Multiple Forms of Glutamate Dehydrogenase in Animals: Structural Determinants and Physiological Implications
Abstract
:1. Introduction
2. Intracellular Localization of GDH in Animals
3. Genomic, Transcriptomic and Proteomic Data on Multiple Forms of GDH in Animals
3.1. Isoenzymes Encoded by Different Genes
3.2. Other GDH Isoforms
4. Overall GDH Structure and Structural Features of the Multiple Forms of GDH
4.1. Structural Studies of Mitochondrial GDH
4.2. Sequence Alignment of Human GDH Isoenzymes and Mammalian GDH Isoforms
5. Kinetic Investigation of GDH and Its Isoforms
5.1. Comparison of Kinetic and Regulatory Properties of Mitochondrial and Nuclear GDH
5.2. Kinetics and Regulation of GDH1 and GDH2
5.2.1. Human Isoenzymes
5.2.2. GDH1 and GDH2 from Bovine Brain
6. Nucleotide-Dependent Regulation of Mammalian GDH and Its Relation to the GDH Regulation of Thiamine Compounds
6.1. ADP-Dependent Activation
6.2. GTP-Dependent Inhibition
6.3. GDH Regulation by Thiamine Compounds
7. Post-Translational Modifications of GDH and Their Biological Significance
7.1. NAD+-Dependent ADP-Ribosylation
7.2. Phosphorylation
7.3. Lysine and Cysteine Acylation
7.4. Oxidation and Nitration
8. Medical Significance of GDH
8.1. GDH of Peripheral Tissues
8.2. Brain GDH
8.3. GDH in Malignant Transformation
9. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cooper, A.J.L.; Meister, A. Metabolic Significance of Transamination; John Wiley and Sons: New York, NY, USA, 1985; pp. 500–580. [Google Scholar]
- Cooper, A.J.L.; Jeitner, T.M. Central Role of Glutamate Metabolism in the Maintenance of Nitrogen Homeostasis in Normal and Hyperammonemic Brain. Biomolecules 2016. [Google Scholar] [CrossRef] [PubMed]
- Dewan, J.G. The l(+)glutamic dehydrogenase of animal tissues. Biochem. J. 1938, 32, 1378–1385. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.L.; Austen, B.M.; Mlumenthal, K.M.; Nyc, J.F. Glutamate dehydrogenases. In The Enzymes, 3rd ed.; Boyer, P.D., Ed.; Academic Press: New York, NY, USA, 1975; Volume 11A, pp. 293–367. [Google Scholar]
- Frieden, C. L-Glutamate dehydrogenase. In The Enzymes, 2nd ed.; Boyer, P.D., Lardy, H., Mayrback, K., Eds.; Academic Press: New York, NY, USA, 1963; Volume 7, pp. 3–24. [Google Scholar]
- Li, M.; Li, C.; Allen, A.; Stanley, C.A.; Smith, T.J. The structure and allosteric regulation of glutamate dehydrogenase. Neurochem. Int. 2011, 59, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.J.L. 13N as a tracer for studying glutamate metabolism. Neurochem. Int. 2011, 59, 456–464. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M.C.; Tildon, J.T.; Stevenson, J.H.; Boatright, R.; Huang, S. Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: Differences revealed using aminooxyacetate. Dev. Neurosci. 1993, 15, 320–329. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M.C.; Sonnewald, U.; Huang, X.; Stevenson, J.; Zielke, H.R. Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J. Neurochem. 1996, 66, 386–393. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M.C.; Stevenson, J.H.; Huang, X.; Hopkins, I.B. Differential distribution of the enzymes glutamate dehydrogenase and aspartate aminotransferase in cortical synaptic mitochondria contributes to metabolic compartmentation in cortical synaptic terminals. Neurochem. Int. 2000, 37, 229–241. [Google Scholar] [CrossRef]
- Westergaard, N.; Drejer, J.; Schousboe, A.; Sonnewald, U. evaluation of the importance of transamination versus deamination in astrocytic metabolism of [U-13C]glutamate. Glia 1996, 17, 160–168. [Google Scholar] [CrossRef]
- Yudkoff, M.; Nissim, I.; Hertz, L. Precursors of glutamic acid nitrogen in primary neuronal cultures: Studies with 15N. Neurochem. Res. 1990, 15, 1191–1196. [Google Scholar] [CrossRef] [PubMed]
- Yudkoff, M.; Nissim, I.; Nelson, D.; Lin, Z.P.; Erecinska, M. Glutamate dehydrogenase reaction as a source of glutamic acid in synaptosomes. J. Neurochem. 1991, 57, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Wysmyk-Cybula, U.; Faff-Michalak, L.; Albrecht, J. Effects of acute hepatic encephalopathy and in vitro treatment with ammonia on glutamate oxidation in bulk-isolated astrocytes and mitochondria of the rat brain. Acta Neurobiol. Exp. 1991, 51, 165–169. [Google Scholar]
- Patel, A.J.; Hunt, A.; Gordon, R.D.; Balazs, R. The activities in different neural cell types of certain enzymes associated with the metabolic compartmentation glutamate. Brain Res. 1982, 256, 3–11. [Google Scholar] [CrossRef]
- Schoolwerth, A.C.; Nazar, B.L.; LaNoue, K.F. Glutamate dehydrogenase activation and ammonia formation by rat kidney mitochondria. J. Biol. Chem. 1978, 253, 6177–6183. [Google Scholar] [PubMed]
- Sener, A.; Malaisse, W.J. Stimulation of insulin release by L-glutamine. Mol. Cell. Biochem. 1980, 33, 157–159. [Google Scholar] [CrossRef] [PubMed]
- Williamson, D.H.; Lund, P.; Krebs, H.A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 1967, 103, 514–527. [Google Scholar] [CrossRef] [PubMed]
- Bray, M.C. Nitrogen Metabolism in Plants; Longman: New York, NY, USA, 1983. [Google Scholar]
- Givan, C.V. Metabolic detoxification of ammonia in tissues of higher plants. Phytochemistry 1979, 18, 378–382. [Google Scholar] [CrossRef]
- Forde, B.G.; Lea, P.J. Glutamate in plants: Metabolism, regulation, and signalling. J. Exp. Bot. 2007, 58, 2339–2358. [Google Scholar] [CrossRef] [PubMed]
- Inokuchi, R.; Kuma, K.I.; Miyata, T.; Okada, M. Nitrogen-assimilating enzymes in land plants and algae: Phylogenic and physiological perspectives. Physiol. Plant. 2002, 116, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.; Schmidt, F.W. Distribution pattern of several enzymes in human liver and its variations during cell damage. iii. On the methodology of enzyme determination in human organ extracts and serum. Enzymol. Biol. Clin. 1963, 35, 73–79. [Google Scholar]
- Nemat-Gorgani, M.; Dodd, G. The interaction of phospholipid membranes and detergents with glutamate dehydrogenase. Eur. J. Biochem. FEBS 1977, 74, 129–137. [Google Scholar] [CrossRef]
- Nemat-Gorgani, M.; Dodd, G. The interaction of phospholipid membranes and detergents with glutamate dehydrogenase. Eur. J. Biochem. FEBS 1977, 74, 139–147. [Google Scholar] [CrossRef]
- Di Prisco, G.; Banay-Schwartz, M.; Strecker, H.J. Glutamate dehydrogenase in nuclear and mitochondrial fractions of rat liver. Biochem. Biophys. Res. Commun. 1968, 33, 606–612. [Google Scholar] [CrossRef]
- Colon, A.D.; Plaitakis, A.; Perakis, A.; Berl, S.; Clarke, D.D. Purification and characterization of a soluble and a particulate glutamate dehydrogenase from rat brain. J. Neurochem. 1986, 46, 1811–1819. [Google Scholar] [CrossRef] [PubMed]
