Ras Homolog A (RhoA) Is Involved in the Innate Immune Defense of the Red Swamp Crayfish Procambarus clarkii
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. P. clarkii and Tissue Collection
2.2. Immunity Challenge
2.3. RNA Extraction and cDNA Synthesis
2.4. Cloning of the PcRhoA Gene
2.5. Sequence Blast and Phylogenic Analysis for the PcRhoA Gene
2.6. RT-qPCR Analysis for Expression Patterns
2.7. Double-Stranded RNA Synthesis and RNAi Assay
2.8. Detection of Innate Immunity Signaling Pathway-Associated Genes
2.9. Statistical Analysis
3. Results and Discussion
3.1. Sequence Analysis of the RhoA Gene
3.2. Homologous Alignment and Phylogenetic Analysis
3.3. Tissue Distribution of the RhoA Gene
3.4. Quantitative Analysis of RhoA mRNA After Immunity Challenge
3.5. RhoA Affects the Transcription of Innate Immunity Signaling Pathway-Associated Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yi, S.; Li, Y.; Shi, L.; Zhang, L.; Li, Q.; Chen, J. Characterization of Population Genetic Structure of red swamp crayfish, Procambarus clarkii, in China. Sci. Rep. 2018, 8, 5586. [Google Scholar] [CrossRef]
- Serdiuk, A.M.; Voloshchenko, O.I.; Mudryĭ, I.V.; Valovenko, A.G.; Bezrodnaia, E.G. The ecological and hygienic aspects of the use of surface-active substances in oil-producing regions of Ukraine. Lik. Sprava. 1993, 11–12, 29–32. [Google Scholar]
- Longshaw, M. Diseases of crayfish: A review. J. Invertebr. Pathol. 2011, 106, 54–70. [Google Scholar] [CrossRef] [PubMed]
- Monod, E.C.; Betancourt, J.L.; Samms, K.A.; Alkie, T.N.; Walmsley, C.G.; Rodríguez-Ramos, T.; DeWitte-Orr, S.J.; Dixon, B. Immunostimulant effects of Pituitary Adenylate Cyclase-Activating Polypeptide and double-stranded (ds)RNA in Orconectes propinquus. Fish Shellfish Immunol. 2024, 146, 109388. [Google Scholar] [CrossRef]
- Wu, X.; Wu, H.; Wu, Y.; Xu, Z.; Shan, H.; Gao, T. Effects of Different Sediment Improvers on the Growth Environment, Innate Immune Responses, and Intestinal Health of Procambarus clarkii. Biology 2025, 14, 407. [Google Scholar] [CrossRef]
- Cerenius, L.; Söderhäll, K. Crayfish immunity—Recent findings. Dev. Comp. Immunol. 2018, 80, 94–98. [Google Scholar] [CrossRef]
- Fajardo, C.; Martinez-Rodriguez, G.; Costas, B.; Mancera, J.M.; Fernandez-Boo, S.; Rodulfo, H.; De Donato, M. Shrimp immune response: A transcriptomic perspective. Rev. Aquac. 2022, 14, 1136–1149. [Google Scholar] [CrossRef]
- Bian, D.D.; Shi, Y.X.; Zhu, X.R.; Sun, X.L.; Xu, X.; Ding, L.; Zhang, D.-Z.; Liu, Q.-N.; Tang, B.-P.; Zhu, B.J. Effects of nitrite exposure on the oxidative stress, immune response and intestine microbiota of Procambarus clarkii. Aquaculture 2024, 593, 741331. [Google Scholar] [CrossRef]
- De Santis, E.; Alkassem, H.; Lamarre, B.; Faruqui, N.; Bella, A.; Noble, J.E.; Micale, N.; Ray, S.; Burns, J.R.; Yon, A.R.; et al. Antimicrobial peptide capsids of de novo design. Nat. Commun. 2017, 8, 2263. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.; Krishnan, S.; Anand, D.; Kokkattunivarthil Uthaman, S.; Otta, S.K.; Karunasagar, I.; Kooloth Valappil, R. Immune responses and immunoprotection in crustaceans with special reference to shrimp. Rev. Aquac. 2021, 13, 431–459. [Google Scholar] [CrossRef]
