Impacts of Low Temperature on the Teleost Immune System
Abstract
:1. Introduction
2. Innate Immunity and Temperature
2.1. Components of Innate Immunity
2.2. Complement
2.3. Leukocyte Numbers
2.4. Peripheral Blood Leukocyte Function
2.5. Cytotoxic Cells
2.6. Macrophages and Granulocytes
2.7. Expression of Genes Involved in a Proinflammatory Response
2.8. Antigen Presentation Pathway
3. Adaptive Immunity and Temperature
3.1. Components of Adaptive Immunity
3.2. B Lymphocytes
3.3. T Lymphocytes
3.4. Antibodies and the Humoral Response
4. Concluding Remarks and Future Challenges
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tingley, M.P.; Huybers, P. Recent temperature extremes at high northern latitudes unprecedented in the past 600 years. Nature 2013, 496, 201–205. [Google Scholar] [CrossRef] [PubMed]
- IPCC (Intergovernmental Panel on Climate Change). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Pirhalla, D.E.; Sheridan, S.C.; Ransibrahmanakul, V.; Lee, C.C. Assessing cold-snap and mortality events in south Florida coastal ecosystems: Development of a biological cold stress index using satellite SST and weather pattern forcing. Estuar. Coast 2015, 38, 2310–2322. [Google Scholar] [CrossRef]
- Jain, K.E.; Farrell, A.P. Influence of seasonal temperature on the repeat swimming performance of rainbow trout Oncorhynchus mykiss. J. Exp. Biol. 2003, 206, 3569–3579. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Olmeda, J.F.; Sanchez-Vazquez, F.J. Thermal biology of zebrafish (Danio rerio). J. Therm. Biol. 2011, 36, 91–104. [Google Scholar] [CrossRef]
- Sanchez, C.; Babin, M.; Tomillo, J.; Ubeira, F.M.; Dominguez, J. Quantification of low levels of rainbow trout immunoglobulin by enzyme immunoassay using two monoclonal antibodies. Vet. Immunol. Immunopathol. 1993, 36, 65–74. [Google Scholar] [CrossRef]
- Bowden, T.J. Modulation of the immune system of fish by their environment. Fish Shellfish Immunol. 2008, 25, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Le Morvan, C.; Troutaud, D.; Deschaux, P. Differential effects of temperature on specific and nonspecific immune defences in fish. J. Exp. Biol. 1998, 201, 165–168. [Google Scholar] [PubMed]
- Dominguez, M.; Takemura, A.; Tsuchiya, M.; Nakamura, S. Impact of different environmental factors on the circulating immunoglobulin levels in the Nile tilapia, Oreochromis niloticus. Aquaculture 2004, 241, 491–500. [Google Scholar] [CrossRef]
- Magnadottir, B.; Jonsdottir, H.; Helgason, S.; Bjornsson, B.; Jorgensen, T.O.; Pilstrom, L. Humoral immune parameters in Atlantic cod (Gadus morhua L.) I. The effects of environmental temperature. Comp Biochem. Physiol. B Biochem. Mol. Biol. 1999, 122, 173–180. [Google Scholar] [CrossRef]
- Moran, J.D.W.; Kent, M.L.; Whitaker, D.J. Kudoa thyrsites (Myxozoa: Myxosporea) infection in pen-reared Atlantic salmon in the northeast Pacific Ocean with a survey of potential nonsalmonid reservoir hosts. J. Aquat. Anim. Health 1998, 11, 101–109. [Google Scholar] [CrossRef]
- Avunje, S.; Oh, M.J.; Jung, S.J. Impaired TLR2 and TLR7 response in olive flounder infected with viral haemorrhagic septicaemia virus at host susceptible 15 °C but high at non-susceptible 20 °C. Fish Shellfish Immunol. 2013, 34, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Ndong, D.; Chen, Y.Y.; Lin, Y.H.; Vaseeharan, B.; Chen, J.C. The immune response of tilapia Oreochromis mossambicus and its susceptibility to Streptococcus iniae under stress in low and high temperatures. Fish Shellfish Immunol. 2007, 22, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.C.; Cheng, S.A.; Chen, Y.Y.; Chen, J.C. Effects of temperature change on the innate cellular and humoral immune responses of orange-spotted grouper Epinephelus coioides and its susceptibility to Vibrio alginolyticus. Fish Shellfish Immunol. 2009, 26, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Sanders, G.E.; Batts, W.N.; Winton, J.R. Susceptibiltiy of zebrafish (Danio rerio) to a model pathogen, spring viremia of carp virus. Comp. Med. 2003, 53, 514–521. [Google Scholar] [PubMed]