- Di Prisco, G.; Casola, L. Detection of structural differences between nuclear and mitochondrial glutamate dehydrogenases by the use of immunoadsorbents. Biochemistry 1975, 14, 4679–4683. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, H.G. Comparison of the primary structure of nuclear and mitochondrial glutamate dehydrogenase from bovine liver. Arch. Biochem. Biophys. 1995, 319, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.C.; Sheu, K.F.; Kim, Y.T.; Clarke, D.D.; Blass, J.P. The subcellular localization of glutamate dehydrogenase (GDH): Is GDH a marker for mitochondria in brain? Neurochem. Res. 1986, 11, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Purohit, J.S.; Tomar, R.S.; Panigrahi, A.K.; Pandey, S.M.; Singh, D.; Chaturvedi, M.M. Chicken liver glutamate dehydrogenase (GDH) demonstrates a histone H3 specific protease (H3ase) activity in vitro. Biochimie 2013, 95, 1999–2009. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.K.; Shin, S.; Cho, S.S.; Park, J.S. Purification and characterization of glutamate dehydrogenase as another isoprotein binding to the membrane of rough endoplasmic reticulum. J. Cell. Biochem. 1999, 76, 244–253. [Google Scholar] [CrossRef]
- Rajas, F.; Gire, V.; Rousset, B. Involvement of a membrane-bound form of glutamate dehydrogenase in the association of lysosomes to microtubules. J. Biol. Chem. 1996, 271, 29882–29890. [Google Scholar] [CrossRef] [PubMed]
- Spanaki, C.; Kotzamani, D.; Petraki, Z.; Drakos, E.; Plaitakis, A. Heterogeneous cellular distribution of glutamate dehydrogenase in brain and in non-neural tissues. Neurochem. Res. 2014, 39, 500–515. [Google Scholar] [CrossRef] [PubMed]
- Werner, P.; Pitt, D.; Raine, C.S. Multiple sclerosis: Altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann. Neurol. 2001, 50, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Larson, J.D.; Schulz, A.R. Bovine thyroid cytosol glutamate dehydrogenase. Life Sci. 2 Biochem. Gen. Mol. Biol. 1973, 12, 73–78. [Google Scholar] [CrossRef]
- LeJohn, H.B. Enzyme regulation, lysine pathways and cell wall structures as indicators of major lines of evolution in fungi. Nature 1971, 231, 164–168. [Google Scholar] [CrossRef] [PubMed]
- LeJohn, H.B.; Stevenson, R.M. Multiple regulatory processes in nicotinamide adenine dinucleotide-specific glutamic dehydrogenases. Catabolite repression; nicotinamide adenine dinucleotide phosphate, reduced nicotinamide adenine dinucleotide phosphate, and phosphoenolpyruvate as activators; allosteric inhibition by substrates. J. Biol. Chem. 1970, 245, 3890–3900. [Google Scholar] [PubMed]
- Gayler, K.R.; Morgan, W.R. An NADP-dependent Glutamate Dehydrogenase in Chloroplasts from the Marine Green Alga Caulerpa simpliciuscula. Plant Physiol. 1976, 58, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Lea, P.J.; Thurman, D.A. Intracellular Location and Properties of Plant l-Glutamate Dehydrogenases. J. Exp. Bot. 1972, 23, 440–449. [Google Scholar] [CrossRef]
- Barratt, R.W.; Strickland, W.N. Purification and characterization of a TPN-specific glutamic acid dehydrogenase Neurospora crassa. Arch. Biochem. Biophys. 1963, 102, 66–76. [Google Scholar] [CrossRef]
- Veronese, F.M.; Nyc, J.F.; Degani, Y.; Brown, D.M.; Smith, E.L. Nicotinamide adenine dinucleotide-specific glutamate dehydrogenase of Neurospora. I. Purification and molecular properties. J. Biol. Chem. 1974, 249, 7922–7928. [Google Scholar] [PubMed]
- Gunka, K.; Newman, J.A.; Commichau, F.M.; Herzberg, C.; Rodrigues, C.; Hewitt, L.; Lewis, R.J.; Stulke, J. Functional dissection of a trigger enzyme: Mutations of the bacillus subtilis glutamate dehydrogenase RocG that affect differentially its catalytic activity and regulatory properties. J. Mol. Biol. 2010, 400, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Totir, M.; Echols, N.; Nanao, M.; Gee, C.L.; Moskaleva, A.; Gradia, S.; Iavarone, A.T.; Berger, J.M.; May, A.P.; Zubieta, C.; et al. Macro-to-micro structural proteomics: Native source proteins for high-throughput crystallization. PLoS ONE 2012, 7, e32498. [Google Scholar] [CrossRef] [PubMed]
- Burki, F.; Kaessmann, H. Birth and adaptive evolution of a hominoid gene that supports high neurotransmitter flux. Nat. Genet. 2004, 36, 1061–1063. [Google Scholar] [CrossRef] [PubMed]
- Shashidharan, P.; Clarke, D.D.; Ahmed, N.; Moschonas, N.; Plaitakis, A. Nerve tissue-specific human glutamate dehydrogenase that is thermolabile and highly regulated by ADP. J. Neurochem. 1997, 68, 1804–1811. [Google Scholar] [CrossRef] [PubMed]
- Plaitakis, A.; Latsoudis, H.; Spanaki, C. The human GLUD2 glutamate dehydrogenase and its regulation in health and disease. Neurochem. Int. 2011, 59, 495–509. [Google Scholar] [CrossRef] [PubMed]
- Spanaki, C.; Kotzamani, D.; Plaitakis, A. Widening Spectrum of Cellular and Subcellular Expression of Human GLUD1 and GLUD2 Glutamate Dehydrogenases Suggests Novel Functions. Neurochem. Res. 2016. [Google Scholar] [CrossRef] [PubMed]
- Shashidharan, P.; Michaelidis, T.M.; Robakis, N.K.; Kresovali, A.; Papamatheakis, J.; Plaitakis, A. Novel human glutamate dehydrogenase expressed in neural and testicular tissues and encoded by an X-linked intronless gene. J. Biol. Chem. 1994, 269, 16971–16976. [Google Scholar] [PubMed]
- Kanavouras, K.; Mastorodemos, V.; Borompokas, N.; Spanaki, C.; Plaitakis, A. Properties and molecular evolution of human GLUD2 (neural and testicular tissue-specific) glutamate dehydrogenase. J. Neurosci. Res. 2007, 85, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Plaitakis, A.; Zaganas, I. Regulation of human glutamate dehydrogenases: Implications for glutamate, ammonia and energy metabolism in brain. J. Neurosci. Res. 2001, 66, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Plaitakis, A.; Zaganas, I.; Spanaki, C. Deregulation of glutamate dehydrogenase in human neurologic disorders. J. Neurosci. Res. 2013, 91, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Mavrothalassitis, G.; Tzimagiorgis, G.; Mitsialis, A.; Zannis, V.; Plaitakis, A.; Papamatheakis, J.; Moschonas, N. Isolation and characterization of cDNA clones encoding human liver glutamate dehydrogenase: Evidence for a small gene family. Proc. Natl. Acad. Sci. USA 1988, 85, 3494–3498. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.M.; Zannis, V.I.; Plaitakis, A. Characterization of glutamate dehydrogenase isoproteins purified from the cerebellum of normal subjects and patients with degenerative neurological disorders, and from human neoplastic cell lines. J. Biol. Chem. 1989, 264, 20730–20735. [Google Scholar] [PubMed]
