Phagocytosis in Teleosts. Implications of the New Cells Involved
Abstract
:1. Introduction
2. The Phagocytic Process
3. Phagocytic Cells
3.1. Macrophages and Granulocytes
3.2. Dendritic Cells
3.3. B Cells
3.4. Thrombocytes
4. Factors Affecting Phagocytosis
5. Evasion of Phagocytosis
6. Some New Aspects of Phagocytosis Still Not Considered in Fish
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Metchnikoff, E. Immunity in the Infectious Diseases; Macmillan Press: New York, NY, USA, 1905. [Google Scholar]
- Stuart, L.M.; Ezekowitz, R.A. Phagocytosis: Elegant complexity. Immunity 2005, 22, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Esteban, M.A.; Meseguer, J. Phagocytic defence mechanism in sea bass (Dicentrarchus labrax L.): An ultrastructural study. Anat. Rec. 1994, 240, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Esteban, M.A.; Meseguer, J. Factors influencing phagocytic response of macrophages from the sea bass (Dicentrarchus labrax L.): An ultrastructural and quantitative study. Anat. Rec. 1997, 248, 533–541. [Google Scholar] [CrossRef]
- Sepulcre, M.P.; Pelegrín, P.; Mulero, V.; Meseguer, J. Characterization of gilthead seabream acidophilic granulocytes by a monoclonal antibody unequivocally points to their involvement in fish phagocytic response. Cell Tissue Res. 2002, 308, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Mulero, I.; Sepulcre, P.; Roca, F.; Meseguer, J.; García-Ayala, A.; Mulero, V. Characterization of macrophages from the bony fish gilthead seabream using an antibody against the macrophage colony-stimulating factor receptor. Dev. Comp. Immunol. 2008, 32, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Barreda, D.R.; Zhang, Y.A.; Boshra, H.; Gelman, A.E.; Lapatra, S.; Tort, L.; Sunyer, O.; Lapatra, S.; Tort, L.; Sunyer, O. B lymphocytes from early vertebrates have potent phagocytic and microbicidal abilities. Nat. Immunol. 2006, 7, 1116–1124. [Google Scholar] [CrossRef] [PubMed]
- Dzik, J.M. The ancestry and cumulative evolution of immune reactions. Acta Biochim. Pol. 2010, 57, 443–466. [Google Scholar] [PubMed]
- Allen, P.G.; Dawidowicz, E.A. Phagocytosis in Acanthamoeba: I. A mannose receptor is responsible for the binding and phagocytosis of yeast. J. Cell Physiol. 1990, 145, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Davies, B.; Chattings, L.S.; Edwards, S.W. Superoxide generation during phagocytosis by Acanthamoeba castellanii: similarities to the respiratory burst of immune phagocytes. J. Gen. Microbiol. 1991, 137, 705–710. [Google Scholar] [CrossRef]
- Sillo, A.; Bloomfield, G.; Balest, A.; Balbo, A.; Pergolizzi, B.; Peracino, B.; Skelton, J.; Ivens, A.; Bozzaro, S. Genome-wide transcriptional changes induced by phagocytosis or growth on bacteria in Dictyostelium. BMC Genomics 2008. [Google Scholar] [CrossRef] [PubMed]
- Flannagan, R.S.; Jaumouillé, V.; Grinstein, S. The cell biology of phagocytosis. Annu. Rev. Pathol. 2012, 7, 61–98. [Google Scholar] [CrossRef] [PubMed]
- Pedrera, I.M.; Collazos, M.E.; Ortega, E.; Barriga, C. In vitro study of the phagocytic processes in splenic granulocyte of the tench (Tinca tinca, L.). Dev. Comp. Immunol. 1992, 16, 431–439. [Google Scholar] [CrossRef]
- Desjardins, M.; Houde, M.; Gagnon, E. Phagocytosis: The convoluted way from nutrition to adaptive immunity. Immunol. Rev. 2005, 207, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Moretti, J.; Blander, J.M. Insights into phagocytosis-coupled activation of pattern recognition receptors and inflammasomes. Curr. Opin. Immunol. 2014, 26, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Secombes, C.J.; Fletcher, I.C. The role of phagocytes in the protective mechanisms of fish. Annu. Rev. Fish Dis. 1992, 2, 53–71. [Google Scholar] [CrossRef]
- Akira, S. TLR signaling. Curr. Top Microbiol. Immunol. 2006, 311, 1–16. [Google Scholar] [PubMed]
- Neumann, N.F.; Stafford, J.L.; Barreda, D.; Ainsworth, A.J.; Belosevic, M. Antimicrobial mechanisms of fish phagocytes and their role in host defense. Dev. Comp. Immunol. 2001, 25, 807–825. [Google Scholar] [CrossRef]
- Underhill, D.M.; Goodridge, H.S. Information processing during phagocytosis. Nat. Rev. Immunol. 2012, 12, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Levin, R.; Grinstein, S.; Schlam, D. Phosphoinositides in phagocytosis and macropinocytosis. Biochim. Biophys. Acta 2015, 1851, 805–823. [Google Scholar] [CrossRef] [PubMed]
