The Double-Aspect of Life
Abstract
:1. Introduction
2. The Existence of Cell-Internal Electromagnetic and Electrostatic Fields
3. Effects of External Electromagnetic Fields on the State of Biosystems
4. The Significance of the Electromagnetic Fields of the Cell for Life Processes
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Fels, D.; Cifra, M.; Scholkmann, F. Fields of the Cell, 1st ed.; Research Signpost: Trivandrum, India, 2015; p. 321. ISBN 978-81-308-0544-3. [Google Scholar]
- Tzambazakis, A. The evolution of the biological field concept. In Fields of the Cell, 1st ed.; Fels, D., Cifra, M., Scholkmann, F., Eds.; Research Signpost: Trivandrum, India, 2015; pp. 1–27. ISBN 978-81-308-0544-3. [Google Scholar]
- Longo, G.; Miquel, P.A.; Sonnenschein, C.; Soto, A.M. Is information a proper observable for biological organization? Prog. Biophys. Mol. Biol. 2012, 109, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Gurwitsch, A. Die Natur des spezifischen Erregers der Zellteilung. Arch. Mikrosk. Anat. Entwicklungsmechanik 1923, 100, 11–40. [Google Scholar] [CrossRef]
- Gurwitsch, A.; Gurwitsch, L. Das Problem der Zellteilung physiologisch betrachtet. In Monographien aus dem Gesamtgebiet der Physiologie der Pflanzen und der Tiere; Gildmeister, M., Goldschmid, R., Neuberg, C., Parnas, J., Ruhland, W., Eds.; Springer: Berlin, Germany, 1926; Volume 11, pp. 1–221. [Google Scholar]
- Scholkmann, F.; Fels, D.; Cifra, M. Non-chemical and non-contact cell-to-cell communication: A short review. Am. J. Transl. Res. 2013, 5, 586–593. [Google Scholar] [PubMed]
- Prasad, A.; Pavel Pospíšil, P. The photon source within the cell. In Fields of the Cell, 1st ed.; Fels, D., Cifra, M., Scholkmann, F., Eds.; Research Signpost: Trivandrum, India, 2015; pp. 113–129. ISBN 978-81-308-0544-3. [Google Scholar]
- Prasad, A.; Pospisil, P. Linoleic acid-induced ultra-weak photon emission from Chalmydomonas reinhardtii as a toll for monitoring of lipid peroxidation in the cell membranes. PLoS ONE 2011, 6, e22345. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, A.; Pospisil, P. Effect of exogenous hydrogen peroxide on biophoton emission from radish root cells. Plant Physiol. Biochem. 2010, 48, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Briggs, W.R.; Spudich, J.L. Handbook of Photosensory Receptors, 1st ed.; Wiley-VCH: Weinheim, Germany, 2005; p. 473. [Google Scholar]
- Van der Horst, M.A.; Key, J.; Hellingwerf, K.J. Photosensing in chemotrophic, non-phototropic bacteria: Let there be light sensing too. Trends Microbiol. 2007, 15, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Idnurm, A.; Crosson, S. The photobiology of microbial pathogenesis. PLoS Pathog. 2009, 5, e1000470. [Google Scholar] [CrossRef] [PubMed]
- Laager, F. Light based cellular interactions: Hypotheses and perspectives. Front. Phys. 2015, 3, 55. [Google Scholar] [CrossRef]
- Farhadi, A.; Forsyth, C.; Banan, A.; Shaikh, M.; Engen, P.; Fields, J.Z.; Keshavarzian, A. Evidence for non-chemical, non-electrical intercellular signaling in intestinal epithelial cells. Bioelectrochemistry 2007, 71, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Galantsev, V.P.; Kovalenko, S.G.; Moltchanov, A.A.; Prutskov, V.I. Lipid peroxidation, low-level chemiluminescence and regulation of secretion in the mammaray gland. Experientia 1993, 49, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Mei, W.; Xu, X. Activation of neutrophils by a chemically separated but optically coupled neutrophil population undergoing respiratory burst. Experientia 1994, 50, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, F.; Scordino, A.; Triglia, A.; Blandino, G.; Milazzo, I. Intercellular communication during yeast cell growth. Europhys. Lett. 1999, 47, 736–742. [Google Scholar] [CrossRef]