- McCarthy, A.D.; Walker, J.M.; Tipton, K.F. Purification of glutamate dehydrogenase from ox brain and liver. Evidence that commercially available preparations of the enzyme from ox liver have suffered proteolytic cleavage. Biochem. J. 1980, 191, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M.L.; Rehman, M.; Walther, T.C.; Olsen, J.V.; Mann, M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Song, C.; Cheng, K.; Dong, M.; Wang, F.; Huang, J.; Sun, D.; Wang, L.; Ye, M.; Zou, H. An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J. Proteom. 2014, 96, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.M.; Huh, J.W.; Yang, S.J.; Cho, E.H.; Choi, S.Y.; Cho, S.W. Identification of ADP-ribosylation site in human glutamate dehydrogenase isozymes. FEBS Lett. 2005, 579, 4125–4130. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Chen, Y.; Tishkoff, D.X.; Peng, C.; Tan, M.; Dai, L.; Xie, Z.; Zhang, Y.; Zwaans, B.M.; Skinner, M.E.; et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 2013, 50, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Villen, J.; Beausoleil, S.A.; Gerber, S.A.; Gygi, S.P. Large-scale phosphorylation analysis of mouse liver. Proc. Natl. Acad. Sci. USA 2007, 104, 1488–1493. [Google Scholar] [CrossRef] [PubMed]
- Huttlin, E.L.; Jedrychowski, M.P.; Elias, J.E.; Goswami, T.; Rad, R.; Beausoleil, S.A.; Villen, J.; Haas, W.; Sowa, M.E.; Gygi, S.P. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 2010, 143, 1174–1189. [Google Scholar] [CrossRef] [PubMed]
- Rardin, M.J.; Newman, J.C.; Held, J.M.; Cusack, M.P.; Sorensen, D.J.; Li, B.; Schilling, B.; Mooney, S.D.; Kahn, C.R.; Verdin, E.; et al. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc. Natl. Acad. Sci. USA 2013, 110, 6601–6606. [Google Scholar] [CrossRef] [PubMed]
- Ballif, B.A.; Carey, G.R.; Sunyaev, S.R.; Gygi, S.P. Large-scale identification and evolution indexing of tyrosine phosphorylation sites from murine brain. J. Proteome Res. 2008, 7, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Zhou, Y.; Su, X.; Yu, J.J.; Khan, S.; Jiang, H.; Kim, J.; Woo, J.; Kim, J.H.; Choi, B.H.; et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 2011, 334, 806–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundby, A.; Secher, A.; Lage, K.; Nordsborg, N.B.; Dmytriyev, A.; Lundby, C.; Olsen, J.V. Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat. Commun. 2012, 3, 876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, P.E.; Smith, T.J. The structure of bovine glutamate dehydrogenase provides insights into the mechanism of allostery. Structure 1999, 7, 769–782. [Google Scholar] [CrossRef]
- Allen, A.; Kwagh, J.; Fang, J.; Stanley, C.A.; Smith, T.J. Evolution of glutamate dehydrogenase regulation of insulin homeostasis is an example of molecular exaptation. Biochemistry 2004, 43, 14431–14443. [Google Scholar] [CrossRef] [PubMed]
- Hamza, M.A.; Engel, P.C. Homotropic allosteric control in clostridial glutamate dehydrogenase: Different mechanisms for glutamate and NAD+? FEBS Lett. 2008, 582, 1816–1820. [Google Scholar] [CrossRef] [PubMed]
- Syed, S.E.; Engel, P.C.; Parker, D.M. Functional studies of a glutamate dehydrogenase with known three-dimensional structure: Steady-state kinetics of the forward and reverse reactions catalysed by the NAD(+)-dependent glutamate dehydrogenase of Clostridium symbiosum. Biochim. Biophys. Acta 1991, 1115, 123–130. [Google Scholar] [CrossRef]
- Wang, X.G.; Engel, P.C. Positive cooperativity with Hill coefficients of up to 6 in the glutamate concentration dependence of steady-state reaction rates measured with clostridial glutamate dehydrogenase and the mutant A163G at high pH. Biochemistry 1995, 34, 11417–11422. [Google Scholar] [CrossRef] [PubMed]
- Merk, A.; Bartesaghi, A.; Banerjee, S.; Falconieri, V.; Rao, P.; Davis, M.I.; Pragani, R.; Boxer, M.B.; Earl, L.A.; Milne, J.L.; et al. Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery. Cell 2016, 165, 1698–1707. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Smith, C.J.; Walker, M.T.; Smith, T.J. Novel inhibitors complexed with glutamate dehydrogenase: Allosteric regulation by control of protein dynamics. J. Biol. Chem. 2009, 284, 22988–23000. [Google Scholar] [CrossRef] [PubMed]
- Rosso, L.; Marques, A.C.; Reichert, A.S.; Kaessmann, H. Mitochondrial targeting adaptation of the hominoid-specific glutamate dehydrogenase driven by positive Darwinian selection. PLoS Genet. 2008, 4, e1000150. [Google Scholar] [CrossRef] [PubMed]
- Kalef-Ezra, E.; Kotzamani, D.; Zaganas, I.; Katrakili, N.; Plaitakis, A.; Tokatlidis, K. Import of a major mitochondrial enzyme depends on synergy between two distinct helices of its presequence. Biochem. J. 2016, 473, 2813–2829. [Google Scholar] [CrossRef] [PubMed]
- Dixon, M.; Webb, E.C. The Enzymes, 3rd ed.; Longman: New York, NY, USA, 1979. [Google Scholar]
- Garland, W.J.; Dennis, D.T. Steady-state kinetics of glutamate dehydrogenase from Pisum sativum L. mitochondria. Arch. Biochem. Biophys. 1977, 182, 614–625. [Google Scholar] [CrossRef]
- Itagaki, T.; Dry, I.B.; Wiskich, J.T. Purification and Properties of Nad-Glutamate Dehydrogenase from Turnip Mitochondria. Phytochemistry 1988, 27, 3373–3378. [Google Scholar] [CrossRef]
- Frieden, C. Glutamic dehydrogenase. III. The order of substrate addition in the enzymatic reaction. J. Biol. Chem. 1959, 234, 2891–2896. [Google Scholar] [PubMed]
- Engel, P.C.; Dalziel, K. Kinetic studies of glutamate dehydrogenase with glutamate and norvaline as substrates. Coenzyme activation and negative homotropic interactions in allosteric enzymes. Biochem. J. 1969, 115, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Engel, P.C.; Dalziel, K. Kinetic studies of glutamate dehydrogenase. The reductive amination of 2-oxoglutarate. Biochem. J. 1970, 118, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Snoke, J.E. Chicken liver glutamic dehydrogenase. J. Biol. Chem. 1956, 223, 271–276. [Google Scholar] [PubMed]
- Fahien, L.A.; Wiggert, B.O.; Cohen, P.P. Crystallization and Kinetic Properties of Glutamate Dehydrogenase from Frog Liver. J. Biol. Chem. 1965, 240, 1083–1090. [Google Scholar] [PubMed]
- Corman, L.; Prescott, L.M.; Kaplan, N.O. Purification and kinetic characteristics of dogfish liver glutamate dehydrogenase. J. Biol. Chem. 1967, 242, 1383–1390. [Google Scholar] [PubMed]
- Stewart, G.R.; Rhodes, D. Comparison of Characteristics of Glutamine-Synthetase and Glutamate-Dehydrogenase from Lemna-Minor-L. New Phytol. 1977, 79, 257–268. [Google Scholar] [CrossRef]
- Ehmke, A.; Hartmann, T. Properties of Glutamate-Dehydrogenase from Lemna-Minor. Phytochemistry 1976, 15, 1611–1617. [Google Scholar] [CrossRef]
- Kwinta, J.; Bartoszewicz, K.; Bielawski, W. Purification and characteristics of glutamate dehydrogenase (GDH) from triticale roots. Acta Physiol. Plant. 2001, 23, 399–405. [Google Scholar] [CrossRef]