- Li, F.; Xiang, J. Signaling pathways regulating innate immune responses in shrimp. Fish Shellfish Immunol. 2013, 34, 973–980. [Google Scholar] [CrossRef]
- Jang, Y.N.; Baik, E.J. JAK-STAT pathway and myogenic differentiation. JAK-STAT 2013, 2, e23282. [Google Scholar] [CrossRef]
- Fajardo, C.; De Donato, M.; Charoonnart, P.; Saksmerprome, V.; Jackson, H.O.; Mancera, J.M.; Costas, B. Rab Proteins as Potential Therapeutic Targets Applied to Crustacean Aquaculture: Rab7 Case Analysis. Rev. Aquac. 2025, 17, e13005. [Google Scholar] [CrossRef]
- Shi, J.; Wei, L. Rho Kinases in Embryonic Development and Stem Cell Research. Arch. Immunol. Ther. Exp. 2022, 70, 4. [Google Scholar] [CrossRef]
- Rai, S.K.; Singh, D.; Sarangi, P.P. Role of RhoG as a regulator of cellular functions: Integrating insights on immune cell activation, migration, and functions. Inflamm. Res. 2023, 72, 1453–1463. [Google Scholar] [CrossRef] [PubMed]
- Park, T.H.; Park, J.H.; Chang, C.H.; Rah, D.K. Botulinum Toxin A Upregulates Rac1, Cdc42, and RhoA Gene Expression in a Dose-Dependent Manner: In Vivo and in Vitro Study. J. Craniofac. Surg. 2016, 27, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Charrasse, S.; Causeret, M.; Comunale, F.; Bonet-Kerrache, A.; Gauthier-Rouvière, C. Rho GTPases and cadherin-based cell adhesion in skeletal muscle development. J. Muscle Res. Cell Motil. 2003, 24, 309–313. [Google Scholar] [CrossRef]
- Lu, X.; Tang, S.; Liu, X.; Jiang, J.J.; Bian, D.D.; Zhang, D.Z.; Liu, Q.N.; Cheng, Y.-X.; Tang, B.P.; Dai, L.S. Comparative transcriptome analysis reveals the immune defense mechanism of the red swamp crayfish (Procambarus clarkii) in response to Vibrio parahaemolyticus challenge. Aquaculture 2024, 591, 741086. [Google Scholar] [CrossRef]
- Wang, K.; Ren, Q.; Shen, X.L.; Li, B.; Du, J.; Yu, X.-D.; Du, Z.-Q. Molecular characterization and expression analysis of dopa decarboxylase involved in the antibacterial innate immunity of the freshwater crayfish, Procambarus clarkii. Fish Shellfish Immunol. 2019, 91, 19–28. [Google Scholar] [CrossRef]
- Huang, Y.; Li, T.T.; Jin, M.; Yin, S.W.; Hui, K.M.; Ren, Q. Newly identified PcToll4 regulates antimicrobial peptide expression in intestine of red swamp crayfish Procambarus clarkii. Gene 2017, 610, 140–147. [Google Scholar] [CrossRef]
- Du, Z.Q.; Li, B.; Shen, X.L.; Wang, K.; Du, J.; Yu, X.-D.; Yuan, J.-J. A new antimicrobial peptide isoform, Pc-crustin 4 involved in antibacterial innate immune response in fresh water crayfish, Procambarus clarkii. Fish Shellfish Immunol. 2019, 94, 861–870. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Sanderford, M.; Sharma, S.; Tamura, K. MEGA12: Molecular Evolutionary Genetic Analysis version 12 for adaptive and green computing. Mol. Biol. Evol. 2024, 41, msae263. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Bian, D.D.; Liu, X.; Zhang, X.; Zhang, G.Y.; Wu, R.C.; Shi, Y.X.; Zhu, X.-R.; Zhang, D.-Z.; Liu, Q.-N.; Tang, B.-P.; et al. Correlative analysis of transcriptome and 16S rDNA in Procambarus clarkii reveals key signaling pathways are involved in Chlorantraniliprole stress response by phosphoinositide 3-kinase (PI3K). Int. J. Biol. Macromol. 2024, 280, 135966. [Google Scholar] [CrossRef]
