Dual Roles of Fer Kinase Are Required for Proper Hematopoiesis and Vascular Endothelium Organization during Zebrafish Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Transgenic Zebrafish Lines
2.2. Fer Morpholino Knockdown
2.3. Whole Mount In Situ Hybridization (WISH)
2.4. o-Dianisidine Staining
2.5. Microangiography
2.6. Quantitative PCR (qPCR)
2.7. Fluorescence Activated Cell Sorting (FACS)
2.8. Fer Kinase Inactivating Point Mutations and Notch Rescue Experiments
2.9. Imaging
3. Results
3.1. Fer Kinase Is Expressed during Embryogenesis
3.2. Fer Kinase Is Required for Proper Blood and Vasculature Development in Zebrafish
3.3. Fer Kinase-Dependent and -Independent Activity during Development
3.4. Fer Stabilizes Notch Signaling during Vasculogenesis but Not Hematopoiesis
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Coultas, L.; Chawengsaksophak, K.; Rossant, J. Endothelial cells and vegf in vascular development. Nature 2005, 438, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Thisse, B.; Thisse, C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev. Biol. 2005, 287, 390–402. [Google Scholar] [CrossRef] [PubMed]
- Rauch, J.; Volinsky, N.; Romano, D.; Kolch, W. The secret life of kinases: Functions beyond catalysis. Cell Commun. Signal. 2011, 9. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, I.; Levy, J.; Pawson, T. Expression of the mammalian c-fes protein in hematopoietic cells and identification of a distinct fes-related protein. Mol. Cell. Biol. 1985, 5, 2543–2551. [Google Scholar] [CrossRef] [PubMed]
- Hao, Q.L.; Heisterkamp, N.; Groffen, J. Isolation and sequence analysis of a novel human tyrosine kinase gene. Mol. Cell. Biol. 1989, 9, 1587–1593. [Google Scholar] [CrossRef] [PubMed]
- Pawson, T.; Letwin, K.; Lee, T.; Hao, Q.L.; Heisterkamp, N.; Groffen, J. The fer gene is evolutionarily conserved and encodes a widely expressed member of the fps/fes protein-tyrosine kinase family. Mol. Cell. Biol. 1989, 9, 5722–5725. [Google Scholar] [CrossRef] [PubMed]
- McPherson, V.A.; Everingham, S.; Karisch, R.; Smith, J.A.; Udell, C.M.; Zheng, J.; Jia, Z.; Craig, A.W. Contributions of f-bar and sh2 domains of fes protein tyrosine kinase for coupling to the fcepsilonri pathway in mast cells. Mol. Cell. Biol. 2009, 29, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.W.; Zirngibl, R.; Greer, P. Disruption of coiled-coil domains in fer protein-tyrosine kinase abolishes trimerization but not kinase activation. J. Biol. Chem. 1999, 274, 19934–19942. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.; Wong, T.W. The cytoplasmic tyrosine kinase fer is associated with the catenin-like substrate pp120 and is activated by growth factors. Mol. Cell. Biol. 1995, 15, 4553–4561. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.; Wong, T.W. Growth factor-dependent phosphorylation of the actin-binding protein cortactin is mediated by the cytoplasmic tyrosine kinase fer. J. Biol. Chem. 1998, 273, 23542–23548. [Google Scholar] [CrossRef] [PubMed]