- Kindt, R.; Pahlich, E.; Rasched, I. Glutamate dehydrogenase from peas: Isolation, quaternary structure, and influence of cations on activity. Eur. J. Biochem. FEBS 1980, 112, 533–540. [Google Scholar] [CrossRef]
- Pahlich, E.; Joy, K.W. Glutamate dehydrogenase from pea roots: Purification and properties of the enzyme. Can. J. Biochem. 1971, 49, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Stone, S.R.; Heyde, E.; Copeland, L. Glutamate dehydrogenase of lupin nodules: Kinetics of the amination reaction. Arch. Biochem. Biophys. 1980, 199, 560–571. [Google Scholar] [CrossRef]
- Stone, S.R.; Copeland, L.; Heyde, E. Glutamate dehydrogenase of lupin nodules: Kinetics of the deamination reaction. Arch. Biochem. Biophys. 1980, 199, 550–559. [Google Scholar] [CrossRef]
- Sanwal, B.D.; Lata, M. The occurrence of two different glutamic dehydrogenases in Neurospora. Can. J. Microbiol. 1961, 7, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Hemmings, B.A. Purification and properties of the phospho and dephospho forms of yeast NAD-dependent glutamate dehydrogenase. J. Biol. Chem. 1980, 255, 7925–7932. [Google Scholar] [PubMed]
- Baars, J.J.; Op den Camp, H.J.; van Hoek, A.H.; van der Drift, C.; van Griensven, L.J.; Visser, J.; Vogels, G.D. Purification and characterization of NADP-dependent glutamate dehydrogenase from the commercial mushroom Agaricus bisporus. Curr. Microbiol. 1995, 30, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Brun, A.; Chalot, M.; Botton, B.; Martin, F. Purification and Characterization of Glutamine Synthetase and NADP-Glutamate Dehydrogenase from the Ectomycorrhizal Fungus Laccaria laccata. Plant Physiol. 1992, 99, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Grisolia, S.; Quijada, C.L.; Fernandez, M. Glutamate dehydrogenase from yeast and from animal tissues. Biochim. Biophys. Acta 1964, 81, 61–70. [Google Scholar] [CrossRef]
- Mandal, P.; Chauhan, S.; Tomar, R.S. H3 clipping activity of glutamate dehydrogenase is regulated by stefin B and chromatin structure. FEBS J. 2014, 281, 5292–5308. [Google Scholar] [CrossRef] [PubMed]
- Plaitakis, A.; Spanaki, C.; Mastorodemos, V.; Zaganas, I. Study of structure-function relationships in human glutamate dehydrogenases reveals novel molecular mechanisms for the regulation of the nerve tissue-specific (GLUD2) isoenzyme. Neurochem. Int. 2003, 43, 401–410. [Google Scholar] [CrossRef]
- Bouvier, M.; Szatkowski, M.; Amato, A.; Attwell, D. The glial cell glutamate uptake carrier countertransports pH-changing anions. Nature 1992, 360, 471–474. [Google Scholar] [CrossRef] [PubMed]
- Poitry, S.; Poitry-Yamate, C.; Ueberfeld, J.; MacLeish, P.R.; Tsacopoulos, M. Mechanisms of glutamate metabolic signaling in retinal glial (Muller) cells. J. Neurosci. Off. J. Soc. Neurosci. 2000, 20, 1809–1821. [Google Scholar]
- Llopis, J.; McCaffery, J.M.; Miyawaki, A.; Farquhar, M.G.; Tsien, R.Y. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc. Natl. Acad. Sci. USA 1998, 95, 6803–6808. [Google Scholar] [CrossRef] [PubMed]
- Plaitakis, A.; Metaxari, M.; Shashidharan, P. Nerve tissue-specific (GLUD2) and housekeeping (GLUD1) human glutamate dehydrogenases are regulated by distinct allosteric mechanisms: Implications for biologic function. J. Neurochem. 2000, 75, 1862–1869. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.J.; Huh, J.W.; Hong, H.N.; Kim, T.U.; Cho, S.W. Important role of Ser443 in different thermal stability of human glutamate dehydrogenase isozymes. FEBS Lett. 2004, 562, 59–64. [Google Scholar] [CrossRef]
- Cho, S.W.; Lee, J.; Choi, S.Y. Two soluble forms of glutamate dehydrogenase isoproteins from bovine brain. Eur. J. Biochem. FEBS 1995, 233, 340–346. [Google Scholar] [CrossRef]
- Wheeler, L.J.; Mathews, C.K. Nucleoside triphosphate pool asymmetry in mammalian mitochondria. J. Biol. Chem. 2011, 286, 16992–16996. [Google Scholar] [CrossRef] [PubMed]
- Spanaki, C.; Zaganas, I.; Kleopa, K.A.; Plaitakis, A. Human GLUD2 glutamate dehydrogenase is expressed in neural and testicular supporting cells. J. Biol. Chem. 2010, 285, 16748–16756. [Google Scholar] [CrossRef] [PubMed]
- Borompokas, N.; Papachatzaki, M.M.; Kanavouras, K.; Mastorodemos, V.; Zaganas, I.; Spanaki, C.; Plaitakis, A. Estrogen modification of human glutamate dehydrogenases is linked to enzyme activation state. J. Biol. Chem. 2010, 285, 31380–31387. [Google Scholar] [CrossRef] [PubMed]
- Spanaki, C.; Zaganas, I.; Kounoupa, Z.; Plaitakis, A. The complex regulation of human glud1 and glud2 glutamate dehydrogenases and its implications in nerve tissue biology. Neurochem. Int. 2012, 61, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Zaganas, I.; Plaitakis, A. Single amino acid substitution (G456A) in the vicinity of the GTP binding domain of human housekeeping glutamate dehydrogenase markedly attenuates GTP inhibition and abolishes the cooperative behavior of the enzyme. J. Biol. Chem. 2002, 277, 26422–26428. [Google Scholar] [CrossRef] [PubMed]
- Zaganas, I.; Spanaki, C.; Karpusas, M.; Plaitakis, A. Substitution of Ser for Arg-443 in the regulatory domain of human housekeeping (GLUD1) glutamate dehydrogenase virtually abolishes basal activity and markedly alters the activation of the enzyme by ADP and L-leucine. J. Biol. Chem. 2002, 277, 46552–46558. [Google Scholar] [CrossRef] [PubMed]
- Zaganas, I.V.; Kanavouras, K.; Borompokas, N.; Arianoglou, G.; Dimovasili, C.; Latsoudis, H.; Vlassi, M.; Mastorodemos, V. The odyssey of a young gene: Structure-function studies in human glutamate dehydrogenases reveal evolutionary-acquired complex allosteric regulation mechanisms. Neurochem. Res. 2014, 39, 471–486. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Schmidt, T.; Fang, J.; Stanley, C.A.; Smith, T.J. Structural studies on ADP activation of mammalian glutamate dehydrogenase and the evolution of regulation. Biochemistry 2003, 42, 3446–3456. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J.; Peterson, P.E.; Schmidt, T.; Fang, J.; Stanley, C.A. Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation. J. Mol. Biol. 2001, 307, 707–720. [Google Scholar] [CrossRef] [PubMed]
- Frieden, C. Glutamic dehydrogenase. I. The effect of coenzyme on the sedimentation velocity and kinetic behavior. J. Biol. Chem. 1959, 234, 809–814. [Google Scholar] [PubMed]
- Frieden, C. Glutamic dehydrogenase. II. The effect of various nucleotides on the association-dissociation and kinetic properties. J. Biol. Chem. 1959, 234, 815–820. [Google Scholar] [PubMed]
- LiMuti, C.; Bell, J.E. A steady-state random-order mechanism for the oxidative deamination of norvaline by glutamate dehydrogenase. Biochem. J. 1983, 211, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Mkrtchyan, G.; Aleshin, V.; Parkhomenko, Y.; Kaehne, T.; Luigi Di Salvo, M.; Parroni, A.; Contestabile, R.; Vovk, A.; Bettendorff, L.; Bunik, V. Molecular mechanisms of the non-coenzyme action of thiamin in brain: Biochemical, structural and pathway analysis. Sci. Rep. 2015. [Google Scholar] [CrossRef] [PubMed]