- Rovnak, J.; Quackenbush, S.L. Walleye dermal sarcoma virus: Molecular biology and oncogenesis. Viruses 2010, 2, 1984–1999. [Google Scholar] [CrossRef] [PubMed]
- Bowser, P.R.; Wolfe, M.J.; Forney, J.L.; Wooster, G.A. Seasonal prevalence of skin tumors from walleye (Stizostedion vitreum) from Oneida Lake, New York. J. Wildlife Dis. 1988, 24, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Guijarro, J.A.; Cascales, D.; Garcia-Torrico, A.I.; Garcia-Domiguez, M.; Mendez, J. Temperature-dependent expression of virulence genes in fish-pathogenic bacteria. Front. Mircorbiol. 2015, 9, 700. [Google Scholar] [CrossRef] [PubMed]
- Uribe, C.; Folch, H.; Enriquez, R.; Moran, G. Innate and adaptive immunity in teleost fish: A review. Vet. Med. 2011, 56, 486–503. [Google Scholar]
- Zhu, L.Y.; Nie, L.; Zhu, G.; Xiang, L.X.; Shao, J.Z. Advances in research of fish immune-relevant genes: A comparative overview of innate and adaptive immunity in teleosts. Dev. Comp. Immunol. 2013, 39, 39–62. [Google Scholar] [CrossRef] [PubMed]
- Katzenback, B.A. Antimicrobial peptides as mediators of innate immunity in teleosts. Biology 2015, 4, 607–639. [Google Scholar] [CrossRef] [PubMed]
- Havixbeck, J.J.; Barreda, D.R. Neutrophil development, migration, and function in teleost fish. Biology 2015, 4, 715–734. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, J.W.; Grayfer, L.; Belosevic, M. Biology of bony fish macrophages. Biology 2015, 4, 881–906. [Google Scholar] [CrossRef] [PubMed]
- Nakao, M.; Tsujikura, M.; Ichiki, S.; Vo, T.K.; Somamoto, T. The complement system in teleost fish: Progress of post-homolog-hunting researches. Dev. Comp. Immunol. 2011, 35, 1296–1308. [Google Scholar] [CrossRef] [PubMed]
- Chebaani, N.; Guardiola, F.A.; Sihem, M.; Nabil, A.; Oumouna, M.; Meseguer, J.; Esteban, M.A.; Cuesta, A. Innate humoral immune parameters in Tilapia zillii under acute stress by low temperature and crowding. Fish Physiol. Biochem. 2014, 40, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Nikoskelainen, S.; Bylund, G.; Lilius, E.M. Effect of environmental temperature on rainbow trout (Oncorhynchus mykiss) innate immunity. Dev. Comp. Immunol. 2004, 28, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Alcorn, S.W.; Murra, A.L.; Pascho, R.J. Effects of rearing temperature on immune functions in sockeye salmon (Oncorhynchus nerka). Fish Shellfish Immunol. 2002, 12, 303–334. [Google Scholar] [CrossRef] [PubMed]
- Raida, M.K.; Buchmann, K. Temperature-dependent expression of immune-relevant genes in rainbow trout following Yersinia ruckeri vaccination. Dis. Aquat. Org. 2007, 77, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Langston, A.L.; Hoare, R.; Stefansson, M.; Fitzgerald, R.; Wergeland, H.; Mulcahy, M. The effect of temperature on non-specific defence parameters of three strains of juvenile Atlantic halibut (Hippoglossus hippoglossus L.). Fish Shellfish Immunol. 2002, 12, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, A.J.; Dexiang, C.; Waterstrat, P.R.; Greenway, T. Effect of temperature on the immune system of channel catfish (Ictalurus punctatus)--I. Leucocyte distribution and phagocyte function in the anterior kidney at 10 degrees C. Comp. Biochem. Physiol. A Comp. Physiol. 1991, 100, 907–912. [Google Scholar] [CrossRef]
- Kollner, B.; Kotterba, G. Temperature dependent activation of leucocyte populations of rainbow trout, Oncorhynchus mykiss, after intraperitoneal immunisation with Aeromonas salmonicida. Fish Shellfish Immunol. 2002, 12, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Engelsma, M.Y.; Hougee, S.; Nap, D.; Hofenk, M.; Rombout, J.H.; van Muiswinkel, W.B.; Lidy Verburg-van Kemenade, B.M. Multiple acute temperature stress affects leucocyte populations and antibody responses in common carp, Cyprinus carpio L. Fish Shellfish Immunol. 2003, 15, 397–410. [Google Scholar] [CrossRef]