- Fels, D. Cellular communication through light. PLoS ONE 2009, 4, e5086. [Google Scholar] [CrossRef]
- Fels, D. Endogenous physical regulation of population density in the freshwater protozoan Paramecium caudatum. Sci. Rep. 2017, 7, 13800. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T.; Hota, M. Interaction of two swimming Paramecia. J. Exp. Biol. 2006, 209, 4452–4463. [Google Scholar] [CrossRef] [PubMed]
- Albrecht-Buehler, G. Rudimentary form of cellular “vision”. Proc. Natl. Acad. Sci. USA 1992, 89, 8288–8292. [Google Scholar] [CrossRef]
- Jaffe, L.F. Marine plants may polarize remote Fucus eggs via luminescence. Luminescence 2005, 20, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Fels, D. Physical non-contact communication between microscopic aquatic species: Novel experimental evidences for an interspecies information exchange. J. Biophys. 2016, 2016, 7406356. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.; Foletti, A.; Magnani, A.; Lamponi, S. New perspectives in cell communication: Bioelectromagnetic interactions. Semin. Cancer Biol. 2011, 21, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Pietak, A. Electromagnetic resonance and morphogenesis. In Fields of the Cell, 1st ed.; Fels, D., Cifra, M., Scholkmann, F., Eds.; Research Signpost: Trivandrum, India, 2015; pp. 303–320. ISBN 978-81-308-0544-3. [Google Scholar]
- Vaknin, Y.; Gan-Mor, S.; Bechar, A.; Ronen, B.; Eis, D. The role of electrostatic forces in pollination. Plant Syst. Evol. 2000, 222, 133–142. [Google Scholar] [CrossRef]
- Badger, M.; Ortega-Jimenez, V.M.; von Rabenau, L.; Smiley, A.; Dudley, R. Electrostatic charge on flying hummingbirds and its potential role in pollination. PLoS ONE 2015, 10, e0138003. [Google Scholar] [CrossRef] [PubMed]
- Duncan, F.E.; Que, E.L.; Zhang, N.; Feinberg, E.C.; O’Halloran, T.V.; Woodruff, T.K. The zinc spark is an inorganic signature of human egg activation. Sci. Rep. 2015, 6, 24737. [Google Scholar] [CrossRef] [PubMed]
- Levin, M. Endogenous bioelectrical net-works store non-genetic patterning information during development and regeneration. J. Physiol. 2014, 592, 2295–2305. [Google Scholar] [CrossRef] [PubMed]
- Duran, F.; Morokuma, J.; Fields, C.; Williams, K.; Adams, D.S.; Levin, M. Long-term, stochastic editing of regenerative anatomy via targeting endogenous bioelectric gradients. Biophys. J. 2017, 112, 2231–2243. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.; Pezzulo, G.; Finkelstein, J.M. Endogenous bioelectric signaling networks: Exploiting voltage gradients for control of growth and form. Annu. Rev. Biomed. Eng. 2017, 19, 353–387. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.O.; Selden, G. The Body Electric, 1st ed.; Morrow: New York, NY, USA, 1985; p. 364. ISBN 0-688-06971-1. [Google Scholar]
- Lewontin, R. The Triple Helix; Harvard University Press: London, UK, 2002; p. 144. ISBN 9780674006775. [Google Scholar]
- Funk, R.H.W. Endogenous electric fields as guiding cue for cell migration. Front. Physiol. 2015, 6, 143. [Google Scholar] [CrossRef] [PubMed]
- Beloussov, L.V. Morphogenetic fields: History and relations to other concepts. In Fields of the Cell, 1st ed.; Fels, D., Cifra, M., Scholkmann, F., Eds.; Research Signpost: Trivandrum, India, 2015; pp. 267–278. ISBN 978-81-308-0544-3. [Google Scholar]
- Hinterberger, T.; Önal-Hartmann, C.; Salari, V. Synchrony and consciousness. In Fields of the Cell, 1st ed.; Fels, D., Cifra, M., Scholkmann, F., Eds.; Research Signpost: Trivandrum, India, 2015; pp. 225–242. ISBN 978-81-308-0544-3. [Google Scholar]
