Biotechnological Strategies to Enhance Maize Resilience Under Climate Change
Simple Summary
Abstract
1. Introduction
Methodology and Data Collection
2. Climate Change Impacts on Maize Growth and Development
2.1. Impacts on Morphological and Physiological Properties
2.2. Impacts on Biochemical Events
2.3. Impacts on Biomolecular Mechanisms
2.4. Critical Physiological and Molecular Changes Under Abiotic and Biotic Stress
3. Biotechnological Approaches for Climate Resilience
3.1. Evolution of Breeding Frameworks: From Conventional to Environmental Genomic Selection
3.1.1. Conventional Maize Breeding Cycles: OP, Hybrid, and Composite
3.1.2. Environmental Genomic Selection (EGS) for Climate-Smart Breeding
3.2. Quantitative Trait Loci (QTL) Mapping and Marker-Assisted Selection
3.3. Genome-Wide Association Studies (GWASs)
3.4. CRISPR/Cas9 Gene Editing
3.4.1. Transgene-Free and DNA-Free Genome Editing in Maize
3.4.2. Protoplast-Based CRISPR–Cas Delivery Systems in Maize
3.4.3. Next-Generation Precision Editing: Base, Prime, and Multiplexing
3.4.4. Limitations and Challenges of CRISPR-Based Editing for Climate-Resilient Maize
3.5. Transgenic Approaches and Gene Expression Modulation
3.6. Nanotechnology-Mediated Gene Delivery Systems
3.6.1. Plant-Derived Nanoparticles as Delivery Platforms for CRISPR–Cas Systems
3.6.2. Plant-Based Selenium and Zinc Nanoparticles for Stress Mitigation683
3.7. Rhizosphere Engineering and Microbiome-Informed Breeding
4. Advanced Biotechnological Strategies for Precision Maize Breeding
4.1. High-Throughput Phenomics: Accelerating Trait Screening
4.2. Genomics and Transcriptomics: Precision Gene Discovery
4.3. Proteomics, Metabolomics, and Metagenomics: Functional Biomarkers
4.4. Multi-Omics Integration
4.5. Artificial Intelligence and Machine Learning in Breeding
4.5.1. Deep Learning and Genomic Prediction
4.5.2. Molecular Docking and in Silico Screening
4.6. Integration of Biotechnological Advances for Tangible Outcomes
5. Future Perspectives and Research Directions
5.1. Emerging Technologies and Innovations
5.2. Integration of Multiple Biotechnological Approaches
5.3. Global Collaboration and Knowledge Sharing
5.4. Policy and Regulatory Evolution
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, K.H.; Lee, B.M. Effects of Climate Change and Drought Tolerance on Maize Growth. Plants 2023, 12, 3548. [Google Scholar] [CrossRef]
- Zai, F.H.; McSharry, P.E.; Hamers, H. Impact of Climate Change and Genetic Development on Iowa Corn Yield. Front. Agron. 2024, 6, 1339410. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Database. Available online: https://www.fao.org/faostat/ (accessed on 5 January 2026).
- Cairns, J.E.; Prasanna, B.M. Developing and Deploying Climate-Resilient Maize Varieties in the Developing World. Curr. Opin. Plant Biol. 2018, 45, 226–230. [Google Scholar] [CrossRef]
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate Change Has Likely Already Affected Global Food Production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef]
- Prasanna, B.M.; Cairns, J.E.; Zaidi, P.H.; Beyene, Y.; Makumbi, D.; Gowda, M.; Magorokosho, C.; Zaman-Allah, M.; Olsen, M.; Das, A.; et al. Beat the Stress: Breeding for Climate Resilience in Maize for the Tropical Rainfed Environments. Theor. Appl. Genet. 2021, 134, 1729–1752. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global Maize Production, Consumption and Trade: Trends and R&D Implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Du, S.; Xiong, W. Weather Extremes Shock Maize Production: Current Approaches and Future Research Directions in Africa. Plants 2024, 13, 1585. [Google Scholar] [CrossRef] [PubMed]
- Tran, B.L.; Tseng, W.C.; Chen, C.C. Climate Change Impacts on Crop Yields across Temperature Rise Thresholds and Climate Zones. Sci. Rep. 2025, 15, 7405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wei, J.; Li, J.; Jia, Y.; Wang, W.; Li, J.; Lei, Z.; Gao, M. The Impact of Climate Change on Maize Production: Empirical Findings and Implications for Sustainable Agricultural Development. Front. Environ. Sci. 2022, 10, 954940. [Google Scholar] [CrossRef]
- Fan, X.; Hu, X.; Ma, Y.; Pang, Y.; Sun, J.; Hou, P. Influence of High Temperature and Drought Stress at Jointing Stage on Crop Physiological Responses and Growth in Summer Maize Plants (Zea Mays L.). Front. Plant Physiol. 2024, 2, 1331421. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, X.; Gu, L.; Liu, P.; Zhao, B.; Zhang, J.; Ren, B. The Effects of High Temperature, Drought, and Their Combined Stresses on the Photosynthesis and Senescence of Summer Maize. Agric. Water Manag. 2023, 289, 108525. [Google Scholar] [CrossRef]
