How Organisms Gained Causal Independence and How It Might Be Quantified
Abstract
:1. Introduction—Life As a Challenge to Physics
Information Concepts for Biology
2. How the Autonomy of Organisms Is Generated
2.1. Agency and Free-Will
- D1: there exists a definite entity to which agency may (or may not) be attributed;
- D2: there are viable alternative actions for the entity to select from;
- D3: it is not constrained in the exercising of two or more of the alternatives;
- D4: its ‘will’ is generated by non-random process internal to it;
- D5: in similar circumstances, it may act otherwise according to a different internally generated ‘will’.
2.2. Will-Nestedness
2.3. Constitutive Autonomy and the Creation of ‘Self’
2.4. Cognition
2.5. Action Selection
2.6. Tegument, Transducer and Signal
2.6.1. A Physical Boundary Supports the Cybernetic Boundary
2.6.2. Transducers Support Agency
2.7. Signals and Nerves As Integrating Mechanisms
Memory: Why It Is Needed and How It Is Implemented in Biological Systems
3. The Evolution of Self-Control
3.1. Re-Programmable Organisms: Digital and Analogue
3.2. Goal, Purpose and Will
3.3. Implementing Higher Will-Nestedness with Brains
3.4. On Consciousness and ‘Free Will’
4. Conclusions—The Evolution of Causal Independence Through Information Acquisition
- perception and homeostasis: 1 goal ,
- action selection: 2 goals (),
- learning, leading to an adaptive self-model and extension beyond 2 goals (executive function): ).
Acknowledgments
Conflicts of Interest
Appendix A. Definitions
References
- Kornberg, A. Understanding life as chemistry. Clin. Chem. 1991, 37, 1895–1899. [Google Scholar] [CrossRef] [PubMed]
- Rosslenbroich, B. Properties of Life: Toward a Coherent Understanding of the Organism. Acta Biotheor. 2016, 64, 277–307. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, S.; Clayton, P. On emergence, agency, and organization. Biol. Philos. 2006, 21, 501–521. [Google Scholar] [CrossRef]
- Walker, S.; Davies, P. Chapter 2 The Hard Problem of Life. In From Matter to Life; Cambridge University Press: Cambridge, UK, 2017; pp. 17–31. [Google Scholar]
- Tononi, G. An informational integration theory of consciousness. BMC Neurosci. 2004, 5, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tononi, G. Consciousness as integrated information: A provisional manifesto. Biol. Bull. 2008, 215, 216–242. [Google Scholar] [CrossRef] [PubMed]
- Oizumi, M.; Albantakis, L.; Tononi, G. From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0. PLoS Comput. Biol. 2014, 10, e1003588. [Google Scholar] [CrossRef] [PubMed]
- Marshall, W.; Albantakis, L.; Tononi, G. Black-boxing and cause-effect power. arXiv, 2016; arXiv:q-bio.NC/1608.03461. [Google Scholar]
- Hoel, E.; Albantakis, L.; Marshall, W. Can the macro beat the micro? Integrated information across spatiotemporal scales. J. Conscious. Sci. 2016, 1. [Google Scholar] [CrossRef]
- Schrödinger, E. What is Life? The Physical Aspects of the Living Cell; Cambridge University Press: Cambridge, UK, 1944. [Google Scholar]
- Wiener, N. Cybernetics: Or Control and Communication in the Animal and the Machine; MIT Press: Cambridge, MA, USA, 1948. [Google Scholar]
- Farnsworth, K.; Nelson, J.; Gershenson, C. Living is Information Processing: From Molecules to Global Systems. Acta Biotheor. 2013, 61, 203–222. [Google Scholar] [CrossRef] [PubMed]
- Farnsworth, K.D.; Ellis, G.F.; Jaeger, L. Living through Downward Causation. In From Matter to Life: Information and Causality; Walker, S., Davies, P., Ellis, G., Eds.; Cambridge University Press: Cambridge, UK, 2017; Chapter 13; pp. 303–333. [Google Scholar]
- Farnsworth, K.D. Can a robot have free will? Entropy 2017, 19, 237. [Google Scholar] [CrossRef]