- Rabinovitch, M. Professional and non-professional phagocytes: An introduction. Trends Cell Biol. 1995, 5, 85–87. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, W.; Wong, W.M.; Ward, E.; Thrasher, A.J.; Goldblatt, D.; Osman, M.; Digard, P.; Canaday, D.H.; Gustafsson, K. Human gamma delta T cells: A lymphoid lineage cell capable of professional phagocytosis. J. Immunol. 2009, 183, 5622–5629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, C.C. Inflammatory response of macrophages in infection. Hepatobiliary Pancreat Dis. Int. 2014, 13, 138–152. [Google Scholar] [CrossRef]
- Braun-Nesje, R.; Kaplan, G.; Seljelid, R. Rainbow trout macrophages in vitro: Morphology and phagocytic activity. Dev. Comp. Immunol. 1982, 6, 281–291. [Google Scholar] [CrossRef]
- Rowley, A.F.; Hunt, T.C.; Page, M.; Mainwaring, G. Fish. In Vertebrate Blood Cell; Rowley, A.F., Ratcliffe, N.A., Eds.; Cambridge University Press: Cambridge, UK, 1988; pp. 19–127. [Google Scholar]
- Enane, N.A.; Frenkel, K.; O’Connor, J.M.; Squibb, K.S.; Zelikoff, J.T. Biological markers of macrophage activation: Applications for fish phagocytes. Immunology 1993, 80, 68–72. [Google Scholar] [PubMed]
- Rieger, A.M.; Konowalchuk, J.D.; Grayfer, L.; Katzenback, B.A.; Havixbeck, J.J.; Kiemele, M.D.; Belosevic, M.; Barreda, D.R. Fish and mammalian phagocytes differentially regulate pro-inflammatory and homeostatic responses in vivo. PLoS ONE 2012, 7, e47070. [Google Scholar] [CrossRef] [PubMed]
- Grayfer, L.; Hodgkinson, J.W.; Belosevic, M. Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria. Dev. Comp. Immunol. 2014, 43, 223–242. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, A.J. Fish granulocytes: Morphology, distribution and function. Annu. Rev. Fish Dis. 1992, 2, 123–148. [Google Scholar] [CrossRef]
- Zapata, A.G.; Chib, A.; Varas, A. Cells and tissue of the immune system of fish. In The Fish Immune System; Iwama, G., Najanishi, T., Eds.; Academic Press: London, UK, 1996; pp. 1–62. [Google Scholar]
- Rønneseth, A.; Wergeland, H.I.; Pettersen, E.F. Neutrophils and B-cells in Atlantic cod (Gadus morhua L.). Fish Shellfish Immunol. 2007, 23, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.R.; Ma, A.C.; Tavener, A.S.; McDonald, B.; Goodarzi, Z.; Kelly, M.M.; Patel, K.D.; Chakrabarti, S.; McAvoy, E.; Sinclair, G.D.; et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in endotoxemic and septic blood. Nature Med. 2007, 13, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Brogden, G.; Krimmling, T.; Adamek, M.; Naim, H.Y.; Steinhagen, D.; von Köckritz-Blickwede, M. The effect of β-glucan on formation and functionality of neutrophil extracellular traps in carp (Cyprinus carpio L.). Dev. Comp. Immunol. 2014, 44, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Ganassin, R.C.; Bols, N. Development of long-term rainbow trout spleen cultures that are haemopoietic and produce dendritic cells. Fish Shellfish Immunol. 1996, 6, 17–34. [Google Scholar] [CrossRef]
- Rumfelt, L.L.; McKinney, E.C.; Taylor, E.; Flajnik, M.F. The development of primary and secondary lymphoid tissues in the nurse shark Ginglymostoma cirratum: B-cell zones precede dendritic cell immigration and T-cell zone formation during ontogeny of the spleen. Scand. J. Immunol. 2002, 56, 130–148. [Google Scholar] [CrossRef] [PubMed]
- Lovy, J.; Wright, G.M.; Speare, D.J. Comparative cellular morphology suggesting the existence of resident dendritic cells within immune organs of salmonids. Anat. Rec. 2008, 291, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Ingerslev, H.C.; Stavang, V.; Egenberg, M.; Wergeland, H.I. A highly phagocytic cell line TO from Atlantic salmon is CD83 positive and MCSFR negative, indicating a dendritic-like cell type. Fish Shellfish Immunol. 2008, 25, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Lovy, J.; Savidant, G.P.; Speare, D.J.; Wright, G.M. Langerin/CD207 positive dendritic-like cells in the haemopoietic tissues of salmonids. Fish Shellfish Immunol. 2009, 27, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Bassity, E.; Clark, T.G. Functional identification of dendritic cells in the teleost model, rainbow trout (Oncorhynchus mykiss). PLoS ONE 2012, 7, e33196. [Google Scholar] [CrossRef] [PubMed]