- Şimşek, Ö.; Isak, M.A.; Dönmez, D.; Dalda Şekerci, A.; İzgü, T.; Kaçar, Y.A. Advanced Biotechnological Interventions in Mitigating Drought Stress in Plants. Plants 2024, 13, 717. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.W.; Cui, Y.H.; Li, X.N.; Bai, M.Y.; Asseri, T.A.Y.; Hashem, M.; Wang, Z.J. Genetic Improvement of Drought Stress Tolerance in Maize, Recent Advancements and Future Research Direction. Not. Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 13840. [Google Scholar] [CrossRef]
- Kaur, N.; Qadir, M.; Francis, D.V.; Alok, A.; Tiwari, S.; Ahmed, Z.F.R. CRISPR/Cas9: A Sustainable Technology to Enhance Climate Resilience in Major Staple Crops. Front. Genome Ed. 2025, 7, 1533197. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Haq, M.I.U.; Hamza, A.; Iqbal, M.M.; Al-Khayri, J.M.; Aldaej, M.I.; Al-Dossary, O.M.; Alsubaie, B. The Role of Nano-Particles in Plant Tolerance Against Drought Stress: Review and Future Perspective. Appl. Ecol. Environ. Res. 2025, 23, 6329–6358. [Google Scholar] [CrossRef]
- Namata, M.J.; Xu, J.; Habyarimana, E.; Palakolanu, S.R.; Wang, L.; Li, J. Genome Editing in Maize and Sorghum: A Comprehensive Review of CRISPR/Cas9 and Emerging Technologies. Plant Genome 2025, 18, e20438. [Google Scholar] [CrossRef]
- Ramakrishnan, M.; Kaul, R.; Sharma, A.; Ahmad, Z.; Vijayakanth, V.; Keerthana, K.; Gao, Z.; Zhou, M.; Wei, Q. CRISPR RNP-Mediated Transgene-Free Genome Editing in Plants: Advances, Challenges and Future Directions for Tree Species. Plant Cell Environ. 2025, 48, 70176. [Google Scholar] [CrossRef]
- Djalovic, I.; Kundu, S.; Bahuguna, R.N.; Pareek, A.; Raza, A.; Singla-Pareek, S.L.; Prasad, P.V.V.; Varshney, R.K. Maize and Heat Stress: Physiological, Genetic, and Molecular Insights. Plant Genome 2024, 17, e20412. [Google Scholar] [CrossRef]
- Tesfaye, K.; Kruseman, G.; Cairns, J.E.; Zaman-Allah, M.; Wegary, D.; Zaidi, P.H.; Boote, K.J.; Rahut, D.; Erenstein, O. Potential Benefits of Drought and Heat Tolerance for Adapting Maize to Climate Change in Tropical Environments. Clim. Risk Manag. 2018, 19, 106–119. [Google Scholar] [CrossRef]
- Waqas, M.A.; Wang, X.; Zafar, S.A.; Noor, M.A.; Hussain, H.A.; Azher Nawaz, M.; Farooq, M. Thermal Stresses in Maize: Effects and Management Strategies. Plants 2021, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Yu, L.; Li, J.; Qu, L.; Wang, Z.; Li, G.; Guo, J.; Lu, D. Effect of High Temperature on Maize Yield and Grain Components: A Meta-Analysis. Sci. Total Environ. 2024, 952, 175898. [Google Scholar] [CrossRef]
- Han, X.; Zhang, D.; Hao, H.; Luo, Y.; Zhu, Z.; Kuai, B. Transcriptomic Analysis of Three Differentially Senescing Maize (Zea Mays L.) Inbred Lines upon Heat Stress. Int. J. Mol. Sci. 2023, 24, 9782. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Chen, Y.; Dong, X. Impacts of High Temperature and Vapor Pressure Deficit on the Maize Opened Spikelet Ratio and Pollen Viability. Agronomy 2024, 14, 2510. [Google Scholar] [CrossRef]
- Jagtap, A.B.; Yadav, I.S.; Vikal, Y.; Praba, U.P.; Kaur, N.; Gill, A.S.; Johal, G.S. Transcriptional Dynamics of Maize Leaves, Pollens and Ovules to Gain Insights into Heat Stress-Related Responses. Front. Plant Sci. 2023, 14, 1117136. [Google Scholar] [CrossRef]
- Liu, S.; Qin, F. Genetic Dissection of Maize Drought Tolerance for Trait Improvement. Mol. Breed. 2021, 41, 8. [Google Scholar] [CrossRef] [PubMed]
- Tuberosa, R.; Salvi, S.; Sanguineti, M.C.; Landi, P.; Maccaferri, M.; Conti, S. Mapping QTLS Regulating Morpho-Physiological Traits and Yield: Case Studies, Shortcomings and Perspectives in Drought-Stressed Maize. Ann. Bot. 2002, 89, 941–963. [Google Scholar] [CrossRef] [PubMed]
- Xuhui, L.; Weiwei, C.; Siqi, L.; Junteng, F.; Hang, Z.; Xiangbo, Z.; Yongwen, Q. Full-Length Transcriptome Analysis of Maize Root Tips Reveals the Molecular Mechanism of Cold Stress during the Seedling Stage. BMC Plant Biol. 2022, 22, 587. [Google Scholar] [CrossRef]
- Božić, M.; Ignjatović Micić, D.; Anđelković, V.; Delić, N.; Nikolić, A. Maize Transcriptome Profiling Reveals Low Temperatures Affect Photosynthesis during the Emergence Stage. Front. Plant Sci. 2025, 16, 1527447. [Google Scholar] [CrossRef]
- Fatima, A.; Mahmood, A.; Najeeb Alawadi, H.F.; Javaid, M.M.; Ahmad, H.B.; Al-Khayri, J.M.; Aldaej, M.I.; Al-Dossary, O.; Alsubaie, B.; Shehata, W.F. Chilling and Drought Stresses in Maize: Mitigation Strategies and Potential Management Opportunities. Not. Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 13855. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, M. Adaptation of Maize to Various Climatic Conditions: Genetic Underpinnings. Biol. Evid. 2024, 14, 122–130. [Google Scholar] [CrossRef]
- Rotundo, J.L.; Zinselmeier, C.; Hoffman, N.; Ferhatoglu, C.; Jobbagy, E.; Oliver, P.; Borras, L. Breeding Progress Is a Major Contributor to Improved Regional Maize Water Productivity. Sci. Rep. 2025, 15, 96534. [Google Scholar] [CrossRef]