- Saliev, T.; Mustapova, Z.; Kulsharova, G.; Bulanin, D.; Mikhalovsky, S. Therapeutic potential of electromagnetic fields for tissue engineering and wound healing. Cell Prolif. 2014, 47, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Markov, M.S. Electromagnetic Fields in Biology and Medicine, 1st ed.; Taylor & Francis: Boca Raton, FL, USA, 2015; p. 452. ISBN 978-1-4822-4851-7. [Google Scholar]
- Funk, R.H.W. Does electromagnetic therapy meet an equivalent counterpart within the organism? J. Transl. Sci. 2017, 3, 1–6. [Google Scholar] [CrossRef]
- Gherardini, L.; Ciuti, L.G.; Tognarelli, S.; Cinti, C. Searching for the Perfect Wave: The effect of radiofrequency electromagnetic fields on cells. Int. J. Mol. Sci. 2014, 15, 5366–5387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cammaerts, M.-C.; Debeir, O.; Cammaerts, R. Changes in Paramecium caudatum (Protozoa) near a switched-on GSM telephone. Electromagn. Biol. Med. 2011, 30, 57–66. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, J.A.; Adair, E.R.; de Lorge, J.O. Behavioral and cognitive effects of microwave exposure. Bioelectromagnetics 2003, 6, S39–S62. [Google Scholar] [CrossRef] [PubMed]
- Juckett, D.A. A 17-year oscillation in cancer mortality birth cohorts on three continents—Synchrony to cosmic ray modulations one generation earlier. Int. J. Biometeorol. 2009, 53, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Scholkmann, F.; Miscio, G.; Tarquini, R.; Bosi, A.; Rubino, R.; di Mauro, L.; Mazzoccoli, G. The circadecadal rhythm of oscillation of umbilical cord blood parameters correlates with geomagnetic activity—An analysis of long-term measurements (1999–2011). Chronobiol. Int. 2016, 33, 1136–1147. [Google Scholar] [CrossRef] [PubMed]
- Hrushesky, W.J.M.; Sothern, R.B.; Du-Quiton, J.; Quiton, D.F.T.; Rietveld, W.; Boon, M.E. Sunspot dynamics are reflected in human physiology and pathophysiology. Astrobiology 2011, 11, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Liboff, A.R. Weak-field ELF magnetic interactions: Implications for biological change during paleomagnetic reversals. Electromagn. Biol. Med. 2013, 32. [Google Scholar] [CrossRef] [PubMed]
- Blank, M. Protein and DNA reactions stimulated by electromagnetic fields. Electromagn. Biol. Med. 2008, 27, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Cucurachi, S.; Tamis, W.L.M.; Vijver, M.G.; Peijnenburg, W.J.G.M.; Bolte, J.F.B.; de Snoo, G.R. A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environ. Int. 2013, 51, 116–140. [Google Scholar] [CrossRef] [PubMed]
- Fels, D. Electromagnetic cell communication and the barrier method. In Fields of the Cell, 1st ed.; Fels, D., Cifra, M., Scholkmann, F., Eds.; Research Signpost: Trivandrum, India, 2015; pp. 149–162. ISBN 978-81-308-0544-3. [Google Scholar]
- Bejan, A. Life and evolution as physics. Commun. Integr. Biol. 2016, 9, e1172159. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, E. Circular DNA throws biologists for a loop. Science 2017, 356, 996. [Google Scholar] [CrossRef] [PubMed]
- Pigliucci, M. Do we need an extended evolutionary synthesis? Evolution 2007, 61, 2743–2749. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, J. Biological theory: Postmodern evolution? Nature 2008, 455, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Noble, D. Evolution beyond neo-Darwinism: A new conceptual framework. J. Exp. Biol. 2015, 218, 7–13. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fels, D. The Double-Aspect of Life. Biology 2018, 7, 28. https://doi.org/10.3390/biology7020028
Fels D. The Double-Aspect of Life. Biology. 2018; 7(2):28. https://doi.org/10.3390/biology7020028
Chicago/Turabian StyleFels, Daniel. 2018. "The Double-Aspect of Life" Biology 7, no. 2: 28. https://doi.org/10.3390/biology7020028
APA StyleFels, D. (2018). The Double-Aspect of Life. Biology, 7(2), 28. https://doi.org/10.3390/biology7020028