- Hrubec, T.C.; Robertson, J.L.; Smith, S.A. Effects of temperature on hematologic and serum biochemical profiles of hybrid striped bass (Morone chrysops × Morone saxatilis). Am. J. Vet. Res. 1997, 58, 126–130. [Google Scholar] [PubMed]
- Bailey, C.; Segner, H.; Casanova-Nakayama, A.; Wahli, T. Who needs the hotspot? The effect of temperature on the fish host immune response to Tetracapsuloides bryosalmonae the causative agent of proliferative kidney disease. Fish Shellfish Immunol. 2017, 63, 424–437. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.L.; Rogers, W.A.; Klesius, P.H. Chemiluminescence by peripheral blood phagocytes from channel catfish: Function of opsonin and temperature. Dev. Comp. Immunol. 1985, 9, 241–250. [Google Scholar] [CrossRef]
- Kurata, O.; Okamoto, N.; Suzumura, E.; Sano, N.; Ikeda, Y. Accommodation of carp natural killer-like cells to environmental temperatures. Aquaculture 1995, 129, 421–424. [Google Scholar] [CrossRef]
- Le Morvan, C.; Deschaux, P.; Troutaud, D. Effects and mechanisms of environmental temperature on carp (Cyprinus carpio) anti-DNP antibody response and non-specific cytotoxic cell activity: A kinetic study. Dev. Comp. Immunol. 1996, 20, 331–340. [Google Scholar] [CrossRef]
- Le Morvan-Rocher, C.; Troutaud, D.; Deschaux, P. Effects of temperature on carp leukocyte mitogen-induced proliferation and nonspecific cytotoxic activity. Dev. Comp. Immunol. 1995, 19, 87–95. [Google Scholar] [CrossRef]
- Katzenback, B.A.; Belosevic, M. Isolation and functional characterization of neutrophil-like cells, from goldfish (Carassius auratus L.) kidney. Dev. Comp. Immunol. 2009, 33, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, J.W.; Ge, J.Q.; Katzenback, B.A.; Havixbeck, J.J.; Barreda, D.R.; Stafford, J.L.; Belosevic, M. Development of an in vitro model system to study the interactions between Mycobacterium marinum and teleost neutrophils. Dev. Comp. Immunol. 2015, 53, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Belosevic, M.; Haddad, G.; Walsh, J.G.; Grayfer, L.; Katzenback, B.A.; Hanington, P.C.; Neumann, N.F.; Stafford, J.L. Innate Immunity of Fish: Antimicrobial Respones of Fish Macrophages. In Fish Defenses; Zaccone, G., Manning, M.J., Secombes, C.J., Kapor, B.G., Eds.; Science Publishers: Enfield, NH, USA; Plymouth, UK, 2007; Volume 1. [Google Scholar]
- Hardie, L.J.; Fletcher, T.C.; Secombes, C.J. Effect of temperature on macrophage activation and the production of macrophage activating factor by rainbow trout (Oncorhynchus mykiss) leucocytes. Dev. Comp. Immunol. 1994, 18, 57–66. [Google Scholar] [CrossRef]
- Sohnle, P.G.; Chusid, M.J. The effect of temperature on the chemiluminescence response of neutrophils from rainbow trout and man. J. Comp. Pathol. 1983, 93, 493–497. [Google Scholar] [CrossRef]
- LeMorvan, C.; Clerton, P.; Deschaux, P.; Troutaud, D. Effects of environmental temperature on macrophage activities in carp. Fish Shellfish Immunol. 1997, 7, 209–212. [Google Scholar] [CrossRef]
- Collazos, M.E.; Ortega, E.; Barriga, C. Effect of temperature on the immune system of a cyprinid fish (Tinca Tinca, L)—Blood phagocyte function at low-temperature. Fish Shellfish Immunol. 1994, 4, 231–238. [Google Scholar] [CrossRef]
- Dios, S.; Romero, A.; Chamorro, R.; Figueras, A.; Novoa, B. Effect of the temperature during antiviral immune response ontogeny in teleosts. Fish Shellfish Immunol. 2010, 29, 1019–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundaram, A.Y.M.; Consuegra, S.; Kiron, V.; Fernandes, J.M.O. Positive selection pressure within teleost toll-like receptors tlr21 and tlr22 subfamilies and their response to temperature stress and microbial components in zebrafish. Mol. Biol. Rep. 2012, 39, 8965–8975. [Google Scholar] [CrossRef] [PubMed]