- IPPC Secretariat. Scientific Review of the Impact of Climate Change on Plant Pests: A Global Challenge to Prevent and Mitigate Plant Pest Risks in Agriculture, Forestry and Ecosystems; FAO: Rome, Italy, 2021; ISBN 9789251344354. [Google Scholar]
- Singh, G.M.; Xu, J.; Schaefer, D.; Day, R.; Wang, Z.; Zhang, F. Maize Diversity for Fall Armyworm Resistance in a Warming World. Crop Sci. 2022, 62, 1–19. [Google Scholar] [CrossRef]
- Lei, L.; Pan, H.; Hu, H.Y.; Fan, X.W.; Wu, Z.B.; Li, Y.Z. Characterization of ZmPMP3g Function in Drought Tolerance of Maize. Sci. Rep. 2023, 13, 32989. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.A.; Hassan, H.; Wang, H.; Inzamamulhaq, M.; Ashraf, I.; Luo, F.; Khan, H.; Huang, G. How Does Jasmonic Acid Improve Drought Tolerance? Mechanisms and Future Prospects. Not. Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 13604. [Google Scholar] [CrossRef]
- Elsisi, M.; Elshiekh, M.; Sabry, N.; Aziz, M.; Attia, K.; Islam, F.; Chen, J.; Abdelrahman, M. The Genetic Orchestra of Salicylic Acid in Plant Resilience to Climate Change Induced Abiotic Stress: Critical Review. Stress Biol. 2024, 4, 31. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, B.; Tanwir, S.; Ahmad, F.; Ahmad, J.N. Jasmonic Acid and Salicylic Acid Improved Resistance against Spodoptera Frugiperda Infestation in Maize by Modulating Growth and Regulating Redox Homeostasis. Sci. Rep. 2024, 14, 67151. [Google Scholar] [CrossRef] [PubMed]
- Casu, A.; Camardo Leggieri, M.; Toscano, P.; Battilani, P. Changing Climate, Shifting Mycotoxins: A Comprehensive Review of Climate Change Impact on Mycotoxin Contamination. Compr. Rev. Food Sci. Food Saf. 2024, 23, 1–24. [Google Scholar] [CrossRef]
- Focker, M.; van Eupen, M.; Verweij, P.; Liu, C.; van Haren, C.; van der Fels-Klerx, H.J. Effects of Climate Change on Areas Suitable for Maize Cultivation and Aflatoxin Contamination in Europe. Toxins 2023, 15, 599. [Google Scholar] [CrossRef]
- Visagie, C.M.; Meyer, H.; Yilmaz, N. Maize–Fusarium Associations and Their Mycotoxins: Insights from South Africa. Fungal Biol. 2024, 128, 2408–2421. [Google Scholar] [CrossRef]
- Shi, J.; Yan, B.; Lou, X.; Ma, H.; Ruan, S. Comparative Transcriptome Analysis Reveals the Transcriptional Alterations in Heat-Resistant and Heat-Sensitive Sweet Maize (Zea Mays L.) Varieties under Heat Stress. BMC Plant Biol. 2017, 17, 26. [Google Scholar] [CrossRef]
- Niu, L.; Wang, W.; Li, Y.; Wu, X.; Wang, W. Maize Multi-Omics Reveal Leaf Water Status Controlling of Differential Transcriptomes, Proteomes and Hormones as Mechanisms of Age-Dependent Osmotic Stress Response in Leaves. Stress Biol. 2024, 4, 159. [Google Scholar] [CrossRef]
- He, X.; Zhu, J.; Gong, X.; Zhang, D.; Li, Y.; Zhang, X.; Zhao, X.; Zhou, C. Advances in Deciphering the Mechanisms of Salt Tolerance in Maize. Plant Signal. Behav. 2025, 20, 2479513. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Prusty, M.R.; Pandey, M.K.; Singh, P.K.; Bohra, A.; Guo, B.; Varshney, R.K. Application of CRISPR/Cas9-Mediated Gene Editing for Abiotic Stress Management in Crop Plants. Front. Plant Sci. 2023, 14, 1157678. [Google Scholar] [CrossRef] [PubMed]
- Jassim, A.Y.; Karnwal, A.; Pant, G.; Gaur, A.; Selvaraj, M.; Dutta, J.; Sachan, R.S.K.; Kumar, M.; Nesterova, N. Harnessing Nanotechnology for Abiotic Stress Mitigation in Agriculture: A Sustainable Approach to Crop Resilience. J. Plant Interact. 2025, 20, 2586338. [Google Scholar] [CrossRef]
- Carena, M.J.; Hallauer, A.R.; Miranda Filho, J.B. Quantitative Genetics in Maize Breeding; Springer: New York, NY, USA, 2010; ISBN 978-1-4419-0766-0. [Google Scholar]
- Duvick, D.N. The Contribution of Breeding to Yield Advances in Maize (Zea Mays L.). Adv. Agron. 2005, 86, 83–145. [Google Scholar]
- Xu, Y.; Liu, X.; Fu, J.; Wang, H.; Wang, J.; Huang, C.; Prasanna, B.M.; Olsen, M.S.; Wang, G.; Zhang, A. Enhancing Genetic Gain through Genomic Selection: From Livestock to Plants. Plant Commun. 2020, 1, 100005. [Google Scholar] [CrossRef]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
- Crossa, J.; Pérez-Rodríguez, P.; Cuevas, J.; Montesinos-López, O.; Jarquín, D.; de los Campos, G.; Burgueño, J.; González-Camacho, J.M.; Pérez-Elizalde, S.; Beyene, Y.; et al. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends Plant Sci. 2017, 22, 961–975. [Google Scholar] [CrossRef]
- Rogers, A.R.; Holland, J.B. Environment-Specific Genomic Prediction Ability in Maize Using Environmental Covariates Depends on Environmental Similarity to Training Data. G3 Genes Genomes Genet. 2022, 12, jkab440. [Google Scholar] [CrossRef]