- Priel-Halachmi, S.; Ben-Dor, I.; Shpungin, S.; Tennenbaum, T.; Molavani, H.; Bachrach, M.; Salzberg, S.; Nir, U. Fer kinase activation of stat3 is determined by the n-terminal sequence. J. Biol. Chem. 2000, 275, 28902–28910. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.W.; Zirngibl, R.; Williams, K.; Cole, L.A.; Greer, P.A. Mice devoid of fer protein-tyrosine kinase activity are viable and fertile but display reduced cortactin phosphorylation. Mol. Cell. Biol. 2001, 21, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Lennartsson, J.; Ma, H.; Wardega, P.; Pelka, K.; Engstrom, U.; Hellberg, C.; Heldin, C.H. The fer tyrosine kinase is important for platelet-derived growth factor-bb-induced signal transducer and activator of transcription 3 (stat3) protein phosphorylation, colony formation in soft agar, and tumor growth in vivo. J. Biol. Chem. 2013, 288, 15736–15744. [Google Scholar] [CrossRef] [PubMed]
- Zoubeidi, A.; Rocha, J.; Zouanat, F.Z.; Hamel, L.; Scarlata, E.; Aprikian, A.G.; Chevalier, S. The fer tyrosine kinase cooperates with interleukin-6 to activate signal transducer and activator of transcription 3 and promote human prostate cancer cell growth. Mol. Cancer Res. 2009, 7, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Cetkovic, H.; Muller, I.M.; Muller, W.E.; Gamulin, V. Characterization and phylogenetic analysis of a cdna encoding the fes/fer related, non-receptor protein-tyrosine kinase in the marine sponge sycon raphanus. Gene 1998, 216, 77–84. [Google Scholar] [CrossRef]
- Putzke, A.P.; Hikita, S.T.; Clegg, D.O.; Rothman, J.H. Essential kinase-independent role of a fer-like non-receptor tyrosine kinase in caenorhabditis elegans morphogenesis. Development 2005, 132, 3185–3195. [Google Scholar] [CrossRef] [PubMed]
- Katzen, A.L.; Montarras, D.; Jackson, J.; Paulson, R.F.; Kornberg, T.; Bishop, J.M. A gene related to the proto-oncogene fps/fes is expressed at diverse times during the life cycle of drosophila melanogaster. Mol. Cell. Biol. 1991, 11, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Paulson, R.; Jackson, J.; Immergluck, K.; Bishop, J.M. The dfer gene of drosophila melanogaster encodes two membrane-associated proteins that can both transform vertebrate cells. Oncogene 1997, 14, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Fischman, K.; Edman, J.C.; Shackleford, G.M.; Turner, J.A.; Rutter, W.J.; Nir, U. A murine fer testis-specific transcript (fert) encodes a truncated fer protein. Mol. Cell. Biol. 1990, 10, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Paardekooper Overman, J.; Preisinger, C.; Prummel, K.; Bonetti, M.; Giansanti, P.; Heck, A.; den Hertog, J. Phosphoproteomics-mediated identification of fer kinase as a target of mutant shp2 in noonan and leopard syndrome. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Rosato, R.; Veltmaat, J.M.; Groffen, J.; Heisterkamp, N. Involvement of the tyrosine kinase fer in cell adhesion. Mol. Cell. Biol. 1998, 18, 5762–5770. [Google Scholar] [CrossRef] [PubMed]
- Sangrar, W.; Gao, Y.; Scott, M.; Truesdell, P.; Greer, P.A. Fer-mediated cortactin phosphorylation is associated with efficient fibroblast migration and is dependent on reactive oxygen species generation during integrin-mediated cell adhesion. Mol. Cell. Biol. 2007, 27, 6140–6152. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, T.; Angata, K.; Bao, X.; Courtneidge, S.; Chanda, S.K.; Fukuda, M. Fer kinase regulates cell migration through alpha-dystroglycan glycosylation. Mol. Biol. Cell 2012, 23, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.J.; Davidson, C.M.; Hayward, N.M.; Brand, A.H. The fes/fer non-receptor tyrosine kinase cooperates with src42a to regulate dorsal closure in drosophila. Development 2006, 133, 3063–3073. [Google Scholar] [CrossRef] [PubMed]