- Walker, S.I. Top-down causation and the rise of information in the emergence of life. Information 2014, 5, 424–439. [Google Scholar] [CrossRef]
- Walker, S.; Kim, H.; Davies, P. The informational architecture of the cell. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374. [Google Scholar] [CrossRef] [PubMed]
- Ellis, G. On the nature of causation in complex systems. Trans. R. Soc. S. Afr. 2008, 63, 1–16. [Google Scholar] [CrossRef]
- Ellis, G. Top-down causation and emergence: Some comments on mechanisms. Interface Focus 2012, 2, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Hazen, R.M.; Griffin, P.L.; Carothers, J.M.; Szostak, J.W. Functional information and the emergence of biocomplexity. Proc. Natl. Acad. Sci. USA 2007, 104, 8574–8581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hordijk, W.; Steel, M. Detecting autocatalytic, self-sustaining sets in chemical reaction systems. J. Theor. Biol. 2004, 227, 451–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaeger, L.; Calkins, E.R. Downward causation by information control in micro-organisms. Interface Focus 2012, 2, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, S.A. Origins of Order: Self-Organization and Selection in Evolution; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- List, C. Free will, determinism, and the possibility of doing otherwise. Noûs 2014, 48, 156–178. [Google Scholar] [CrossRef] [Green Version]
- Noble, D. A theory of biological relativity: No privileged level of causation. Interface Focus 2012, 2, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Varela, F.; Maturana, H.; Uribe, R. Autopoiesis: The organization of living systems, its characterization and a model. Curr. Mod. Biol. 1974, 5, 187–196. [Google Scholar] [CrossRef]
- Varela, F. Principles of Biological Autonomy; Elsevier: Holland, NY, USA, 1979. [Google Scholar]
- Froese, T.; Virgo, N.; Izquierdo, E. Autonomy: A Review and a Reappraisal. European Conference on Artificial Life; Springer: Berlin, Germany, 2007; pp. 455–464. [Google Scholar]
- Auletta, G.; Ellis, G.; Jaeger, L. Top-down causation by information control: From a philosophical problem to a scientific research programme. J. R. Soc. Interface 2008, 5, 1159–1172. [Google Scholar] [CrossRef] [PubMed]
- Hordijk, W.; Hein, J.; Steel, M. Autocatalytic Sets and the Origin of Life. Entropy 2010, 12, 1733–1742. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, D.; Jeng, A.; Deem, M. The emergence of modularity in biological systems. Phys. Life Rev. 2011, 8, 129–160. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.; Davies, P. The algorithmic origins of life. J. R. Soc. Interface 2013, 10. [Google Scholar] [CrossRef] [PubMed]
- Pezzulo, G.; Levin, M. Top-down models in biology: Explanation and control of complex living systems above the molecular level. J. R. Soc. Interface 2016, 13. [Google Scholar] [CrossRef] [PubMed]
- Flack, J. Life’s information hierarchy. Santa Fe Ins. Bull. 2014, 28, 13. [Google Scholar]
- Flack, J. Life’s information hierarchy. In From Matter to Life: Information and Causality; Walker, S., Davies, P., Ellis, G., Eds.; Cambridge University Press: Cambridge, UK, 2017; Chapter 12; pp. 283–302. [Google Scholar]
- Koseska, A.; Bastiaens, P.I.H. Cell signaling as a cognitive process. EMBO 2017, 36, 568–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawano, T.; Bouteau, F.; Mancuso, S. Finding and defining the natural automata acting in living plants. Commun. Integr. Biol. 2012, 5, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Prescott, T.J. Forced Moves or Good Tricks in Design Space? Landmarks in the Evolution of Neural Mechanisms for Action Selection. Adapt. Behav. 2007, 15, 9–31. [Google Scholar] [CrossRef] [Green Version]