- Jarquín, D.; Crossa, J.; Lacaze, X.; Du Cheyron, P.; Daucourt, J.; Lorgeou, J.; Piraux, F.; Guerreiro, L.; Pérez, P.; Calus, M.; et al. A Reaction Norm Model for Genomic Selection Using High-Dimensional Genomic and Environmental Data. Theor. Appl. Genet. 2014, 127, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Costa-Neto, G.; Crespo-Herrera, L.; Fradgley, N.; Gardner, K.; Bentley, A.R.; Dreisigacker, S.; Fritsche-Neto, R.; Montesinos-López, O.A.; Crossa, J. Envirome-Wide Associations Enhance Multi-Year Genome-Based Prediction of Historical Wheat Breeding Data. G3 Genes Genomes Genet. 2023, 13, jkac313. [Google Scholar] [CrossRef]
- Li, R.; Wang, Y.; Li, D.; Guo, Y.; Zhou, Z.; Zhang, M.; Zhang, Y.; Würschum, T.; Liu, W. Meta-Quantitative Trait Loci Analysis and Candidate Gene Mining for Drought Tolerance-Associated Traits in Maize (Zea Mays L.). Int. J. Mol. Sci. 2024, 25, 84295. [Google Scholar] [CrossRef]
- Sheoran, S.; Kaur, Y.; Kumar, S.; Shukla, S.; Rakshit, S.; Kumar, R. Recent Advances for Drought Stress Tolerance in Maize (Zea Mays L.): Present Status and Future Prospects. Front. Plant Sci. 2022, 13, 872566. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Sun, Y.; Li, S.S.; Cai, Q.; Li, S.S.; Sun, M.; Yu, T.; Meng, X.; Zhang, J. Integrating Genetic Diversity and Agronomic Innovations for Climate-Resilient Maize Systems. Plants 2025, 14, 1552. [Google Scholar] [CrossRef]
- Chen, Q.; Ying, Q.; Lei, K.; Zhang, J.; Liu, H. The Integration of Genetic Markers in Maize Breeding Programs. Biosci. Methods 2024, 15, 23. [Google Scholar] [CrossRef]
- Chen, S.; Dang, D.; Liu, Y.; Ji, S.; Zheng, H.; Zhao, C.; Dong, X.; Li, C.; Guan, Y.; Zhang, A.; et al. Genome-Wide Association Study Presents Insights into the Genetic Architecture of Drought Tolerance in Maize Seedlings under Field Water-Deficit Conditions. Front. Plant Sci. 2023, 14, 1165582. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, X.; He, G.; Wang, K.; Li, Y.; Guan, H.; Wang, T.; Zhang, D.; Li, C.; Li, Y. GWAS and Transcriptome Analyses Unravel ZmGRAS15 Regulates Drought Tolerance and Root Elongation in Maize. BMC Genom. 2025, 26, 11435. [Google Scholar] [CrossRef] [PubMed]
- Ahtisham, M.; Obaid, Z. The Role of CRISPR/CAS9 Technology in Enhancing Crop Resilience to Climate Change. Prem. J. Plant Biol. 2024, 1, 100001. [Google Scholar] [CrossRef]
- Shi, J.; Gao, H.; Wang, H.; Lafitte, H.R.; Archibald, R.L.; Yang, M.; Hakimi, S.M.; Mo, H.; Habben, J.E. ARGOS8 Variants Generated by CRISPR-Cas9 Improve Maize Grain Yield under Field Drought Stress Conditions. Plant Biotechnol. J. 2017, 15, 207–216. [Google Scholar] [CrossRef]
- Fu, X.; Wang, N.; Li, L.; Qiao, D.; Qi, X.; Liu, C.; Gao, Z.; Xie, C.; Zhu, J. Development of Cytosine and Adenine Base Editors for Maize Precision Breeding. J. Integr. Plant Biol. 2025, 67, 13964. [Google Scholar] [CrossRef]
- Sant’ana, R.R.A.; Caprestano, C.A.; Nodari, R.O.; Agapito-Tenfen, S.Z. PEG-Delivered CRISPR-Cas9 Ribonucleoproteins System for Gene-Editing Screening of Maize Protoplasts. Genes 2020, 11, 1029. [Google Scholar]
- Demirer, G.S.; Zhang, H.; Goh, N.S.; González-grandío, E.; Landry, M.P. Carbon nanotube–mediated DNA delivery without transgene integration in intact plants. Nat. Protoc. 2019, 14, 2954–2971. [Google Scholar] [CrossRef] [PubMed]
- Sahab, S.; Runa, F.; Ponnampalam, M.; Kay, P.T.; Jaya, E.; Viduka, K.; Panter, S.; Tibbits, J.; Hayden, M.J. Efficient Multi-Allelic Genome Editing via CRISPR–Cas9 Ribonucleoprotein-Based Delivery to Brassica Napus Mesophyll Protoplasts. Front. Plant Sci. 2024, 15, 1397632. [Google Scholar]
- Vu, T.V.; Nguyen, N.T.; Kim, J.; Hong, J.C.; Kim, J.Y. Prime Editing: Mechanism Insight and Recent Applications in Plants. Plant Biotechnol. J. 2024, 22, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Chen, L.; Yan, Z.; Xu, J.; Feng, L.; He, N.; Guo, M.; Zhao, J.; Chen, Z.; Chen, H.; et al. Recent Advances of CRISPR-Based Genome Editing for Enhancing Staple Crops. Front. Plant Sci. 2024, 15, 1478398. [Google Scholar] [CrossRef]
- Li, J.; Manghwar, H.; Sun, L.; Wang, P.; Wang, G.; Sheng, H.; Zhang, J.; Liu, H.; Qin, L.; Rui, H.; et al. Whole Genome Sequencing Reveals Rare Off-Target Mutations and Considerable Inherent Genetic or/and Somaclonal Variations in CRISPR/Cas9-Edited Cotton Plants. Plant Biotechnol. J. 2019, 17, 858–868. [Google Scholar] [CrossRef]
- Bao, A.; Burritt, D.J.; Chen, H.; Zhou, X.; Cao, D.; Tran, L.-S.P. The CRISPR/Cas9 System and Its Applications in Crop Genome Editing. Crit. Rev. Biotechnol. 2019, 39, 321–336. [Google Scholar] [CrossRef]
- Liu, H.J.; Jian, L.; Xu, J.; Zhang, Q.; Zhang, M.; Jin, M.; Peng, Y.; Yan, J.; Han, B.; Liu, J.; et al. High-Throughput CRISPR/Cas9 Mutagenesis Streamlines Trait Gene Identification in Maize. Plant Cell 2020, 32, 1397–1413. [Google Scholar]