- Allard, P.; Zoubeidi, A.; Nguyen, L.T.; Tessier, S.; Tanguay, S.; Chevrette, M.; Aprikian, A.; Chevalier, S. Links between fer tyrosine kinase expression levels and prostate cell proliferation. Mol. Cell. Endocrinol. 2000, 159, 63–77. [Google Scholar] [CrossRef]
- Mila, D.; Calderon, A.; Baldwin, A.T.; Moore, K.M.; Watson, M.; Phillips, B.T.; Putzke, A.P. Asymmetric wnt pathway signaling facilitates stem cell-like divisions via the nonreceptor tyrosine kinase frk-1 in caenorhabditis elegans. Genetics 2015, 201, 1047–1060. [Google Scholar] [CrossRef] [PubMed]
- Putzke, A.P.; Rothman, J.H. Repression of wnt signaling by a fer-type nonreceptor tyrosine kinase. Proc. Natl. Acad. Sci. USA 2010, 107, 16154–16159. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ren, Z.; Kang, X.; Zhang, L.; Li, X.; Wang, Y.; Xue, T.; Shen, Y.; Liu, Y. Identification of tyrosine-phosphorylated proteins associated with metastasis and functional analysis of fer in human hepatocellular carcinoma cells. BMC Cancer 2009, 9. [Google Scholar] [CrossRef] [PubMed]
- Miyata, Y.; Kanda, S.; Sakai, H.; Greer, P.A. Feline sarcoma-related protein expression correlates with malignant aggressiveness and poor prognosis in renal cell carcinoma. Cancer Sci. 2013, 104, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.; Heisterkamp, N.; Hao, Q.L.; Testa, J.R.; Groffen, J. The human tyrosine kinase gene (fer) maps to chromosome 5 and is deleted in myeloid leukemias with a del(5q). Cytogenet. Cell Genet. 1990, 53, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Ueno, K.; Kumagai, T.; Kijima, T.; Kishimoto, T.; Hosoe, S. Cloning and tissue expression of cdnas from chromosome 5q21–22 which is frequently deleted in advanced lung cancer. Hum. Genet. 1998, 102, 63–68. [Google Scholar] [CrossRef] [PubMed]
- MacKeigan, J.P.; Murphy, L.O.; Blenis, J. Sensitized rnai screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat. Cell Biol. 2005, 7, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Senis, Y.A.; Craig, A.W.; Greer, P.A. Fps/fes and fer protein-tyrosinekinases play redundant roles in regulating hematopoiesis. Exp. Hematol. 2003, 31, 673–681. [Google Scholar] [CrossRef]
- Westerfield, M. The Zebrafish Book, 5th ed.; University of Oregon Press: Eugene, OR, USA, 2007. [Google Scholar]
- Thisse, C.; Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 2008, 3, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Covassin, L.; Amigo, J.D.; Suzuki, K.; Teplyuk, V.; Straubhaar, J.; Lawson, N.D. Global analysis of hematopoietic and vascular endothelial gene expression by tissue specific microarray profiling in zebrafish. Dev. Biol. 2006, 299, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Dunn, E.M.; Putzke, A.P. Whitworth University, Spokane, WA, USA. Unpublished Data. 2018. [Google Scholar]
- Gross, L.A.; Baird, G.S.; Hoffman, R.C.; Baldridge, K.K.; Tsien, R.Y. The structure of the chromophore within dsred, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. USA 2000, 97, 11990–11995. [Google Scholar] [CrossRef] [PubMed]
- Matz, M.V.; Fradkov, A.F.; Labas, Y.A.; Savitsky, A.P.; Zaraisky, A.G.; Markelov, M.L.; Lukyanov, S.A. Fluorescent proteins from nonbioluminescent anthozoa species. Nat. Biotechnol. 1999, 17, 969–973. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Vogeli, K.M.; Kim, S.H.; Chong, S.W.; Jiang, Y.J.; Stainier, D.Y.; Jin, S.W. Notch signaling functions as a cell-fate switch between the endothelial and hematopoietic lineages. Curr. Biol. 2009, 19, 1616–1622. [Google Scholar] [CrossRef] [PubMed]
