heart failure patients (NYHA II-IV) | Two double-blinded RCTs with placebo as control; n = 2048 | No significant clinical benefits of etanercept over placebo |
ATTACH | Infliximab in heart failure patients (NYHA III-IV) | Double-blinded RCT with placebo as control; n = 150 | No significant clinical benefits. High dose infliximab increased mortality |
Prednisone in Idiopathic Dilated Cardiomyotpathy | Prednisone in patients with idiopathic dilated cardiomyopathy | Single-blinded RCT with placebo as control; n = 102 | No significant clinical benefits with prednisone over placebo |
CORONA | Rosuvastatin in heart failure patients (NYHA II-IV) | Double-blinded RCT with placebo as control; n = 5011 | Reduction in hospitalization rates if patient has multiple admissions or CRP >2 |
GISSI-HF | Rosuvastatin in heart failure patients (NYHA II-IV) | Double-blinded RCT with placebo as control; n = 4574 | No significant clinical benefits with rosuvastatin over placebo |
METIS | Methotrexate plus folic acid in ischaemic heart failure patients | Double-blinded RCT with placebo and folic acid as control; n = 50 | No significant clinical benefits with methotrexate over placebo |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, D.P.; Patel, J. Therapeutic Approaches Targeting Inflammation in Cardiovascular Disorders. Biology 2018, 7, 49. https://doi.org/10.3390/biology7040049
Jones DP, Patel J. Therapeutic Approaches Targeting Inflammation in Cardiovascular Disorders. Biology. 2018; 7(4):49. https://doi.org/10.3390/biology7040049
Chicago/Turabian StyleJones, Daniel P., and Jyoti Patel. 2018. "Therapeutic Approaches Targeting Inflammation in Cardiovascular Disorders" Biology 7, no. 4: 49. https://doi.org/10.3390/biology7040049
APA StyleJones, D. P., & Patel, J. (2018). Therapeutic Approaches Targeting Inflammation in Cardiovascular Disorders. Biology, 7(4), 49. https://doi.org/10.3390/biology7040049