- Zhang, S.P.; Zhang, J.; Wang, Q.H.; Ye, Y.; Zhang, D.Z.; Liu, Q.N.; Tang, B.P.; Dai, L.S. Ferritin Heavy-like subunit is involved in the innate immune defense of the red swamp crayfish Procambarus clarkii. Front. Immunol. 2024, 15, 1411936. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, Y.; Abbas, M.N.; Kausar, S.; Chen, Q.; Jiang, C.X.; Dai, L.S. Molecular structure and functional characterization of the peroxiredoxin 5 in Procambarus clarkii following LPS and Poly I:C challenge. Fish Shellfish Immunol. 2017, 71, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Ruan, G.; Fan, W.; Wang, Q.; Fang, L.; Luo, J.; Liu, Y. Immune response to acute heat stress in the intestine of the red swamp crayfish, Procambarus clarkii. Fish Shellfish Immunol. 2020, 100, 146–151. [Google Scholar] [CrossRef]
- Zhu, L.; Gu, Y.; Kong, Y.; Wang, X.; Li, H.; Hou, L.; Kong, X. Rab proteins in fish and crustaceans: An overview. Rev. Fish Biol. Fish. 2024, 34, 919–933. [Google Scholar] [CrossRef]
- Di Liegro, C.M.; Schiera, G.; Di Liegro, I. Extracellular Vesicle-Associated RNA as a Carrier of Epigenetic Information. Genes 2017, 8, 240. [Google Scholar] [CrossRef]
- Boureux, A.; Vignal, E.; Faure, S.; Fort, P. Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol. Biol. Evol. 2007, 24, 203–216. [Google Scholar] [CrossRef]
- Kircheis, R.; Planz, O. The Role of Toll-like Receptors (TLRs) and Their Related Signaling Pathways in Viral Infection and Inflammation. Int. J. Mol. Sci. 2023, 24, 6701. [Google Scholar] [CrossRef]
- Ye, G.; Liu, H.; Zhou, Q.; Liu, X.; Huang, L.; Weng, C. A Tug of War: Pseudorabies Virus and Host Antiviral Innate Immunity. Viruses 2022, 14, 547. [Google Scholar] [CrossRef]
- Ahmadifar, E.; Fallah, H.P.; Yousefi, M.; Dawood, M.A.O.; Hoseinifar, S.H.; Adineh, H.; Yilmaz, S.; Paolucci, M.; Van Doan, H. The Gene Regulatory Roles of Herbal Extracts on the Growth, Immune System, and Reproduction of Fish. Animals 2021, 11, 2167. [Google Scholar] [CrossRef] [PubMed]
- Shahid, A.D.; Lu, Y.; Iqbal, M.A.; Lin, L.; Huang, S.; Jiang, X.; Chen, S. Listeria monocytogenes crosses blood brain barrier through Rho GTPases induced migration of macrophages and inflammatory interleukin expression. Microb. Pathog. 2021, 159, 105143. [Google Scholar] [CrossRef]
- Choi, S.Y.; Ahn, Y.R.; Lee, E.B.; Yu, M.J.; Lee, J.R. Expression of a RhoA-Specific Guanine Nucleotide Exchange Factor, p190RhoGEF, in Mouse Macrophages Negatively Affects M1 Polarization and Inflammatory Responses. Front. Immunol. 2022, 13, 782475. [Google Scholar] [CrossRef]
- Socodato, R.; Relvas, J.B. A cytoskeleton symphony: Actin and microtubules in microglia dynamics and aging. Prog. Neurobiol. 2024, 234, 102586. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Zheng, X.; Luo, X.; Cui, W.; Ma, X.; Xu, S.; Fu, L.; Zhang, J.; Xu, Y.; Li, Y.; et al. Loss of RhoA in microglia disables glycolytic adaptation and impairs spinal cord injury recovery through Arhgap25/HIF-1α pathway. Cell Death Dis. 2025, 16, 636. [Google Scholar] [CrossRef]