- Salinas, I.; Lockhart, K.; Bowden, T.J.; Collet, B.; Secombes, C.J.; Ellis, A.E. An assessment of immunostimulants as Mx inducers in Atlantic salmon (Salmo salar L.) parr and the effect of temperature on the kinetics of Mx responses. Fish Shellfish Immunol. 2004, 17, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Kulkeaw, K.; Ishitani, T.; Kanemaru, T.; Fucharoen, S.; Sugiyama, D. Cold exposure down-regulates zebrafish hematopoiesis. Biochem. Biophys. Res. Commun. 2010, 394, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Katakura, F.; Katzenback, B.A.; Belosevic, M. Molecular and functional characterization of erythropoietin of the goldfish (Carassius auratus L.). Dev. Comp. Immunol. 2013, 40, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Katakura, F.; Katzenback, B.A.; Belosevic, M. Molecular and functional characterization of erythropoietin receptor of the goldfish (Carassius auratus L.). Dev. Comp. Immunol. 2014, 45, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Katzenback, B.A.; Katakura, F.; Belosevic, M. Goldfish (Carassus auratus L.) as a model system to study the growth factors, receptors and transcription factors that govern myelopoiesis in fish. Dev. Comp. Immunol. 2016, 58, 68–85. [Google Scholar] [CrossRef] [PubMed]
- Katzenback, B.A.; Belosevic, M. Colony-stimulating factor-1 receptor protein expression is a specific marker for goldfish (Carassius auratus L.) macrophage progenitors and their differentiated cell types. Fish Shellfish Immunol. 2012, 32, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Katzenback, B.A.; Belosevic, M. Characterization of granulocyte colony stimulating factor receptor of the goldfish (Carassius auratus L.). Dev. Comp. Immunol. 2012, 36, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Katzenback, B.A.; Katakura, F.; Belosevic, M. Regulation of Teleost Macrophage and Neutrophil Cell Development by Growth Factors and Transcription Factors. In New Advances and Contributions to Fish Biology; Turker, H., Ed.; In Tech: Rijeka, Croatia, European Union, 2012; p. 54. [Google Scholar]
- Zou, J.; Holland, J.; Pleguezuelos, O.; Cunningham, C.; Secombes, C.J. Factors influencing the expression of interleukin-1 beta in cultured rainbow trout (Oncorhynchus mykiss) leucocytes. Dev. Comp. Immunol. 2000, 24, 575–582. [Google Scholar] [CrossRef]
- Thanasaksiri, K.; Sakai, N.; Yamashita, H.; Hirono, I.; Kondo, H. Influence of temperature on Mx gene expression profiles and the protection of sevenband grouper, Epinephelus septemfasciatus, against red-spotted grouper nervous necrosis virus (RGNNV) infection after poly (I:C) injection. Fish Shellfish Immunol. 2014, 40, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Raida, M.K.; Buchmann, K. Bath vaccination of rainbow trout (Oncorhynchus mykiss Walbaum) against Yersinia ruckeri: Effects of temperature on protection and gene expression. Vaccine 2008, 26, 1050–1062. [Google Scholar] [CrossRef] [PubMed]
- Ebstein, F.; Kloetzel, P.M.; Kruger, E.; Seifert, U. Emerging roles of immunoproteasomes beyond MHC class I antigen processing. Cell. Mol. Life Sci. 2012, 69, 2543–2558. [Google Scholar] [CrossRef] [PubMed]
- Apcher, S.; Manoury, B.; Fahraeus, R. The role of mRNA translation in direct MHC class I antigen presentation. Curr. Opin. Immunol. 2012, 24, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Shastri, N.; Cardinaud, S.; Schwab, S.R.; Serwold, T.; Kunisawa, J. All the peptides that fit: The beginning, the middle, and the end of the MHC class I antigen-processing pathway. Immunol. Rev. 2005, 207, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Mantegazza, A.R.; Magalhaes, J.G.; Amigorena, S.; Marks, M.S. Presentation of phagocytosed antigens by MHC class I and II. Traffic 2013, 14, 135–152. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.N.; Dixon, B.; Roelofs, J.; Rombout, J.H.; Egberts, E.; Pohajdak, B.; Stet, R.J. Expression and temperature-dependent regulation of the beta2-microglobulin (Cyca-B2m) gene in a cold-blooded vertebrate, the common carp (Cyprinus carpio L.). Dev. Immunol. 1998, 5, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Kales, S.; Parks-Dely, J.; Schulte, P.; Dixon, B. Beta-2-microglobulin gene expression is maintained in rainbow trout and Atlantic salmon kept at low temperatures. Fish Shellfish Imunol. 2006, 21, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Sever, L.; Vo, N.T.; Lumsden, J.; Bols, N.C.; Dixon, B. Induction of rainbow trout MH class I and accessory proteins by viral haemorrhagic septicaemia virus. Mol. Immunol. 2014, 59, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.; Kales, S.; Fujiki, K.; Dixon, B. Major histocompatibility class II genes in rainbow trout (Oncorhynchus mykiss) exhibit temperature dependent downregulation. Immunogenetics 2006, 58, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.D.; Strassburger, P.; Du Pasquier, L. Conservation of an alpha 2 domain within the teleostean world, MHC class I from the rainbow trout Oncorhynchus mykiss. Dev. Comp. Immunol. 1996, 20, 417–425. [Google Scholar] [CrossRef]
- Hansen, J.D.; Strassburger, P.; Thorgaard, G.H.; Young, W.P.; Du Pasquier, L. Expression, linkage, and polymorphism of MHC-related genes in rainbow trout, Oncorhynchus mykiss. J. Immunol. 1999, 163, 774–786. [Google Scholar] [PubMed]
- Sever, L.; Vo, N.; Bols, N.C.; Dixon, B. Expression of tapasin in rainbow trout tissues and cell lines and up regulation in a monocyte/macrophage cell line (RTS11) by a viral mimic and viral infection. Dev. Comp. Immunol. 2014, 44, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Kales, S.; Fujiki, K.; Dixon, B. Molecular cloning and characterization of calreticulin from rainbow trout (Oncorhynchus mykiss). Immunogenetics 2004, 55, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Kales, S.C.; Bols, N.C.; Dixon, B. Calreticulin in rainbow trout: A limited response to endoplasmic reticulum (ER) stress. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 147, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Sever, L.; Bols, N.C.; Dixon, B. The cloning and inducible expression of the rainbow trout ERp57 gene. Fish Shellfish Immunol. 2013, 34, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Sever, L.; Vo, N.; Bols, N.C.; Dixon, B. Rainbow trout (Oncorhynchus mykiss) contain two Calnexin genes which encode distinct proteins. Dev. Comp. Immunol. 2014, 42, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Semple, S.L.; Vo, N.T.K.; Li, A.R.; Pham, P.H.; Bols, N.C.; Dixon, B. Development and use of an Arctic charr cell line to study antiviral responses at extremely low temperatures. J. Fish Dis. 2017, 40, 1423–1439. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, T.; Shibasaki, Y.; Matsuura, Y. T cells in fish. Biology 2015, 4, 640–663. [Google Scholar] [CrossRef] [PubMed]
- Mashoof, S.; Criscitiello, M.F. Fish immunoglobulins. Biology 2016, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- Salinas, I.; Zhang, Y.A.; Sunyer, J.O. Mucosal immunoglobulins and B cells of teleost fish. Dev. Comp. Immunol. 2011, 35, 1346–1365. [Google Scholar] [CrossRef] [PubMed]
- Clem, L.W.; Faulmann, E.; Miller, N.W.; Ellsaesser, C.; Lobb, C.J.; Cuchens, M.A. Temperature-mediated processes in teleost immunity: Differential effects of in vitro and in vivo temperatures on mitogenic responses of channel catfish lymphocytes. Dev. Comp. Immunol. 1984, 8, 313–322. [Google Scholar] [CrossRef]
- Bly, J.E.; Clem, L.W. Temperature-mediated processes in teleost immunity: In Vitro immunosuppression induced by in vivo low temperature in channel catfish. Vet. Immunol. Immunopathol. 1991, 28, 365–377. [Google Scholar] [CrossRef]