- Zebisch, M.; Schafer, P.; Lauble, P.; Strater, N. New crystal forms of NTPDase1 from the bacterium Legionella pneumophila. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2013, 69, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Lakaye, B.; Wirtzfeld, B.; Wins, P.; Grisar, T.; Bettendorff, L. Thiamine triphosphate, a new signal required for optimal growth of Escherichia coli during amino acid starvation. J. Biol. Chem. 2004, 279, 17142–17147. [Google Scholar] [CrossRef] [PubMed]
- Bettendorff, L.; Wirtzfeld, B.; Makarchikov, A.F.; Mazzucchelli, G.; Frederich, M.; Gigliobianco, T.; Gangolf, M.; De Pauw, E.; Angenot, L.; Wins, P. Discovery of a natural thiamine adenine nucleotide. Nat. Chem. Biol. 2007, 3, 211–212. [Google Scholar] [CrossRef] [PubMed]
- Aleshin, V.A.; Artiukhov, A.V.; Oppermann, H.; Kazantsev, A.V.; Lukashev, N.V.; Bunik, V.I. Mitochondrial Impairment May Increase Cellular NAD(P)H: Resazurin Oxidoreductase Activity, Perturbing the NAD(P)H-Based Viability Assays. Cells 2015, 4, 427–451. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Yraola, A.; Bakhit, S.M.; Franke, P.; Weise, C.; Schweiger, M.; Jorcke, D.; Ziegler, M. Regulation of glutamate dehydrogenase by reversible ADP-ribosylation in mitochondria. EMBO J. 2001, 20, 2404–2412. [Google Scholar] [CrossRef] [PubMed]
- Csibi, A.; Fendt, S.M.; Li, C.; Poulogiannis, G.; Choo, A.Y.; Chapski, D.J.; Jeong, S.M.; Dempsey, J.M.; Parkhitko, A.; Morrison, T.; et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 2013, 153, 840–854. [Google Scholar] [CrossRef] [PubMed]
- Pacella-Ince, L.; Zander-Fox, D.L.; Lan, M. Mitochondrial SIRT3 and its target glutamate dehydrogenase are altered in follicular cells of women with reduced ovarian reserve or advanced maternal age. Hum. Reprod. 2014, 29, 1490–1499. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.A.; Dawson, N.J.; Storey, K.B. Insights into the in vivo regulation of glutamate dehydrogenase from the foot muscle of an estivating land snail. Enzym. Res. 2012. [Google Scholar] [CrossRef] [PubMed]
- Dawson, N.J.; Storey, K.B. An enzymatic bridge between carbohydrate and amino acid metabolism: Regulation of glutamate dehydrogenase by reversible phosphorylation in a severe hypoxia-tolerant crayfish. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2012, 182, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.A.; Storey, K.B. Regulation of liver glutamate dehydrogenase by reversible phosphorylation in a hibernating mammal. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2010, 157, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Hemmings, B.A. Phosphorylation of NAD-dependent glutamate dehydrogenase from yeast. J. Biol. Chem. 1978, 253, 5255–5258. [Google Scholar] [PubMed]
- Hemmings, B.A. Reactivation of the phospho form of the NAD-dependent glutamate dehydrogenase by a yeast protein phosphatase. Eur. J. Biochem. FEBS 1981, 116, 47–50. [Google Scholar] [CrossRef]
- Uno, I.; Matsumoto, K.; Adachi, K.; Ishikawa, T. Regulation of NAD-dependent glutamate dehydrogenase by protein kinases in Saccharomyces cerevisiae. J. Biol. Chem. 1984, 259, 1288–1293. [Google Scholar] [PubMed]
- Joshi, C.V.; Pathan, E.K.; Punekar, N.S.; Tupe, S.G.; Kapadnis, B.P.; Deshpande, M.V. A biochemical correlate of dimorphism in a zygomycete Benjaminiella poitrasii: Characterization of purified NAD-dependent glutamate dehydrogenase, a target for antifungal agents. Antonie Leeuwenhoek 2013, 104, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Khale-Kumar, A.; Deshpande, M.V. Possible involvement of cyclic adenosine 3′,5′-monophosphate in the regulation of NADP-/NAD-glutamate dehydrogenase ratio and in yeast-mycelium transition of Benjaminiella poitrasii. J. Bacteriol. 1993, 175, 6052–6055. [Google Scholar] [CrossRef] [PubMed]
- Guan, K.L.; Xiong, Y. Regulation of intermediary metabolism by protein acetylation. Trends Biochem. Sci. 2011, 36, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Colman, R.F.; Frieden, C. On the role of amino groups in the structure and function of glutamate dehydrogenase. I. Effect of acetylation on catalytic and regulatory properties. J. Biol. Chem. 1966, 241, 3652–3660. [Google Scholar] [PubMed]
- Zhao, S.; Xu, W.; Jiang, W.; Yu, W.; Lin, Y.; Zhang, T.; Yao, J.; Zhou, L.; Zeng, Y.; Li, H.; et al. Regulation of cellular metabolism by protein lysine acetylation. Science 2010, 327, 1000–1004. [Google Scholar] [CrossRef] [PubMed]
- Lombard, D.B.; Alt, F.W.; Cheng, H.L.; Bunkenborg, J.; Streeper, R.S.; Mostoslavsky, R.; Kim, J.; Yancopoulos, G.; Valenzuela, D.; Murphy, A.; et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 2007, 27, 8807–8814. [Google Scholar] [CrossRef] [PubMed]
- Baeza, J.; Smallegan, M.J.; Denu, J.M. Site-specific reactivity of nonenzymatic lysine acetylation. ACS Chem. Biol. 2015, 10, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Baeza, J.; Smallegan, M.J.; Denu, J.M. Mechanisms and Dynamics of Protein Acetylation in Mitochondria. Trends Biochem. Sci. 2016, 41, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Schlicker, C.; Gertz, M.; Papatheodorou, P.; Kachholz, B.; Becker, C.F.; Steegborn, C. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol. 2008, 382, 790–801. [Google Scholar] [CrossRef] [PubMed]
- Grozinger, C.M.; Chao, E.D.; Blackwell, H.E.; Moazed, D.; Schreiber, S.L. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J. Biol. Chem. 2001, 276, 38837–38843. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Lu, Z.; Xie, Z.; Cheng, Z.; Chen, Y.; Tan, M.; Luo, H.; Zhang, Y.; He, W.; Yang, K.; et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteom. MCP 2011. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Peng, C.; Anderson, K.A.; Chhoy, P.; Xie, Z.; Dai, L.; Park, J.; Chen, Y.; Huang, H.; Zhang, Y.; et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 2014, 19, 605–617. [Google Scholar] [CrossRef] [PubMed]
- Berthiaume, L.; Deichaite, I.; Peseckis, S.; Resh, M.D. Regulation of enzymatic activity by active site fatty acylation. A new role for long chain fatty acid acylation of proteins. J. Biol. Chem. 1994, 269, 6498–6505. [Google Scholar] [PubMed]