- Hanecak, R.; Zovich, D.C.; Pattengale, P.K.; Fan, H. Differentiation in vitro of a leukemia virus-induced B-cell lymphoma into macrophages. Mol. Cell Biol. 1989, 9, 2264–2268. [Google Scholar] [CrossRef] [PubMed]
- Borrello, M.A.; Phipps, R.P. The B/macrophage cell: An elusive link between CD5+ B lymphocytes and macrophages. Immunol. Today 1996, 17, 471–475. [Google Scholar] [CrossRef]
- Overland, H.S.; Pettersen, E.F.; Ronneseth, A.; Wergeland, H.I. Phagocytosis by B-cells and neutrophils in Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.). Fish Shellfish Immunol. 2010, 28, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Sunyer, J.O. Evolutionary and functional relationships of B cells from fish and mammals: Insights into their novel roles in phagocytosis and presentation of particulate antigen. Infect. Disord. Drug Targets 2012, 12, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Parra, D.; Takizawa, F.; Sunyer, J.O. Evolution of B cell immunity. Annu. Rev. Anim. Biosci. 2013, 1, 65–97. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, L.M.; Vogel, L.A.; Edwards, K.A.; Bowden, R.M. Phagocytic B cells in a reptile. Biol. Lett. 2010, 6, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Slack, E.; Balmer, M.L.; Macpherson, A.J. B cells as a critical node in the microbiota-host immune system network. Immunol. Rev. 2014, 260, 50–66. [Google Scholar] [CrossRef] [PubMed]
- Belamarich, F.A.; Fusari, M.H.; Shepro, D.; Kien, M. In vitro studies of aggregation of non-mammalian thrombocytes. Nature 1966, 212, 1579–1580. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Radhakrishnan, U.P.; Rajpurohit, S.K.; Kulkarni, V.; Jagadeeswaran, P. Vivo-Morpholino knockdown of alpha IIb: A novel approach to inhibit thrombocyte function in adult zebrafish. Blood Cells Mol. Dis. 2010, 44, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Grecchi, R.; Saliba, A.M.; Mariano, M. Morphological changes, surface receptors and phagocytic potential of fowl mononuclear phagocytes and thrombocytes in vivo and in vitro. J. Pathol. 1980, 130, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Stosik, M.; Deptuła, W.; Travnicek, M.; Baldy-Chudzik, K. Phagocytic and bactericidal activity of blood thrombocytes in carps (Cyprinus carpio). Vet. Med. 2002, 47, 21–25. [Google Scholar]
- Wigley, P.; Hulme, S.D.; Barrow, P.A. Phagocytic andoxidative burst activity of chicken thrombocytes to Salmonella, Escherichia coli and other bacteria. Avian Pathol. 1999, 28, 567–572. [Google Scholar] [CrossRef]
- White, J.G.; Clawson, C.C. Effects of large latex particle uptake of the surface connected canalicular system of blood platelets: A freeze-fracture and cytochemical study. Ultrastruct. Pathol. 1981, 2, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Meseguer, J.; Esteban, M.A.; Rodríguez, A. Are thrombocytes and platelets true phagocytes? Microsc. Res. Tech. 2002, 57, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Nakayasu, C.; Yoshitomi, T.; Oyamatsu, T.; Okamoto, N.; Ikeda, Y. Separation of carp (Cyprinus carpio L.) thrombocytes by using a monoclonal antibody, and their aggregation by collagen. Vet. Immunol. Immunopathol. 1997, 57, 337–346. [Google Scholar] [CrossRef]
- White, J.G. Uptake of latex particles by blood platelets: Phagocytosis or sequestration? Am. J. Pathol. 1972, 69, 439–458. [Google Scholar] [PubMed]
- White, J.G. Platelets are covercytes, not phagocytes: Uptake of bacteria involves channels of the open canalicular system. Platelets 2005, 16, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Daimon, T.; Gotoh, Y.; Kawai, K.; Uchida, K. Ultrastructural distribution of peroxidase in thrombocytes of mammals and submammals. Histochemistry 1985, 82, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, T.; Nakayasu, C.; Rieger, A.M.; Barreda, D.R.; Somamoto, T.; Nakao, M. Phagocytosis by thrombocytes is a conserved innate immune mechanism in lower vertebrates. Front Immunol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Imagawa, T.; Hashimoto, Y.; Kitagawa, H.; Kon, Y.; Kudo, N.; Sugimura, M. Morphology of blood cells in carp (Cyprinus carpio L.). Jpn. J. Vet. Sci. 1989, 51, 1163–1172. (In Japanese) [Google Scholar] [CrossRef]