- Bly, J.E.; Buttke, T.M.; Meydrech, E.F.; Clem, L.W. The effects of in vivo acclimation temperature on the fatty acid composition of channel catfish (Ictalurus punctatus) peripheral blood cells. Comp. Biochem. Phys. B Comp. Biochem. 1986, 83, 791–795. [Google Scholar] [CrossRef]
- Miller, N.W.; Deuter, A.; Clem, L.W. Phylogeny of lymphocyte heterogeneity: The cellular requirements for the mixed leucocyte reaction with channel catfish. Immunology 1986, 59, 123–128. [Google Scholar] [PubMed]
- Vallejo, A.N.; Miller, N.W.; Clem, L.W. Cellular pathway(s) of antigen processing in fish APC: Effect of varying in vitro temperatures on antigen catabolism. Dev. Comp. Immunol. 1992, 16, 367–381. [Google Scholar] [CrossRef]
- Bly, J.E.; Buttke, T.M.; Clem, L.W. Differential effects of temperature and exogenous fatty acids on mitogen-induced proliferation in channel catfish T and B lymphocytes. Comp. Biochem. Physiol. A Comp. Physiol. 1990, 95, 417–424. [Google Scholar] [CrossRef]
- Fischer, U.; Ototake, M.; Nakanishi, T. Effect of environmental temperature on in vitro cell-mediated cytotoxicity (CMC) and graft-versus-host reaction (GVHR) in ginbuna crucian carp (Carassius auratus langsdorfii). Fish Shellfish Immunol. 1999, 9, 233–236. [Google Scholar] [CrossRef]
- Verlhac, V.; Sage, M.; Deschaux, P. Cytotoxicity of carp (Cyprinus carpio) leucocytes induced against TNP-modified autologous spleen cells and influence of acclimatization temperature. Dev. Comp. Immunol. 1990, 14, 475–480. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Takizawa, F.; Fischer, U.; Dijkstra, J.M. Along the axis between type 1 and type 2 immunity; principles conserved in evolution from fish to mammals. Biology 2015, 4, 814–859. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.W.; Clem, L.W. Temperature-mediated processes in teleost immunity: Differential effects of temperature on catfish in vitro antibody responses to thymus-dependent and thymus-independent antigens. J. Immunol. 1984, 133, 2356–2359. [Google Scholar] [PubMed]
- Lange, M.D.; Webster, C.D. The effect of temperature on the mucosal IgM antibody response to DNP-KLH in channel catfish (Ictalurus punctatus). Fish Shellfish Immunol. 2017, 70, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.H.; Sun, L.T.; Tsai, C.L.; Song, Y.L.; Chang, C.F. Cold-stress induced the modulation of catecholamines, cortisol, immunoglobulin M, and leukocyte phagocytosis in tilapia. Gen. Comp. Endocrinol. 2002, 126, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.L.; Xu, D.H.; Shoemaker, C.A.; Klesius, P.H. Temperature effects on immune response and hematological parameters of channel catfish Ictalurus punctatus vaccinated with live theronts of Ichthyophthirius multifiliis. Fish Shellfish Immunol. 2011, 31, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Lorenzen, E.; Einer-Jensen, K.; Rasmussen, J.S.; Kjaer, T.E.; Collet, B.; Secombes, C.J.; Lorenzen, N. The protective mechanisms induced by a fish rhabdovirus DNA vaccine depend on temperature. Vaccine 2009, 27, 3870–3880. [Google Scholar] [CrossRef] [PubMed]
- Bouma, H.R.; Carey, H.V.; Kroese, F.G.M. Hibernation: The immune system at rest? J. Leukoc. Biol. 2010, 88, 619–624. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abram, Q.H.; Dixon, B.; Katzenback, B.A. Impacts of Low Temperature on the Teleost Immune System. Biology 2017, 6, 39. https://doi.org/10.3390/biology6040039
Abram QH, Dixon B, Katzenback BA. Impacts of Low Temperature on the Teleost Immune System. Biology. 2017; 6(4):39. https://doi.org/10.3390/biology6040039
Chicago/Turabian StyleAbram, Quinn H., Brian Dixon, and Barbara A. Katzenback. 2017. "Impacts of Low Temperature on the Teleost Immune System" Biology 6, no. 4: 39. https://doi.org/10.3390/biology6040039
APA StyleAbram, Q. H., Dixon, B., & Katzenback, B. A. (2017). Impacts of Low Temperature on the Teleost Immune System. Biology, 6(4), 39. https://doi.org/10.3390/biology6040039