- McKenna, M.C. Glutamate dehydrogenase in brain mitochondria: Do lipid modifications and transient metabolon formation influence enzyme activity? Neurochem. Int. 2011, 59, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Fukata, Y.; Fukata, M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat. Rev. Neurosci. 2010, 11, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, N.; Gao, Z. Hemin-H2O2-NO2(−) induced protein oxidation and tyrosine nitration are different from those of SIN-1: A study on glutamate dehydrogenase nitrative/oxidative modification. Int. J. Biochem. Cell Biol. 2009, 41, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Turko, I.V.; Murad, F. Protein nitration in cardiovascular diseases. Pharmacol. Rev. 2002, 54, 619–634. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gao, Z.; Li, H.; Xu, H. Hemin/nitrite/H2O2 induces brain homogenate oxidation and nitration: Effects of some flavonoids. Biochim. Biophys. Acta 2004, 1675, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Castegna, A.; Aksenov, M.; Aksenova, M.; Thongboonkerd, V.; Klein, J.B.; Pierce, W.M.; Booze, R.; Markesbery, W.R.; Butterfield, D.A. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic. Biol. Med. 2002, 33, 562–571. [Google Scholar] [CrossRef]
- Sorolla, M.A.; Rodriguez-Colman, M.J.; Vall-llaura, N.; Tamarit, J.; Ros, J.; Cabiscol, E. Protein oxidation in Huntington disease. BioFactors 2012, 38, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, A.; Rodriguez-Rocha, H.; Madayiputhiya, N.; Pappa, A.; Panayiotidis, M.I.; Franco, R. Biomarkers of protein oxidation in human disease. Curr. Mol. Med. 2012, 12, 681–697. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Shapiro, A.P.; Mopidevi, B.R.; Chaudhry, M.A.; Maxwell, K.; Haller, S.T.; Drummond, C.A.; Kennedy, D.J.; Tian, J.; Malhotra, D.; et al. Protein Carbonylation of an Amino Acid Residue of the Na/K-ATPase alpha1 Subunit Determines Na/K-ATPase Signaling and Sodium Transport in Renal Proximal Tubular Cells. J. Am. Heart Assoc. 2016, 5, e003675. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.L.; Landon, M.; Piszkiewicz, D.; Brattin, W.J.; Langley, T.J.; Melamed, M.D. Bovine liver glutamate dehydrogenase: Tentative amino acid sequence; identification of a reactive lysine; nitration of a specific tyrosine and loss of allosteric inhibition by guanosine triphosphate. Proc. Natl. Acad. Sci. USA 1970, 67, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Price, N.C.; Radda, G.K. Desensitization of glutamate dehydrogenase by reaction of tyrosne residues. Biochem. J. 1969, 114, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Piszkiewicz, D.; Landon, M.; Smith, E.L. Bovine glutamate dehydrogenase. Loss of allosteric inhibition by guanosine triphosphate and nitration of tyrosine-412. J. Biol. Chem. 1971, 246, 1324–1329. [Google Scholar] [PubMed]
- Nissim, I. Newer aspects of glutamine/glutamate metabolism: The role of acute pH changes. Am. J. Physiol. 1999, 277, F493–F497. [Google Scholar] [PubMed]
- Treberg, J.R.; Clow, K.A.; Greene, K.A.; Brosnan, M.E.; Brosnan, J.T. Systemic activation of glutamate dehydrogenase increases renal ammoniagenesis: Implications for the hyperinsulinism/hyperammonemia syndrome. Am. J. Physiol. Endocrinol Metab 2010, 298, E1219–E1225. [Google Scholar] [CrossRef] [PubMed]
- De Lonlay, P.; Benelli, C.; Fouque, F.; Ganguly, A.; Aral, B.; Dionisi-Vici, C.; Touati, G.; Heinrichs, C.; Rabier, D.; Kamoun, P.; et al. Hyperinsulinism and hyperammonemia syndrome: Report of twelve unrelated patients. Pediatr. Res. 2001, 50, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Stanley, C.A.; Lieu, Y.K.; Hsu, B.Y.; Burlina, A.B.; Greenberg, C.R.; Hopwood, N.J.; Perlman, K.; Rich, B.H.; Zammarchi, E.; Poncz, M. Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N. Engl. J. Med. 1998, 338, 1352–1357. [Google Scholar] [CrossRef] [PubMed]
- MacMullen, C.; Fang, J.; Hsu, B.Y.; Kelly, A.; de Lonlay-Debeney, P.; Saudubray, J.M.; Ganguly, A.; Smith, T.J.; Stanley, C.A. Hyperinsulinism/hyperammonemia Contributing Investigators. Hyperinsulinism/hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine triphosphate-binding domain of glutamate dehydrogenase. J. Clin. Endocrinol. Metab. 2001, 86, 1782–1787. [Google Scholar] [PubMed]
- Fahien, L.A.; Macdonald, M.J. The complex mechanism of glutamate dehydrogenase in insulin secretion. Diabetes 2011, 60, 2450–2454. [Google Scholar] [CrossRef] [PubMed]
- Molven, A.; Matre, G.E.; Duran, M.; Wanders, R.J.; Rishaug, U.; Njolstad, P.R.; Jellum, E.; Sovik, O. Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation. Diabetes 2004, 53, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.R.; James, C.; Flanagan, S.E.; Ellard, S.; Eaton, S.; Hussain, K. 3-Hydroxyacyl-coenzyme A dehydrogenase deficiency and hyperinsulinemic hypoglycemia: Characterization of a novel mutation and severe dietary protein sensitivity. J. Clin. Endocrinol. Metab. 2009, 94, 2221–2225. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, P.; Palladino, A.; Narayan, S.; Russell, L.K.; Sayed, S.; Xiong, G.; Chen, J.; Stokes, D.; Butt, Y.M.; et al. Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase. J. Biol. Chem. 2010, 285, 31806–31818. [Google Scholar] [CrossRef] [PubMed]
- Haigis, M.C.; Mostoslavsky, R.; Haigis, K.M.; Fahie, K.; Christodoulou, D.C.; Murphy, A.J.; Valenzuela, D.M.; Yancopoulos, G.D.; Karow, M.; Blander, G.; et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006, 126, 941–954. [Google Scholar] [CrossRef] [PubMed]
- Plaitakis, A.; Shashidharan, P. Glutamate transport and metabolism in dopaminergic neurons of substantia nigra: Implications for the pathogenesis of Parkinson’s disease. J. Neurol. 2000, 247, II25–II35. [Google Scholar] [CrossRef] [PubMed]
- Plaitakis, A.; Flessas, P.; Natsiou, A.B.; Shashidharan, P. Glutamate dehydrogenase deficiency in cerebellar degenerations: Clinical, biochemical and molecular genetic aspects. Can. J. Neurol. Sci. J. Can. Sci. Neurol. 1993, 20, S109–S116. [Google Scholar]
- Plaitakis, A.; Nicklas, W.J.; Desnick, R.J. Glutamate dehydrogenase deficiency in three patients with spinocerebellar ataxia: A new enzymatic defect? Trans. Am. Neurol. Assoc. 1979, 104, 54–57. [Google Scholar] [PubMed]
- Plaitakis, A.; Nicklas, W.J.; Desnick, R.J. Glutamate dehydrogenase deficiency in three patients with spinocerebellar syndrome. Ann. Neurol. 1980, 7, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Plaitakis, A.; Berl, S.; Yahr, M.D. Abnormal glutamate metabolism in an adult-onset degenerative neurological disorder. Science 1982, 216, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Duvoisin, R.C.; Chokroverty, S.; Lepore, F.; Nicklas, W. Glutamate dehydrogenase deficiency in patients with olivopontocerebellar atrophy. Neurology 1983, 33, 1322–1326. [Google Scholar] [CrossRef] [PubMed]
- Facheris, M.; Beretta, S.; Ferrarese, C. Peripheral markers of oxidative stress and excitotoxicity in neurodegenerative disorders: Tools for diagnosis and therapy? J. Alzheimer’s Dis. JAD 2004, 6, 177–184. [Google Scholar] [PubMed]