- Kang, M.; Azanu, M.K.; Lee, K.; Wang, K. A Rapid Agrobacterium-Mediated Transformation Method Using Maize B104 Immature Embryos. Cold Spring Harb. Protoc. 2022, 2022, pdb-prot107870. [Google Scholar] [CrossRef]
- El-Mounadi, K.; Morales-Floriano, M.L.; Garcia-Ruiz, H. Principles, Applications, and Biosafety of Plant Genome Editing Using CRISPR-Cas9. Front. Plant Sci. 2020, 11, 56. [Google Scholar] [CrossRef]
- Ahmad, A.; Munawar, N.; Khan, Z.; Qusmani, A.T.; Khan, S.H.; Jamil, A.; Ashraf, S.; Ghouri, M.Z.; Aslam, S.; Mubarik, M.S.; et al. An Outlook on Global Regulatory Landscape for Genome-Edited Crops. Int. J. Mol. Sci. 2021, 22, 11753. [Google Scholar] [CrossRef] [PubMed]
- Vats, S.; Kumawat, S.; Brar, J.; Kaur, S.; Yadav, K.; Magar, S.G.; Jadhav, P.V.; Salvi, P.; Sonah, H.; Sharma, S.; et al. Opportunity and Challenges for Nanotechnology Application for Genome Editing in Plants. Plant Nano Biol. 2022, 1, 100001. [Google Scholar] [CrossRef]
- Simmons, C.R.; Lafitte, H.R.; Reimann, K.S.; Brugière, N.; Roesler, K.; Albertsen, M.C.; Greene, T.W.; Habben, J.E. Successes and Insights of an Industry Biotech Program to Enhance Maize Agronomic Traits. Plant Sci. 2021, 307, 110899. [Google Scholar] [CrossRef] [PubMed]
- Ahmar, S.; Mahmood, T.; Fiaz, S.; Mora-Poblete, F.; Shafique, M.S.; Chattha, M.S.; Jung, K.H. Advantage of Nanotechnology-Based Genome Editing System and Its Application in Crop Improvement. Front. Plant Sci. 2021, 12, 663849. [Google Scholar] [CrossRef]
- Wang, Z.P.; Zhang, Z.B.; Zheng, D.Y.; Zhang, T.T.; Li, X.L.; Zhang, C.; Yu, R.; Wei, J.H.; Wu, Z.Y. Efficient and Genotype Independent Maize Transformation Using Pollen Transfected by DNA-Coated Magnetic Nanoparticles. J. Integr. Plant Biol. 2022, 64, 1145–1156. [Google Scholar] [CrossRef]
- Lv, Z.; Jiang, R.; Chen, J.; Chen, W. Nanoparticle-Mediated Gene Transformation Strategies for Plant Genetic Engineering. Plant J. 2020, 104, 880–891. [Google Scholar] [CrossRef]
- Mujtaba, M.; Wang, D.; Carvalho, L.B.; Oliveira, J.L.; Espirito Santo Pereira, A.D.; Sharif, R.; Jogaiah, S.; Paidi, M.K.; Wang, L.; Ali, Q.; et al. Nanocarrier-Mediated Delivery of MiRNA, RNAi, and CRISPR-Cas for Plant Protection: Current Trends and Future Directions. ACS Agric. Sci. Technol. 2021, 1, 417–435. [Google Scholar] [CrossRef]
- Shivashakarappa, K.; Marriboina, S.; Dumenyo, K.; Taheri, A.; Yadegari, Z. Nanoparticle-Mediated Gene Delivery Techniques in Plant Systems. Front. Nanotechnol. 2025, 7, 1516180. [Google Scholar] [CrossRef]
- Santana, I.; Jeon, S.J.; Kim, H.I.; Islam, M.R.; Castillo, C.; Garcia, G.F.H.; Newkirk, G.M.; Giraldo, J.P. Targeted Carbon Nanostructures for Chemical and Gene Delivery to Plant Chloroplasts. ACS Nano 2022, 16, 12156–12173. [Google Scholar] [CrossRef] [PubMed]
- Law, S.S.Y.; Miyamoto, T.; Numata, K. Organelle-Targeted Gene Delivery in Plants by Nanomaterials. Chem. Commun. 2023, 59, 7166–7181. [Google Scholar] [CrossRef]
- An, Y.; Wang, Y.; Wang, X.; Xiao, J. Development of Chloroplast Transformation and Gene Expression Regulation Technology in Land Plants. Front. Plant Sci. 2022, 13, 1037038. [Google Scholar] [CrossRef]
- Li, M.; Chen, F.; Yang, Q.; Tang, Q.; Xiao, Z.; Tong, X.; Zhang, Y.; Lei, L.; Li, S. Biomaterial-Based CRISPR/Cas9 Delivery Systems for Tumor Treatment. Biomater. Res. 2024, 28, 0023. [Google Scholar] [CrossRef]
- Leal, G.G.; dos Santos, Y.B.L.; Silva Ito, M.E.Q.; de Souza, W.R. Big Things Come in Small Packages: Using Nanomaterials for Plant Genetic Engineering. Plant Nano Biol. 2025, 14, 100219. [Google Scholar] [CrossRef]
- Vinzant, K.; Rashid, M.; Clouse, D.E.; Ghosh, P.; Quadir, M.; Davis, V.A.; Khodakovskaya, M.V. From Plants to Plants: Plant-Derived Biological Polymers as Sustainable and Safe Nanocarriers for Direct Delivery of DNA to Plant Cells. Nano Lett. 2025, 25, 5572–5581. [Google Scholar] [CrossRef]
- Duan, L.; Ouyang, K.; Xu, X.; Xu, L.; Wen, C.; Zhou, X.; Qin, Z.; Xu, Z.; Sun, W.; Liang, Y. Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing. Front. Genet. 2021, 12, 673286. [Google Scholar] [CrossRef]
- Tsivileva, O. Selenium-Containing Nanoformulations Capable of Alleviating Abiotic Stress in Plants. Int. J. Mol. Sci. 2025, 26, 1697. [Google Scholar] [CrossRef] [PubMed]
- Sowmya, R.; Raja Namasivayam, S.K.; Shree, K. A Critical Review on Nano-Selenium Based Materials: Synthesis, Biomedicine Applications and Biocompatibility Assessment. J. Inorg. Organomet. Polym. Mater. 2024, 34, 3037–3055. [Google Scholar] [CrossRef]
- Kanna, V.K.; Djanaguiraman, M.; Senthil, A.; Moorthy, P.S.; Iyanar, K.; Veerappan, A. Improvement of Maize Drought Tolerance by Foliar Application of Zinc Selenide Quantum Dots. Front. Plant Sci. 2024, 15, 1478654. [Google Scholar] [CrossRef]
- Song, J.; Yu, S.; Yang, R.; Xiao, J.; Liu, J. Opportunities for the Use of Selenium Nanoparticles in Agriculture. NanoImpact 2023, 31, 100478. [Google Scholar] [CrossRef] [PubMed]