- Kalev-Zylinska, M.L.; Horsfield, J.A.; Flores, M.V.; Postlethwait, J.H.; Vitas, M.R.; Baas, A.M.; Crosier, P.S.; Crosier, K.E. Runx1 is required for zebrafish blood and vessel development and expression of a human runx1-cbf2t1 transgene advances a model for studies of leukemogenesis. Development 2002, 129, 2015–2030. [Google Scholar] [PubMed]
- Lawson, N.D.; Scheer, N.; Pham, V.N.; Kim, C.H.; Chitnis, A.B.; Campos-Ortega, J.A.; Weinstein, B.M. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 2001, 128, 3675–3683. [Google Scholar] [PubMed]
- Zhong, T.P.; Childs, S.; Leu, J.P.; Fishman, M.C. Gridlock signalling pathway fashions the first embryonic artery. Nature 2001, 414, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Burns, C.E.; Traver, D.; Mayhall, E.; Shepard, J.L.; Zon, L.I. Hematopoietic stem cell fate is established by the notch-runx pathway. Genes Dev. 2005, 19, 2331–2342. [Google Scholar] [CrossRef] [PubMed]
- Siekmann, A.F.; Lawson, N.D. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 2007, 445, 781–784. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, J.Y.; Cisson, J.L.; Stachura, D.L.; Traver, D. Notch signaling distinguishes 2 waves of definitive hematopoiesis in the zebrafish embryo. Blood 2010, 115, 2777–2783. [Google Scholar] [CrossRef] [PubMed]
- Sangrar, W.; Gao, Y.; Bates, B.; Zirngibl, R.; Greer, P.A. Activated fps/fes tyrosine kinase regulates erythroid differentiation and survival. Exp. Hematol. 2004, 32, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Lam, E.Y.; Hall, C.J.; Crosier, P.S.; Crosier, K.E.; Flores, M.V. Live imaging of runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells. Blood 2010, 116, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Woo, A.J.; Waldon, Z.; Schindler, Y.; Moran, T.B.; Zhu, H.H.; Feng, G.S.; Steen, H.; Cantor, A.B. A src family kinase-shp2 axis controls runx1 activity in megakaryocyte and t-lymphocyte differentiation. Genes Dev. 2012, 26, 1587–1601. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; de Bruijn, M.; Ma, X.; Dortland, B.; Luteijn, T.; Downing, R.J.; Dzierzak, E. Haploinsufficiency of aml1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity 2000, 13, 423–431. [Google Scholar] [CrossRef]
- Jacob, B.; Osato, M.; Yamashita, N.; Wang, C.Q.; Taniuchi, I.; Littman, D.R.; Asou, N.; Ito, Y. Stem cell exhaustion due to runx1 deficiency is prevented by evi5 activation in leukemogenesis. Blood 2010, 115, 1610–1620. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kotov, N.A. Notch ligand presenting acellular 3d microenvironments for ex vivo human hematopoietic stem-cell culture made by layer-by-layer assembly. Small 2009, 5, 1008–1013. [Google Scholar] [CrossRef] [PubMed]
- Voisset, E.; Lopez, S.; Chaix, A.; Georges, C.; Hanssens, K.; Prebet, T.; Dubreuil, P.; De Sepulveda, P. Fes kinases are required for oncogenic flt3 signaling. Leukemia 2010, 24, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, I.C.; Brown, T.S.; Terada, L.S.; Amatruda, J.F.; Nwariaku, F.E. Effect of vascular cadherin knockdown on zebrafish vasculature during development. PLoS ONE 2010, 5. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, E.B.; Liu, E.; Sinha, S.; Cook, S.; Milstone, D.S.; MacRae, C.A.; Mariotti, M.; Kuhlencordt, P.J.; Force, T.; Rosenzweig, A.; et al. Integrin-linked kinase regulates endothelial cell survival and vascular development. Mol. Cell. Biol. 2004, 24, 8134–8144. [Google Scholar] [CrossRef] [PubMed]