- Raizen, D.M.; Brooks-Kayal, A.; Steinkrauss, L.; Tennekoon, G.I.; Stanley, C.A.; Kelly, A. Central nervous system hyperexcitability associated with glutamate dehydrogenase gain of function mutations. J. Pediat. 2005, 146, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, R.; Goto, S.; Sako, W.; Miyashiro, A.; Kim, I.; Escande, F.; Harada, M.; Morigaki, R.; Asanuma, K.; Mizobuchi, Y.; et al. Generalized dystonia in a patient with a novel mutation in the GLUD1 gene. Mov. Disord. 2012, 27, 1198–1199. [Google Scholar] [CrossRef] [PubMed]
- Bahi-Buisson, N.; Roze, E.; Dionisi, C.; Escande, F.; Valayannopoulos, V.; Feillet, F.; Heinrichs, C.; Chadefaux-Vekemans, B.; Dan, B.; de Lonlay, P. Neurological aspects of hyperinsulinism-hyperammonaemia syndrome. Dev. Med. Child Neurol. 2008, 50, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Levy, L.M.; Hallett, M. Impaired brain GABA in focal dystonia. Ann. Neurol. 2002, 51, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Schousboe, A.; Madsen, K.K.; White, H.S. GABA transport inhibitors and seizure protection: The past and future. Future Med. Chem. 2011, 3, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Gillies, G.E.; McArthur, S. Independent influences of sex steroids of systemic and central origin in a rat model of Parkinson’s disease: A contribution to sex-specific neuroprotection by estrogens. Horm. Behav. 2010, 57, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Morissette, M.; Al Sweidi, S.; Callier, S.; Di Paolo, T. Estrogen and SERM neuroprotection in animal models of Parkinson’s disease. Mol. Cell. Endocrinol. 2008, 290, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Pal, R.; Hascup, K.N.; Wang, Y.; Wang, W.T.; Xu, W.; Hui, D.; Agbas, A.; Wang, X.; Michaelis, M.L.; et al. Transgenic expression of Glud1 (glutamate dehydrogenase 1) in neurons: In vivo model of enhanced glutamate release, altered synaptic plasticity, and selective neuronal vulnerability. J. Neurosci. 2009, 29, 13929–13944. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Bao, X.; Pal, R.; Agbas, A.; Michaelis, E.K. Transcriptomic responses in mouse brain exposed to chronic excess of the neurotransmitter glutamate. BMC Genom. 2010. [Google Scholar] [CrossRef] [PubMed]
- Reed, T.T.; Pierce, W.M., Jr.; Turner, D.M.; Markesbery, W.R.; Butterfield, D.A. Proteomic identification of nitrated brain proteins in early Alzheimer’s disease inferior parietal lobule. J. Cell. Mol. Med. 2009, 13, 2019–2029. [Google Scholar] [CrossRef] [PubMed]
- Iwatsuji, K.; Nakamura, S.; Kameyama, M. Lymphocyte glutamate dehydrogenase activity in normal aging and neurological diseases. Gerontology 1989, 35, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Burbaeva, G.; Boksha, I.S.; Tereshkina, E.B.; Savushkina, O.K.; Starodubtseva, L.I.; Turishcheva, M.S. Glutamate metabolizing enzymes in prefrontal cortex of Alzheimer’s disease patients. Neurochem. Res. 2005, 30, 1443–1451. [Google Scholar] [CrossRef] [PubMed]
- Miulli, D.E.; Norwell, D.Y.; Schwartz, F.N. Plasma concentrations of glutamate and its metabolites in patients with Alzheimer’s disease. J. Am. Osteopath. Assoc. 1993, 93, 670–676. [Google Scholar] [PubMed]
- Burbaeva, G.; Boksha, I.S.; Turishcheva, M.S.; Vorobyeva, E.A.; Savushkina, O.K.; Tereshkina, E.B. Glutamine synthetase and glutamate dehydrogenase in the prefrontal cortex of patients with schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2003, 27, 675–680. [Google Scholar] [CrossRef]
- Burbaeva, G.; Boksha, I.S.; Tereshkina, E.B.; Savushkina, O.K.; Starodubtseva, L.I.; Turishcheva, M.S.; Mukaetova-Ladinska, E. Systemic neurochemical alterations in schizophrenic brain: Glutamate metabolism in focus. Neurochem. Res. 2007, 32, 1434–1444. [Google Scholar] [CrossRef] [PubMed]
- Fahien, L.A.; Shemisa, O. Effects of chlorpromazine on glutamate dehydrogenase. Mol. Pharmacol. 1970, 6, 156–163. [Google Scholar] [PubMed]
- Shemisa, O.A.; Fahien, L.A. Modifications of glutamate dehydrogenase by various drugs which affect behavior. Mol. Pharmacol. 1971, 7, 8–25. [Google Scholar] [PubMed]
- Fahien, L.A.; MacDonald, M.J.; Teller, J.K.; Fibich, B.; Fahien, C.M. Kinetic advantages of hetero-enzyme complexes with glutamate dehydrogenase and the alpha-ketoglutarate dehydrogenase complex. J. Biol. Chem. 1989, 264, 12303–12312. [Google Scholar] [PubMed]
- Zhang, L.; Cooper, A.J.; Krasnikov, B.F.; Xu, H.; Bubber, P.; Pinto, J.T.; Gibson, G.E.; Hanigan, M.H. Cisplatin-induced toxicity is associated with platinum deposition in mouse kidney mitochondria in vivo and with selective inactivation of the alpha-ketoglutarate dehydrogenase complex in LLC-PK1 cells. Biochemistry 2006, 45, 8959–8971. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.E.; Blass, J.P.; Beal, M.F.; Bunik, V. The alpha-ketoglutarate-dehydrogenase complex: A mediator between mitochondria and oxidative stress in neurodegeneration. Mol. Neurobiol. 2005, 31, 43–63. [Google Scholar] [CrossRef]
- Butterworth, R.F.; Besnard, A.M. Thiamine-dependent enzyme changes in temporal cortex of patients with Alzheimer’s disease. Metab. Brain Dis. 1990, 5, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, C.L.; Goncalves, R.L.; Hey-Mogensen, M.; Yadava, N.; Bunik, V.I.; Brand, M.D. The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. J. Biol. Chem. 2014, 289, 8312–8325. [Google Scholar] [CrossRef] [PubMed]
- Bunik, V.I. 2-Oxo acid dehydrogenase complexes in redox regulation. Eur. J. Biochem. FEBS 2003, 270, 1036–1042. [Google Scholar] [CrossRef]
- Souba, W.W. Glutamine and cancer. Ann. Surg. 1993, 218, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Medina, M.A.; Sanchez-Jimenez, F.; Marquez, J.; Rodriguez Quesada, A.; Nunez de Castro, I. Relevance of glutamine metabolism to tumor cell growth. Mol. Cell. Biochem. 1992, 113, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Aledo, J.C.; Segura, J.A.; Medina, M.A.; Alonso, F.J.; Nunez de Castro, I.; Marquez, J. Phosphate-activated glutaminase expression during tumor development. FEBS Lett. 1994, 341, 39–42. [Google Scholar] [CrossRef]
- Linder-Horowitz, M.; Knox, W.E.; Morris, H.P. Glutaminase activities and growth rates of rat hepatomas. Cancer Res. 1969, 29, 1195–1199. [Google Scholar] [PubMed]
- Knox, W.E.; Horowitz, M.L.; Friedell, G.H. The proportionality of glutaminase content to growth rate and morphology of rat neoplasms. Cancer Res. 1969, 29, 669–680. [Google Scholar] [PubMed]