- Sowmya, R.; Namasivayam, S.K.R.; Sivasuriyan, K.S.; Varshan, A.G.S.; Samrat, K. Selenium Nanoparticles and Nanocomposites in Sustainable Agriculture: Synthesis, Stress Alleviation Mechanisms, and Soil Health Impacts. Plant Nano Biol. 2026, 15, 100240. [Google Scholar] [CrossRef]
- Mishra, M.; Afzal, S.; Yadav, R.; Singh, N.K.; Zarbakhsh, S. Salinity Stress Amelioration through Selenium and Zinc Oxide Nanoparticles in Rice. Sci. Rep. 2025, 15, 12106. [Google Scholar] [CrossRef]
- Khan, A.R.; Salam, A.; Li, G.; Iqbal, B.; Ulhassan, Z.; Liu, Q.; Azhar, W.; Liaquat, F.; Shah, I.H.; ul Hassan, S.S.; et al. Nanoparticles and Their Crosstalk with Stress Mitigators: A Novel Approach towards Abiotic Stress Tolerance in Agricultural Systems. Crop J. 2024, 12, 1280–1298. [Google Scholar] [CrossRef]
- Yang, C.X.; Chen, S.J.; Hong, X.Y.; Wang, L.Z.; Wu, H.M.; Tang, Y.Y.; Gao, Y.Y.; Hao, G.F. Plant Exudates-Driven Microbiome Recruitment and Assembly Facilitates Plant Health Management. FEMS Microbiol. Rev. 2025, 49, fuaf008. [Google Scholar] [CrossRef] [PubMed]
- Afridi, M.S.; Kumar, A.; Javed, M.A.; Dubey, A.; de Medeiros, F.H.V.; Santoyo, G. Harnessing Root Exudates for Plant Microbiome Engineering and Stress Resistance in Plants. Microbiol. Res. 2024, 279, 127564. [Google Scholar] [CrossRef]
- Afzal, M.R.; Naz, M.; Yu, Y.; Yan, L.; Wang, P.; Mohotti, J.; Hao, G.F.; Zhou, J.J.; Chen, Z.; Zhang, L.; et al. Root Exudates: The Rhizospheric Frontier for Advancing Sustainable Plant Protection. Resour. Environ. Sustain. 2025, 21, 100249. [Google Scholar] [CrossRef]
- Hakim, S.; Naqqash, T.; Nawaz, M.S.; Laraib, I.; Siddique, M.J.; Zia, R.; Mirza, M.S.; Imran, A. Rhizosphere Engineering with Plant Growth-Promoting Microorganisms for Agriculture and Ecological Sustainability. Front. Sustain. Food Syst. 2021, 5, 617157. [Google Scholar] [CrossRef]
- Van Quang, P.; Xuan, L.N.; Phong, N.T.; Xuan, N.T.; Thu, L.T.; Le, N.T.; Khuong, N.Q. Potential of Indigenous Rhizosphere N2-Fixing Bacteria in Improving Soil Properties, Growth and Yield of Maize on Alluvial Soils in the Dyke System. Trends Sci. 2025, 22, 10446. [Google Scholar] [CrossRef]
- Ganugi, P.; Fiorini, A.; Ardenti, F.; Caffi, T.; Bonini, P.; Taskin, E.; Puglisi, E.; Tabaglio, V.; Trevisan, M.; Lucini, L. Nitrogen Use Efficiency, Rhizosphere Bacterial Community, and Root Metabolome Reprogramming Due to Maize Seed Treatment with Microbial Biostimulants. Physiol. Plant. 2022, 174, e13679. [Google Scholar] [CrossRef]
- Ragland, C.J.; Shih, K.Y.; Dinneny, J.R. Choreographing Root Architecture and Rhizosphere Interactions through Synthetic Biology. Nat. Commun. 2024, 15, 45272. [Google Scholar] [CrossRef]
- Liang, X.; Yu, S.; Ju, Y.; Wang, Y.; Yin, D. Multi-Scale Remote-Sensing Phenomics Integrated with Multi-Omics: Advances in Crop Drought–Heat Stress Tolerance Mechanisms and Perspectives for Climate-Smart Agriculture. Plants 2025, 14, 2829. [Google Scholar] [CrossRef]
- Cheng, M.; Sun, C.; Nie, C.; Liu, S.; Yu, X.; Bai, Y.; Liu, Y.Y.; Meng, L.; Jia, X.; Liu, Y.Y.; et al. Evaluation of UAV-Based Drought Indices for Crop Water Conditions Monitoring: A Case Study of Summer Maize. Agric. Water Manag. 2023, 287, 108442. [Google Scholar] [CrossRef]
- Bian, J.; Zhuang, Z.; Tang, R.; Ta, W.; Ren, Z.; Peng, Y. Single-Cell RNA Sequencing Reveals Cellular Diversity and Gene Expression Dynamics in Maize Root Development. Front. Plant Sci. 2025, 16, 1666531. [Google Scholar] [CrossRef]
- Ren, W.; Shi, Z.; Zhou, M.; Zhao, B.; Li, H.; Wang, J.; Liu, Y.; Zhao, J. ITRAQ-Based Quantitative Proteomic Analysis Provides Insight into the Drought-Stress Response in Maize Seedlings. Sci. Rep. 2022, 12, 13110. [Google Scholar] [CrossRef]
- Li, H.; Yang, M.; Zhao, C.; Wang, Y.; Zhang, R. Physiological and Proteomic Analyses Revealed the Response Mechanisms of Two Different Drought-Resistant Maize Varieties. BMC Plant Biol. 2021, 21, 3295. [Google Scholar] [CrossRef]
- Obata, T.; Witt, S.; Lisec, J.; Palacios-Rojas, N.; Florez-Sarasa, I.; Yousfi, S.; Araus, J.L.; Cairns, J.E.; Fernie, A.R. Metabolite Profiles of Maize Leaves in Drought, Heat, and Combined Stress Field Trials Reveal the Relationship between Metabolism and Grain Yield. Plant Physiol. 2015, 169, 2665–2683. [Google Scholar] [CrossRef]
- Mohd Saad, N.S.; Neik, T.X.; Thomas, W.J.W.; Amas, J.C.; Cantila, A.Y.; Craig, R.J.; Edwards, D.; Batley, J. Advancing Designer Crops for Climate Resilience through an Integrated Genomics Approach. Curr. Opin. Plant Biol. 2022, 67, 102220. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, J.; Guo, H.; Wu, X.; Hao, M.; Zhang, R. Integrative Transcriptome and Metabolome Analysis Reveals the Mechanism of Exogenous Melatonin Alleviating Drought Stress in Maize Roots. Plant Physiol. Biochem. 2023, 199, 107723. [Google Scholar] [CrossRef] [PubMed]