- Pylyshyn, Z.W. The “causal power” of machines. Behav. Brain Sci. 1980, 3, 442–444. [Google Scholar] [CrossRef]
- Searle, J. Minds, Brains and Programs. Behav. Brain Sci. 1980, 3, 417–457. [Google Scholar] [CrossRef]
- Cerullo, M. The Problem with Phi: A Critique of Integrated Information Theory. PLoS Comput. Biol. 2015, 11, e1004286. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, T. Das Gehirn—ein Beziehungsorgan. Eine phänomenologisch-ökologische Konzeption.; Kohlhammer: Stuttgart, Germany, 2009. [Google Scholar]
- Albantakis, L.; Tononi, G. The Intrinsic Cause-Effect Power of Discrete Dynamical Systems-From Elementary Cellular Automata to Adapting Animats. Entropy 2015, 17, 5472–5502. [Google Scholar] [CrossRef]
- Barrett, A.B.; Seth, A.K. Practical Measures of Integrated Information for Time-Series Data. PLoS Comput. Biol. 2011, 7, e1001052. [Google Scholar] [CrossRef] [PubMed]
- Balduzzi, D.; Tononi, G. Integrated information in discrete dynamical systems: Motivation and theoretical framework. PLoS Comput. Biol. 2008, 4, e1000091. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulos, C.; Fokas, A.; Bountis, T.C. Dynamical complexity in the C.elegans neural network. Eur. Phys. J. 2016, 225, 1255–1269. [Google Scholar] [CrossRef] [Green Version]
- Marshall, W.; Kim, H.; Walker, S.; Tononi, G.; Albantakis, L. How causal analysis can reveal autonomy in models of biological systems. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375. [Google Scholar] [CrossRef] [PubMed]
- Judson, O. The energy expansions of evolution. Nat. Ecol. Evol. 2017, 1, 0138. [Google Scholar] [CrossRef] [PubMed]
- Laland, K.N.; Sterelny, K.; Odling-Smee, J.; Hoppitt, W.; Uller, T. Cause and Effect in Biology Revisited: Is Mayr’s Proximate-Ultimate Dichotomy Still Useful? Science 2011, 334, 1512–1516. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, S.A. Autocatalytic sets of proteins. J. Theor. Biol. 1986, 119, 1–24. [Google Scholar] [CrossRef]
- Segré, D.; Ben-Eli, D.; Lancet, D. Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc. Natl. Acad. Sci. USA 2000, 97, 4112–4117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steel, M.; Hordijk, W.; Smith, J. Minimal autocatalytic networks. J. Theor. Biol. 2013, 332, 96–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farnsworth, K.D.; Albantakis, L.; Caruso, T. Unifying concepts of biological function from molecules to ecosystems. Oikos 2017. [Google Scholar] [CrossRef]
- Gatti, R.C.; Hordijk, W.; Kauffman, S. Biodiversity is autocatalytic. Ecol. Modell. 2017, 346, 70–76. [Google Scholar] [CrossRef]
- Botvinick, M.M. Hierarchical models of behavior and prefrontal function. Trends Cognit. Sci. 2008, 12, 201–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krakauer, D.; Bertschinger, N.; Olbrich, E.; Ay, N.; Flack, J. The Information Theory of Individuality. arXiv, 2014; arXiv:1412.2447. [Google Scholar]
- Friston, K. Life as we know it. J. R. Soc. Interface 2013, 10. Available online: http://rsif.royalsocietypublishing.org/content/10/86/20130475.full.pdf (accessed on 18 April 2018). [CrossRef] [PubMed]
- Kirchhoff, M.; Parr, T.; Palacios, E.; Friston, K.; Kiverstein, J. The Markov blankets of life: Autonomy, active inference and the free energy principle. J. R. Soc. Interface 2018, 15. Available online: http://rsif.royalsocietypublishing.org/content/15/138/20170792.full.pdf (accessed on 15 May 2018). [CrossRef] [PubMed]
- Kauffman, S.A. Investigations; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Zeleny, M. What Is Autopoiesis? Autopoiesis; Zeleny, M., Ed.; Elsevier: New York, NY, USA, 1981; pp. 4–17. [Google Scholar]