- Sangrar, W.; Gao, Y.; Zirngibl, R.A.; Scott, M.L.; Greer, P.A. The fps/fes proto-oncogene regulates hematopoietic lineage output. Exp. Hematol. 2003, 31, 1259–1267. [Google Scholar] [CrossRef] [PubMed]
- Arregui, C.; Pathre, P.; Lilien, J.; Balsamo, J. The nonreceptor tyrosine kinase fer mediates cross-talk between n-cadherin and beta1-integrins. J. Cell Biol. 2000, 149, 1263–1274. [Google Scholar] [CrossRef] [PubMed]
- North, T.E.; Goessling, W.; Peeters, M.; Li, P.; Ceol, C.; Lord, A.M.; Weber, G.J.; Harris, J.; Cutting, C.C.; Huang, P.; et al. Hematopoietic stem cell development is dependent on blood flow. Cell 2009, 137, 736–748. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.D.; Melick, C.H.; Clements, W.K.; Stachura, D.L.; Distel, M.; Panakova, D.; MacRae, C.; Mork, L.A.; Crump, J.G.; Traver, D. Discrete notch signaling requirements in the specification of hematopoietic stem cells. EMBO J. 2014, 33, 2363–2373. [Google Scholar] [CrossRef] [PubMed]
- Hellstrom, M.; Phng, L.K.; Gerhardt, H. Vegf and notch signaling: The yin and yang of angiogenic sprouting. Cell Adhes. Migr. 2007, 1, 133–136. [Google Scholar] [CrossRef]
- Quillien, A.; Moore, J.C.; Shin, M.; Siekmann, A.F.; Smith, T.; Pan, L.; Moens, C.B.; Parsons, M.J.; Lawson, N.D. Distinct notch signaling outputs pattern the developing arterial system. Development 2014, 141, 1544–1552. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, I.A.; Vermeulen, J.F.; Ercan, C.; Houthuijzen, J.M.; Saig, F.A.; Vlug, E.J.; van der Wall, E.; van Diest, P.J.; Vooijs, M.; Derksen, P.W. Fer kinase promotes breast cancer metastasis by regulating alpha6- and beta1-integrin-dependent cell adhesion and anoikis resistance. Oncogene 2013, 32, 5582–5592. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dunn, E.M.; Billquist, E.J.; VanderStoep, A.L.; Bax, P.G.; Westrate, L.M.; McLellan, L.K.; Peterson, S.C.; MacKeigan, J.P.; Putzke, A.P. Dual Roles of Fer Kinase Are Required for Proper Hematopoiesis and Vascular Endothelium Organization during Zebrafish Development. Biology 2017, 6, 40. https://doi.org/10.3390/biology6040040
Dunn EM, Billquist EJ, VanderStoep AL, Bax PG, Westrate LM, McLellan LK, Peterson SC, MacKeigan JP, Putzke AP. Dual Roles of Fer Kinase Are Required for Proper Hematopoiesis and Vascular Endothelium Organization during Zebrafish Development. Biology. 2017; 6(4):40. https://doi.org/10.3390/biology6040040
Chicago/Turabian StyleDunn, Emily M., Elizabeth J. Billquist, Amy L. VanderStoep, Phillip G. Bax, Laura M. Westrate, Lisa K. McLellan, Shelby C. Peterson, Jeffrey P. MacKeigan, and Aaron P. Putzke. 2017. "Dual Roles of Fer Kinase Are Required for Proper Hematopoiesis and Vascular Endothelium Organization during Zebrafish Development" Biology 6, no. 4: 40. https://doi.org/10.3390/biology6040040
APA StyleDunn, E. M., Billquist, E. J., VanderStoep, A. L., Bax, P. G., Westrate, L. M., McLellan, L. K., Peterson, S. C., MacKeigan, J. P., & Putzke, A. P. (2017). Dual Roles of Fer Kinase Are Required for Proper Hematopoiesis and Vascular Endothelium Organization during Zebrafish Development. Biology, 6(4), 40. https://doi.org/10.3390/biology6040040