- Kaderbek, T.; Huang, L.; Yue, Y.; Wang, Z.; Lian, J.; Ma, Y.; Li, J.; Zhuang, J.; Chen, J.; Lai, J.; et al. Identification of the Maize Drought-Resistant Gene Zinc-Finger Inflorescence Meristem 23 through High-Resolution Temporal Transcriptome Analysis. Int. J. Biol. Macromol. 2025, 308, 142347. [Google Scholar] [CrossRef] [PubMed]
- Khaki, S.; Wang, L.; Archontoulis, S.V. A CNN-RNN Framework for Crop Yield Prediction. Front. Plant Sci. 2020, 10, 1750. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, M.; Mohammadi, K.; Song, D.; Bi, J.; Wang, G. Machine Learning Crop Yield Models Based on Meteorological Features and Comparison with a Process-Based Model. Artif. Intell. Earth Syst. 2022, 1, e220002. [Google Scholar] [CrossRef]
- Qiu, R.; Yang, C.; Moghimi, A.; Zhang, M.; Steffenson, B.J.; Hirsch, C.D. Detection of Fusarium Head Blight in Wheat Using a Deep Neural Network and Color Imaging. Remote Sens. 2019, 11, 2658. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Vaidya, A.S.; Helander, J.D.M.; Peterson, F.C.; Elzinga, D.; Dejonghe, W.; Kaundal, A.; Park, S.-Y.; Xing, Z.; Mega, R.; Takeuchi, J. Dynamic Control of Plant Water Use Using Designed ABA Receptor Agonists. Science 2019, 366, eaaw8848. [Google Scholar] [CrossRef]
- Gentile, F.; Agrawal, V.; Hsing, M.; Ton, A.T.; Ban, F.; Norinder, U.; Gleave, M.E.; Cherkasov, A. Deep Docking: A Deep Learning Platform for Augmentation of Structure Based Drug Discovery. ACS Cent. Sci. 2020, 6, 939–949. [Google Scholar] [CrossRef]
- Kourelis, J.; Marchal, C.; Posbeyikian, A.; Harant, A.; Kamoun, S. NLR Immune Receptor–Nanobody Fusions Confer Plant Disease Resistance. Science 2023, 379, 934–939. [Google Scholar] [CrossRef]
- Halpin-McCormick, A.; Campbell, Q.; Negrão, S.; Morrell, P.L.; Hübner, S.; Neyhart, J.L.; Kantar, M.B. Environmental Genomic Selection to Leverage Polygenic Local Adaptation in Barley Landraces. Commun. Biol. 2025, 8, 618. [Google Scholar] [CrossRef]
- Liu, C.; Kong, M.; Yang, F.; Zhu, J.; Qi, X.; Weng, J.; Di, D.; Xie, C. Targeted Generation of Null Mutants in ZmGDIα Confers Resistance against Maize Rough Dwarf Disease without Agronomic Penalty. Plant Biotechnol. J. 2022, 20, 803–805. [Google Scholar] [CrossRef]
- Tong, L.; Yan, M.; Zhu, M.; Yang, J.; Li, Y.; Xu, M. ZmCCT Haplotype H5 Improves Yield, Stalk-Rot Resistance, and Drought Tolerance in Maize. Front. Plant Sci. 2022, 13, 984527. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.Y.; Hong, C.; Han, J.H.; Bae, S.; Seo, P.J. Development of a Prime Editor with Improved Editing Efficiency in Arabidopsis. BMB Rep. 2025, 58, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Qiao, D.; Wang, J.; Lu, M.H.; Xin, C.; Chai, Y.; Jiang, Y.; Sun, W.; Cao, Z.; Guo, S.; Wang, X.C.; et al. Optimized Prime Editing Efficiently Generates Heritable Mutations in Maize. J. Integr. Plant Biol. 2023, 65, 900–906. [Google Scholar] [CrossRef] [PubMed]
- Kelliher, T.; Starr, D.; Su, X.; Tang, G.; Chen, Z.; Carter, J.; Wittich, P.E.; Dong, S.; Green, J.; Burch, E. One-Step Genome Editing of Elite Crop Germplasm during Haploid Induction. Nat. Biotechnol. 2019, 37, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Han, R.; Zhao, L.; Liu, M.; Chen, H.; Li, W.; Li, L. AutoGP: An Intelligent Breeding Platform for Enhancing Maize Genomic Selection. Plant Commun. 2025, 6, 101240. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Martin, B.K.; Calderon, D.; Lee, C.; Choi, J.; Chardon, F.M.; McDiarmid, T.A.; Daza, R.M.; Kim, H.; et al. Chromatin Context-Dependent Regulation and Epigenetic Manipulation of Prime Editing. Cell 2024, 187, 2411–2427.e25. [Google Scholar] [CrossRef]
- Watson, A.; Ghosh, S.; Williams, M.J.; Cuddy, W.S.; Simmonds, J.; Rey, M.D.; Hatta, M.A.M.; Hinchliffe, A.; Steed, A.; Reynolds, D.; et al. Speed breeding is a powerful tool to accelerate crop research. Nat. Plants 2018, 4, 23–29. [Google Scholar] [CrossRef]
- Lassoued, R.; Macall, D.M.; Smyth, S.J.; Phillips, P.W.B.; Hesseln, H. Data Challenges for Future Plant Gene Editing: Expert Opinion. Transgenic Res. 2021, 30, 765–780. [Google Scholar] [CrossRef] [PubMed]







| Stress Category | Stress Factor | Morphological & Physiological Impacts | Biochemical & Molecular Mechanisms | References |
|---|---|---|---|---|
| Abiotic | Drought stress | Stunted vegetative growth and leaf area reduction; Extended Anthesis–Silking Interval (ASI); Severe yield loss (>50% during flowering) | ABA accumulation and stomatal closure; Osmotic adjustment (proline, soluble sugars); Upregulation of antioxidant enzymes (SOD, POD); Expression of drought-responsive genes | [11,12,35] |