- Rosen, R. Life Itself: A Comprehensive Enquiry into the Nature, Origin and Fabrication of Life; Columbia University Press: New York, NY, USA, 1991. [Google Scholar]
- Vernon, D.; Lowe, R.; Thill, S.; Ziemke, T. Embodied cognition and circular causality: On the role of constitutive autonomy in the reciprocal coupling of perception and action. Front. Psychol. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Bich, L. Systems and Organizations: Theoretical Tools, Conceptual Distinctions and Epistemological Implications; Springer: Berlin, Germany, 2016; pp. 203–209. [Google Scholar]
- Van Duijn, M.; Keijzer, F.; Franken, D. Principles of Minimal Cognition: Casting Cognition as Sensorimotor Coordination. Adapt. Behav. 2006, 14, 157–170. [Google Scholar] [CrossRef] [Green Version]
- Neisser, U. Cognitive Psychology; Appleton-Century Crofts: New York, NY, USA, 1967. [Google Scholar]
- Bourgine, P.; Stewart, J. Autopoiesis and cognition. Artif. Life 2004, 10, 327–345. [Google Scholar] [CrossRef] [PubMed]
- Capra, E.J.; Laub, M.T. Evolution of Two-Component Signal Transduction Systems. Annu. Rev. Microbiol. 2012, 66, 325–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stock, A.M.; Robinson, V.L.; Goudreau, P.N. Two-Component Signal Transduction. Annu. Rev. Biochem. 2000, 69, 183–215. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.; Umerez, J.; Ibañez, J. Cognition and life. The autonomy of cognition. Brain Cognit. 1997, 34, 107–129. [Google Scholar] [CrossRef] [PubMed]
- Prescott, T.J.; Bryson, J.J.; Seth, A.K. Introduction. Modelling natural action selection. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 1521–1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seth, A.K. The ecology of action selection: Insights from artificial life. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 1545–1558. [Google Scholar] [CrossRef] [PubMed]
- Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Buckley, C.L.; Chang, S.K.; McGregor, S.; Seth, A.K. The free energy principle for action and perception: A mathematical review. J. Math. Psychol. 2017, 81, 55–79. [Google Scholar] [CrossRef]
- Baluska, F.; Levin, M. On Having No Head: Cognition throughout Biological Systems. Front. Psychol. 2016, 7, 902. [Google Scholar] [CrossRef] [PubMed]
- Jennings, H. Behavior of the Lower Organisms; Columbia University Press: New York, NY, USA, 1906. [Google Scholar]
- Wood, D. Habituation in Stentor: A response-dependent process. J. Neurosci. 1988, 8, 2248–2253. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, R.D. A cellular mechanism of classical conditioning in Aplysia. J. Exp. Biol. 1984, 112, 113–128. [Google Scholar] [PubMed]
- Bray, D. Wetware: A Computer in Every Living Cell; Yale University Press: New Haven, CT, USA, 2009. [Google Scholar]
- Hagiya, M.; Aubert-Kato, N.; Wang, S.; Kobayashi, S. Molecular computers for molecular robots as hybrid systems. Verification of Engineered Molecular Devices and Programs. Theor. Comput. Sci. 2016, 632, 4–20. [Google Scholar] [CrossRef]
- Rubens, J.R.; Selvaggio, G.; Lu, T.K. Synthetic mixed-signal computation in living cells. Nat. Commun. 2016, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tononi, G.; Koch, C. Consciousness: Here, there and everywhere? Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 117–134. [Google Scholar] [CrossRef] [PubMed]
- Heylighen, F. Relational Closure: A mathematical concept for distinction-making and complexity analysis. Cybern. Syst. 1990, 90, 335–342. [Google Scholar]
- Jékely, G.; Keijzer, F.; Godfrey-Smith, P. An option space for early neural evolution. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20150181. [Google Scholar] [CrossRef] [PubMed]