- Yang, C.; Sudderth, J.; Dang, T.; Bachoo, R.M.; McDonald, J.G.; DeBerardinis, R.J. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res. 2009, 69, 7986–7993. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Li, D.; Alesi, G.N.; Fan, J.; Kang, H.B.; Lu, Z.; Boggon, T.J.; Jin, P.; Yi, H.; Wright, E.R.; et al. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell 2015, 27, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhu, J.; Yu, M.; Cai, C.; Zhou, Y.; Yu, M.; Fu, Z.; Gong, Y.; Yang, B.; Li, Y.; et al. Glutamate dehydrogenase is a novel prognostic marker and predicts metastases in colorectal cancer patients. J. Transl. Med. 2015. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, S.; Eigenbrodt, E.; Failing, K.; Steinberg, P. Alterations in the glycolytic and glutaminolytic pathways after malignant transformation of rat liver oval cells. J. Cell. Physiol. 1999, 181, 136–146. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, G.; Mao, Q.; Li, S.; Xiong, W.; Lin, Y.; Ge, J. Glutamate dehydrogenase (GDH) regulates bioenergetics and redox homeostasis in human glioma. Oncotarget 2016. [Google Scholar] [CrossRef]
- Khan, N.; Bharali, D.J.; Adhami, V.M.; Siddiqui, I.A.; Cui, H.; Shabana, S.M.; Mousa, S.A.; Mukhtar, H. Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis 2014, 35, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Shukla, R.; Chanda, N.; Zambre, A.; Upendran, A.; Katti, K.; Kulkarni, R.R.; Nune, S.K.; Casteel, S.W.; Smith, C.J.; Vimal, J.; et al. Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc. Natl. Acad. Sci. USA 2012, 109, 12426–12431. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Nishimura, M.C.; Kharbanda, S.; Peale, F.; Deng, Y.; Daemen, A.; Forrest, W.F.; Kwong, M.; Hedehus, M.; Hatzivassiliou, G.; et al. Hominoid-specific enzyme GLUD2 promotes growth of IDH1R132H glioma. Proc. Natl. Acad. Sci. USA 2014, 111, 14217–14222. [Google Scholar] [CrossRef] [PubMed]
- Bunik, V.; Mkrtchyan, G.; Grabarska, A.; Oppermann, H.; Daloso, D.; Araujo, W.L.; Juszczak, M.; Rzeski, W.; Bettendorff, L.; Fernie, A.R.; et al. Inhibition of mitochondrial 2-oxoglutarate dehydrogenase impairs viability of cancer cells in a cell-specific metabolism-dependent manner. Oncotarget 2016, 7, 26400–26421. [Google Scholar] [CrossRef] [PubMed]
GDH Source | Km, mM | Vmax per mg of Protein | |||||||
---|---|---|---|---|---|---|---|---|---|
NAD+ | NADP+ | NADH | NADPH | Glu | 2-OG | NH4+ | Glu→2-OG | 2-OG→Glu | |
NAD(P)+-Dependent GDHs | |||||||||
Animals | |||||||||
Human brain * [54] | – | – | 0.08 | 0.05 | 17.7 a | 1.3 a | – | – | 160 a |
Rat brain * [27] | – | – | 0.08 | 0.11 | 3.6 a | 1.4 a | 18.3 a | – | 168 a |
Bovine brain [55] | – | – | – | – | 1 a | – | – | – | 40 a |
Bovine liver [78] | 0.7 | 0.05 | 0.02 | 0.03 | 1.8 b | 0.7 b | 3.2 b | 1.92 b | 60 b |
Bovine liver [79,80] | 0.18 | 0.004 | 0.02 | 0.02 | 0.7 a; 0.9 b | 0.6 a; 0.1 b | 74 a; 38 b | 10 a; 1.1 b | 67 a; 38 b |
Chicken liver [81] | 0.61 | – | – | – | 2.0 a | – | – | 5.9 a | 44 a |
Frog liver [82] | 0.02 | 0.5 | 0.03 | 0.2 | 1.8 a | 5.0 a | 0.5 a | 1.0 a | 24 a |
Dogfish liver [83] | – | 0.08 | – | 0.4 | 84 a | 4.5 a | 80 a | 3.0 a; 0.5 b | 32 b |
Plants | |||||||||
Duckweed [84] | 0.18 | – | 0.02 | – | 2.5 | 1.5 | 29 | – | 57 a |
Duckweed [85] | 0.46 | – | 0.11 | 0.13 | 12 b | 3.3 a; 2.1 b | 27 a; 1.5 b | – | 3.5 a; 0.4 b |
Triticale roots [86] | 0.53 | 0.48 | – | 0.06 | 18 a; 19 b | 3.0 a | 4 a; 0.1 b | – | 272 a; 47 b |
NAD+-Specific GDHs: | |||||||||
Plants: | |||||||||
Pea seeds ^ [87] | 0.23 | – | 0.03 | – | 9.3 | 2.3 | 52.6 | 90 a; ~0 b | 530 a; 8.5 b |
Pea roots [88] | 0.65 | – | 0.86 | – | 7.3 | 3.3 | 72 | 8.6 a; ~0 b | 49 a; 7.5 b |
Pea stem [76] | 0.24 | – | 0.09 | – | 12.5 | 5.6 | 68 | – | 27 |
Lupin nodules [89,90] | 0.28 | – | 0.34 | – | 4.3 | 4.5 | 1010 | 25.3 | 1100 |
Turnip ^ [77] | 0.25 | – | 0.09 | – | 28.6 | 2.0 | 44.4 | – | 450 |
Fungi | |||||||||
Neurospora crassa [91] | 0.33 | – | 0.55 | – | 5.5 | 4.6 | 17 | – | 590 |
Candida utilis [92] | 1.08 | – | – | – | 20 | – | – | 47.7 | 414 |
NADP+-Specific GDHs | |||||||||
Fungi | |||||||||
Agaricus bisporus [93] | – | 0.12 | – | 0.07 | 27 | 3.2 | 2.1 | 1.3 | 7.8 |
Laccaria laccata [94] | – | 0.03 | – | 0.01 | 26 | 1 | 5 | – | 250 |
Neurospora crassa [91] | – | 0.05 | – | 0.13 | 45 | 5.3 | 10 | – | 240 |
Saccharomyces cerevisiae [95] | – | 0.07 | – | 0.09 | 10 | 1 | 110 | 18.9 | 227 |
Substrate | Measurement Conditions | Mitochondrial GDH | Nuclear GDH |
---|---|---|---|
Km, mM | Km, mM | ||
Glutamate | 50 mM K3PO4, pH 9.0, 0.05 mM NAD+ | 4.35 | 0.91 |
2-oxoglutarate | 50 mM K3PO4, pH 7.6, 0.05 mM NADH, 50 mM NH4Cl | 0.45 | 0.13 |
NH4+ (NH4Cl) | 50 mM K3PO4, pH 7.6, 0.05 mM NADH, 1.25 mM 2-oxoglutarate | 30.0 | 11.0 |
NAD+ | 50 mM K3PO4, pH 9.0, 25 mM glutamate | 0.02 | 0.06 |
NADH | 50 mM K3PO4, pH 7.6, 50 mM NH4Cl, 1.25 mM 2-oxoglutarate | 0.02 | 0.02 |
Varied Substrate | Assay Conditions, Purified Human GDH [50] | Km, mM | Assay Conditions, Human GDH in Cell Extracts [101] | Km, mM | Assay Conditions, Purified GDH from Bovine Brain [103] | Km, mM | |||
---|---|---|---|---|---|---|---|---|---|
hGDH1 | hGDH2 | hGDH1 | hGDH2 | bGDH1 | bGDH2 | ||||
Glu | 50 mM TEA, pH 8.0, 1.4 mM NADP+, 2.6 mM EDTA, 1 mM ADP | 12.4 ± 0.7 | 10.7 ± 0.8 | 50 mM TEA, pH 8.0, 1.4 mM NADP+, 2.6 mM EDTA, 0.1 mM ADP | 7.6 ± 1.0 | 2.4 ± 0.4 | 50 mM Tris/HCl, pH 9.5, 1.4 mM NADP+, 2.6 mM EDTA, 1 mM ADP | 8.3 | 3.4 |
2-OG | 50 mM TEA, pH 8.0, 0.1 mM NADPH, 0.1 M NH4OAc, 2.6 mM EDTA, 1 mM ADP | 2.0 ± 0.2 | 2.1 ± 0.3 | 50 mM TEA, pH 8.0, 0.15 mM NADPH, 0.1 M NH4OAc, 2.6 mM EDTA, 0.25 mM ADP | 0.9 ± 0.1 | 1.5 ± 0.02 | 50 mM TEA, pH 8.0, 0.1 mM NADPH, 0.1 M NH4OAc, 2.6 mM EDTA, 1 mM ADP | 1.3 | 2.2 |
NH4OAc | 50 mM TEA, pH 8.0, 0.1 mM NADPH, 8 mM 2-OG, 2.6 mM EDTA, 1 mM ADP | 13.4 ± 0.7 | 17.1 ± 2.0 | 50 mM TEA, pH 8.0, 0.1 mM NADPH, 10 mM 2-OG, 2.6 mM EDTA, 1 mM ADP | 15.4 | 20.0 | |||
NAD+ | 50 mM Tris/HCl, pH 9.5, 25 mM Glu, 2.6 mM EDTA, 1 mM ADP | 0.8 | 0.9 | ||||||
NADP+ | 1.2 | 1.3 | |||||||
NADH | 50 mM TEA, pH 8.0, 0.1 mM NADH, 10 mM 2-OG, 2.6 mM EDTA, 1 mM ADP | 0.12 | 0.07 | ||||||
NADPH | 0.1 | 0.1 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunik, V.; Artiukhov, A.; Aleshin, V.; Mkrtchyan, G. Multiple Forms of Glutamate Dehydrogenase in Animals: Structural Determinants and Physiological Implications. Biology 2016, 5, 53. https://doi.org/10.3390/biology5040053
Bunik V, Artiukhov A, Aleshin V, Mkrtchyan G. Multiple Forms of Glutamate Dehydrogenase in Animals: Structural Determinants and Physiological Implications. Biology. 2016; 5(4):53. https://doi.org/10.3390/biology5040053
Chicago/Turabian StyleBunik, Victoria, Artem Artiukhov, Vasily Aleshin, and Garik Mkrtchyan. 2016. "Multiple Forms of Glutamate Dehydrogenase in Animals: Structural Determinants and Physiological Implications" Biology 5, no. 4: 53. https://doi.org/10.3390/biology5040053
APA StyleBunik, V., Artiukhov, A., Aleshin, V., & Mkrtchyan, G. (2016). Multiple Forms of Glutamate Dehydrogenase in Animals: Structural Determinants and Physiological Implications. Biology, 5(4), 53. https://doi.org/10.3390/biology5040053