- Ferdous, F.; Scott, T.R. A comparative examination of thrombocyte/platelet immunity. Immunol. Lett. 2015, 163, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Tamagawa-Mineoka, R. Important roles of platelets as immune cells in the skin. J. Dermatol. Sci. 2015, 77, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Le Morvan, C.; Troutaud, D.; Deschaux, P. Differential effects of temperature on specific and nonspecific immune defences in fish. J. Exp. Biol. 1998, 201, 165–168. [Google Scholar] [PubMed]
- Mishra, K.P.; Ganju, L.; Singh, S.B. Hypoxia modulates innate immune factors: A review. Int. Immunopharmacol. 2015, 28, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Labrecque, N.; Cermakian, N. Circadian clocks in the immune system. J. Biol. Rhythm. 2015, 30, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Linehan, E.; Fitzgerald, D.C. Ageing and the immune system: focus on macrophages. Eur. J. Microbiol. Immunol. 2015, 5, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.A.; Picut, C.A. Immune functioning in non lymphoid organs: The liver. Toxicol. Pathol. 2012, 40, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.L. Bacteria-containing vacuoles: Subversion of cellular membrane traffic and Autophagy. Crit. Rev. Eukaryot Gene Expr. 2015, 25, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Sarantis, H.; Grinstein, S. Subversion of phagocytosis for pathogen survival. Cell Host Microbe 2012, 12, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Arango Duque, G.; Descoteaux, A. A Leishmania survival in the macrophage: Where the ends justify the means. Curr. Opin. Microbiol. 2015, 26, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Glass, A.M.; Snyder, E.G.; Taffet, S.M. Connexins and pannexins in the immune system and lymphatic organs. Cell Mol. Life Sci. 2015, 72, 2899–2910. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, B.; Palić, D. Immunotoxicology of non-functionalized engineered nanoparticles in aquatic organisms with special emphasis on fish—Review of current knowledge, gap identification, and call for further research. Aquat. Toxicol. 2012, 118, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, E. Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo. Int. J. Nanomed. 2015, 10, 3761–3778. [Google Scholar] [CrossRef] [PubMed]
- Arandjelovic, S.; Ravichandran, K.S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 2015, 16, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Deretic, V.; Kimura, T.; Timmins, G.; Moseley, P.; Chauhan, S.; Mandell, M. Immunologic manifestations of autophagy. J. Clin. Invest. 2015, 125, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Zuber, J.; Li, J. Targeting autophagy in skin diseases. J. Mol. Med. 2015, 93, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Vural, A.; Kehrl, J.H. Autophagy in macrophages: Impacting inflammation and bacterial infection. Scientifica 2014. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.C.; Neher, J.J. Eaten alive! Cell death by primary phagocytosis: “Phagoptosis”. Trends Biochem. Sci. 2012, 37, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Ralston, K.S. Chew on this: Amoebic trogocytosis and host cell killing by Entamoeba histolytica. Trends Parasitol. 2015, 31, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, I.; Miao, E.A. Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev. 2015, 265, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Boe, D.M.; Curtis, B.J.; Chen, M.M.; Ippolito, J.A.; Kovacs, E.J. Extracellular traps and macrophages: New roles for the versatile phagocyte. J. Leukoc Biol. 2015, 97, 1023–1035. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteban, M.Á.; Cuesta, A.; Chaves-Pozo, E.; Meseguer, J. Phagocytosis in Teleosts. Implications of the New Cells Involved. Biology 2015, 4, 907-922. https://doi.org/10.3390/biology4040907
Esteban MÁ, Cuesta A, Chaves-Pozo E, Meseguer J. Phagocytosis in Teleosts. Implications of the New Cells Involved. Biology. 2015; 4(4):907-922. https://doi.org/10.3390/biology4040907
Chicago/Turabian StyleEsteban, María Ángeles, Alberto Cuesta, Elena Chaves-Pozo, and José Meseguer. 2015. "Phagocytosis in Teleosts. Implications of the New Cells Involved" Biology 4, no. 4: 907-922. https://doi.org/10.3390/biology4040907
APA StyleEsteban, M. Á., Cuesta, A., Chaves-Pozo, E., & Meseguer, J. (2015). Phagocytosis in Teleosts. Implications of the New Cells Involved. Biology, 4(4), 907-922. https://doi.org/10.3390/biology4040907