- Moroz, L.; Kohn, A. Independent origins of neurons and synapses: Insights from ctenophores. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150041. [Google Scholar] [CrossRef] [PubMed]
- Brunet, T.; Arendt, D. From damage response to action potentials: Early evolution of neural and contractile modules in stem eukaryotes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150043. [Google Scholar] [CrossRef] [PubMed]
- Jékely, G. Origin and early evolution of neural circuits for the control of ciliary locomotion. Proc. R. Soc. B. 2011, 278, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Seth, A.K. Interoceptive inference, emotion, and the embodied self. Trends Cognit. Sci. 2013, 17, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Titley, H.K.; Brunel, N.; Hansel, C. Toward a Neurocentric View of Learning. Neuron 2017, 95, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Sweatt, J.D. Neural plasticity and behavior - sixty years of conceptual advances. J. Neurochem. 2016, 139 (Suppl. S2), 179–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashby, W. An Introduction to Cybernetics; Chapman and Hall: London, UK, 1956. [Google Scholar]
- Luisi, P. Autopoiesis: A review and a reappraisal. Naturwissenschaften 2003, 90, 49–59. [Google Scholar] [PubMed]
- Kunita, I.; Yamaguchi, T.; Tero, A.; Akiyama, M.; Kuroda, S.; Nakagaki, T. A ciliate memorizes the geometry of a swimming arena. J. R. Soc. Interface 2016, 13. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, E.; Tang, Y.; Rampon, C.; Tsien, J. NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 2000, 290, 1170–1174. [Google Scholar] [CrossRef] [PubMed]
- Yao, P.J.; Petralia, R.S.; Mattson, M.P. Sonic Hedgehog Signaling and Hippocampal Neuroplasticity. Trends Neurosci. 2016, 39, 840–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokin, M.; Keifer, J. Expression of the immediate-early gene–encoded protein Egr-1 (zif268) during in vitro classical conditioning. Learn. Mem. 2005, 12, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Donley, M.; Rosen, J. Novelty and fear conditioning induced gene expression in high and low states of anxiety. Learn. Mem. 2017, 16, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Brembs, B. Aplysia operant conditioning. Scholarpedia 2014, 9, 4097. [Google Scholar] [CrossRef]
- Cummins, R. Functional Analysis. J. Philos. 1975, 72, 741–765. [Google Scholar] [CrossRef]
- Butterfield, J. Laws, causation and dynamics at different levels. Interface Focus 2012, 2, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Coeckelbergh, M. The Metaphysics of Autonomy; Palgrave Macmillan: Basingstoke, UK, 2004. [Google Scholar]
- Kane, R. A contemporary Introduction to Free Will; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Strawson, G. Freedom and Belief; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
- Van Inwagen, P. Some Thoughts on An Essay on Free Will. Harvard Rev. Phil. 2015, 22, 16–30. [Google Scholar] [CrossRef]
- Barto, A.G.; Mahadevan, S. Recent Advances in Hierarchical Reinforcement Learning. Dis. Event Dyn. Syst. 2003, 13, 341–379. [Google Scholar] [CrossRef]
- Botvinick, M.M.; Niv, Y.; Barto, A.C. Hierarchically organized behavior and its neural foundations: A reinforcement learning perspective. Cognition 2008, 113, 262–280. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, D.; Voelker, A.; Eliasmith, C. A neural model of hierarchical reinforcement learning. PLoS ONE 2017, 12, e0180234. [Google Scholar] [CrossRef] [PubMed]
- Siegelmann, H.; Sontag, E. On the Computational Power of Neural Nets. J. Comput. Syst. Sci. 1995, 50, 132–150. [Google Scholar] [CrossRef]