| Heat stress | Reduced pollen viability and kernel set; Disrupted reproductive physiology at >33–36 °C; Yield reduction (1–1.7% per 1 °C rise above 30 °C) | Oxidative damage to photosynthetic apparatus; Synergistic negative effects with water deficit; Induction of heat-shock response pathways | [2,9,12] | |
| Combined drought and heat | Accelerated leaf senescence; Greater depression of photosynthesis than single stress; Critical yield penalty | Aggravated lipid peroxidation (MDA accumulation); Complex hormonal signaling crosstalk; Impaired metabolic integrity | [11,12] | |
| Chilling/low temperature | Poor germination and emergence; Reduced early root and shoot growth, chlorosis; Reduced photosynthetic efficiency and delayed development | Membrane rigidification, ROS accumulation and activation of antioxidant systems; Altered expression of cold-responsive genes and lncRNAs; Changes in photosynthetic and phosphorylation-related transcripts | [28,29,30] | |
| Flooding/waterlogging | Reduced stand establishment, root swelling and decay, lodging, impaired nutrient uptake and stunted shoots | Root hypoxia, shift to anaerobic metabolism, accumulation of toxic intermediates, perturbation of nutrient and hormone balances, enhanced susceptibility to root diseases | [10,30] | |
| Biotic | Insect pests (e.g., Spodoptera frugiperda) | Expansion of overwintering ranges into new regions; Intensified physical damage to canopy and ear; Increased pest generations per year; Defoliation, damaged tassels and ears; Reduced photosynthetic area; Disrupted pollination and increased lodging risk | Trade-off between ABA and JA/SA signaling; Modulation of redox homeostasis by pests; Prioritization of abiotic survival over immune defense | [34,38] |
| Fungal pathogens & mycotoxins | Proliferation of Fusarium & Aspergillus spp.; Increased ear rot incidence; Quality deterioration due to toxin contamination | Biosynthesis of aflatoxins and fumonisins; Interaction with heat/humidity signaling; Co-occurrence of multiple mycotoxins | [41] |
| MQTL ID | Chr. | Position (Mb) | CI (Mb) | Associated Traits | Key Findings & Candidate Genes | References |
|---|---|---|---|---|---|---|
| MQTL1.4 | 1 | 158.2–165.5 | 0.82 | ASI, GY, KN | Located near umc11; stable across environments; involves ABA signaling. | [55,56] |
| MQTL2.2 | 2 | 12.5–18.3 | 0.95 | ASI, PH, RL | Includes marker csu133; high pleiotropy for flowering and root traits. | [26,55] |
| MQTL5.3 | 5 | 185.0–192.4 | 1.1 | GY, KN, AD | Significant impact on kernel weight and anthesis date under heat stress. | [55,57] |
| MQTL6.1 | 6 | 142.1–148.8 | 0.78 | ASI, RL, RN | Key hotspot for root-yield co-localization; affects water use efficiency. | [55,56] |
| MQTL8.2 | 8 | 122.5–130.2 | 1.05 | GY, KN, SD | Pleiotropic effects on grain yield and stover digestibility under drought. | [55,58] |
| Approach | Genetic Target | Primary Traits | Key Mechanisms | References |
|---|---|---|---|---|
| QTL/MQTL | MQTL1.4 (umc11) | Drought Tolerance, ASI | Regulation of flowering synchronization under water stress | [55,56] |
| MQTL2.2 (csu133) | Root Architecture, Yield | Coordination of root biomass and yield stability | [26,55] | |
| GWAS | ZmDREB, ZmWRKY | Seedling Drought Stress | Transcriptional regulation of stress-responsive genes | [57,59] |
| ZmGRAS15, ZmDREB2.5A, | Drought tolerance, root traits | Core regulators of ABA signaling and root development | [59,120] | |
| Genome Editing | ZmARGOS8 | Drought Tolerance | Promoter replacement (GOS2) for increased expression and yield under drought | [61,62] |
| ZmGDIα | Disease Resistance (MRDD) | Targeted null mutation for viral disease resistance | [121] | |
| ZmCOIα, ZmCCT | Stalk Rot, Drought | Enhanced stalk strength and combined stress tolerance | [15,122] | |
| ZmACC1, ZmACC2 | Herbicide Resistance | Precision base editing (CBEs/ABEs) for target-site herbicide resistance | [63] | |
| Genomic Selection | Genomic- enabled lines | Water Use Efficiency (WUE) | Long-term genetic gain through GS models | [32,57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kim, K.-H.; Park, D.; Lee, B.-M. Biotechnological Strategies to Enhance Maize Resilience Under Climate Change. Biology 2026, 15, 161. https://doi.org/10.3390/biology15020161
Kim K-H, Park D, Lee B-M. Biotechnological Strategies to Enhance Maize Resilience Under Climate Change. Biology. 2026; 15(2):161. https://doi.org/10.3390/biology15020161
Chicago/Turabian StyleKim, Kyung-Hee, Donghwa Park, and Byung-Moo Lee. 2026. "Biotechnological Strategies to Enhance Maize Resilience Under Climate Change" Biology 15, no. 2: 161. https://doi.org/10.3390/biology15020161
APA StyleKim, K.-H., Park, D., & Lee, B.-M. (2026). Biotechnological Strategies to Enhance Maize Resilience Under Climate Change. Biology, 15(2), 161. https://doi.org/10.3390/biology15020161