- Fiore, V.G.; Dolan, R.J.; Strausfeld, N.J.; Hirth, F. Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoke, K.L.; Hebets, E.A.; Shizuka, D. Neural Circuitry for Target Selection and Action Selection in Animal Behavior. Integr. Comp. Biol. 2017, 57, 808–819. [Google Scholar] [CrossRef] [PubMed]
- Redgrave, P.; Prescott, T.J.; Gurney, K. The Basal Ganglia: A Vertebrate Solution To The Selection Problem? Neuroscience 1999, 89, 1009–1023. [Google Scholar] [CrossRef]
- Distler, C.; Hoffmann, K.P. Visual Pathway for the Optokinetic Reflex in Infant Macaque Monkeys. J. Neurosci. 2011, 31, 17659–17668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smart, I. Evolution, Development, and Initial Function of the Mammalian Neocortex: Response of the Germinal Zones to Endothermy. Anat. Rec. 2007, 291, 28–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudrauf, D.; Bennequin, D.; Granic, I.; Landini, G.; Friston, K.; Williford, K. A mathematical model of embodied consciousness. J. Theor. Biol. 2017, 428, 106–131. [Google Scholar] [CrossRef] [PubMed]
- Van Inwagen, P. An Essay on Free Will; Oxford University Press: Oxford, UK, 1983. [Google Scholar]
- Westen, P. Getting the Fly out of the Bottle: The False Problem of Free Will and Determinism. Buffalo Crim. Law Rev. 2005, 8, 599–652. [Google Scholar] [CrossRef]
- Dennett, D. Consciousness Explained; Little Brown: Boston, MA, USA, 1991. [Google Scholar]
- Floridi, L. Information. In The Blackwell Guide to the Philosophy of Computing and Information; Floridi, L., Ed.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2003; pp. 40–61. [Google Scholar]
- Adami, C. Information theory in molecular biology. Phys. Life Rev. 2004, 1, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Laundre, J.W.; Hernandez, L.; Ripple, W.J. The Landscape of Fear: Ecological Implications of Being Afraid. Open Ecol. J. 2010, 3, 1–7. [Google Scholar]
- Froese, T.; Ziemke, T. Enactive artificial intelligence: Investigating the systemic organization of life and mind. Artif. Intell. 2009, 173, 466–500. [Google Scholar] [CrossRef] [Green Version]
- Bertschinger, N.; Olbrich, E.; Ay, N.; Jost, J. Information and closure in systems theory. In German Workshop on Artificial Life <7, Jena, 26–26 July 2006>: Explorations in the Complexity of Possible Life; Max Plank Institute for the Physics of Complex Systems: Dresden, DE, USA, 2006; pp. 9–19. [Google Scholar]
- Bertschinger, N.; Olbrich, E.; Ay, N.; Jost, J. Autonomy: An information theoretic perspective. Biol. Syst. 2008, 91, 331–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jost, J.; Bertschinger, N.; Olbrich, E.; Ay, N.; Frankel, S. An information theoretic approach to system differentiation on the basis of statistical dependencies between subsystems. Phys. A Stat. Mech. Appl. 2007, 378, 1–10. [Google Scholar] [CrossRef]
- McKenna, M.; Pereboom, D. Free Will: A Contemporary Introduction; Routledge: Abingdon, UK, 2016. [Google Scholar]
- Mossio, M.; Bich, L.; Moreno, A. Emergence, closure and inter-level causation in biological systems. Erkenntnis 2013, 78, 153–178. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farnsworth, K.D. How Organisms Gained Causal Independence and How It Might Be Quantified. Biology 2018, 7, 38. https://doi.org/10.3390/biology7030038
Farnsworth KD. How Organisms Gained Causal Independence and How It Might Be Quantified. Biology. 2018; 7(3):38. https://doi.org/10.3390/biology7030038
Chicago/Turabian StyleFarnsworth, Keith Douglas. 2018. "How Organisms Gained Causal Independence and How It Might Be Quantified" Biology 7, no. 3: 38. https://doi.org/10.3390/biology7030038
APA StyleFarnsworth, K. D. (2018). How Organisms Gained Causal Independence and How It Might Be Quantified. Biology, 7(3), 38. https://doi.org/10.3390/biology7030038