- Dong, Z.; Zhuo, R.; Wang, Q.; Sun, Y.; Zhou, Z.; Wu, R.; Liu, Y.; Liu, M. Kif15 regulates Coro1a+ cell migration and phagocytosis in zebrafish after spinal cord injury. Int. Immunopharmacol. 2024, 146, 113874. [Google Scholar] [CrossRef] [PubMed]
- Quast, T.; Tappertzhofen, B.; Schild, C.; Grell, J.; Czeloth, N.; Förster, R.; Alon, R.; Fraemohs, L.; Dreck, K.; Weber, C.; et al. Cytohesin-1 controls the activation of RhoA and modulates integrin-dependent adhesion and migration of dendritic cells. Blood 2009, 113, 5801–5810. [Google Scholar] [CrossRef]
- Manukyan, M.; Nalbant, P.; Luxen, S.; Hahn, K.M.; Knaus, U.G. RhoA GTPase activation by TLR2 and TLR3 ligands: Connecting via Src to NF-kappa B. J. Immunol. 2009, 182, 3522–3529. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.Q.; Xiao, Y.J.; Fu, D.; Lin, H.-B.; Yang, Y.-L.; Ye, Y.-J.; Zhan, Z.-P.; Fan, J.-J.; Yang, X.-Y.; Xu, H.-S. Modulation of RhoA/ROCK pathway on TLR-2 ligand-induced chemokine secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Zhonghua Yi Xue Za Zhi 2011, 91, 742–745. [Google Scholar]
- Xu, H.; Hou, Q.; Zhu, J.; Feng, M.; Wang, P.; Pan, Y. The protective effect of Escherichia coli Nissle 1917 on the intestinal barrier is mediated by inhibition of RhoA/ROCK2/MLC signaling via TLR-4. Life Sci. 2022, 292, 120330. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Xiao, Y.; Chen, G.; Fu, D.; Ye, Y.; Liang, L.; Fan, J.; Yang, X.; Sun, L.; Xu, H. HMG-CoA reductase inhibitor simvastatin suppresses Toll-like receptor 2 ligand-induced activation of nuclear factor kappa B by preventing RhoA activation in monocytes from rheumatoid arthritis patients. Rheumatol. Int. 2011, 31, 1451–1458. [Google Scholar] [CrossRef]
- Peng, X.; Zhong, Z.; Zhong, H.; Gong, J.; Du, T.; Ding, L.; Lan, X.; Tu, H.; Tang, Q.; Xia, Z.; et al. Histopathological observation and comparative transcriptome analysis reveal immune response mechanisms to Aeromonas dhakensis infection in Macrobrachium rosenbergii. Fish Shellfish Immunol. 2023, 142, 109151. [Google Scholar] [CrossRef]
- de Souza Valente, C.; Wan, A.H.L. Vibrio and major commercially important vibriosis diseases in decapod crustaceans. J. Invertebr. Pathol. 2020, 181, 107527. [Google Scholar] [CrossRef] [PubMed]







| Primer Name | Primer Sequences (5′-3′) | Tm (°C) | Size (bp) |
|---|---|---|---|
| PcRhoA-F | ATGGCCAACAGGGAGATAAAC | 58 | 623 |
| PcRhoA-R | TTACAAAAGAGTCATTTAGTCT | ||
| Pc18S-F | ACCGATTGAATGATTTAGTGAG | 55 | 119 |
| Pc18S-R | TACGGAAACCTTGTTACGAC | ||
| PcRhoA-Fi | GCGTAATACGACTCACTATAGGGAAAGACAGAATTCATGGCGG | 57 | 446 |
| PcRhoA-Ri | GCGTAATACGACTCACTATAGGGGTCCCTCCTCAGGTTTCACA | ||
| GFP-Fi | GCGTAATACGACTCACTATAGGTGGTCCCAATTCTCGTGGAAC | 57 | 428 |
| GFP-Ri | GCGTAATACGACTCACTATAGGCTTGAAGTTGACCTTGATGCC | ||
| PcRhoA-RT-F | AACAGGGAGATAAACATACGC | 56 | 170 |
| PcRhoA-RT-R | GGAAACTGGTCCTTTGAGAAT | ||
| PcALF9-RT-F | GTCGGGCTGTTTAGGAATGAGG | 55 | 145 |
| PcALF9-RT-R | TTGTCTTGTTCGCCACTCCACTT | ||
| PcALF10-RT-F | TGTCTGCTCTTTGCTCGTTC | 55 | 169 |
| PcALF10-RT-R | GTGTCGTCAATAGATACTGCGTTA | ||
| Pccrustin2-RT-F | CTGGTGTTGTCCATGCTGGTG | 55 | 171 |
| Pccrustin2-RT-R | CCTGAGGTGGTAGGATTCTTGT | ||
| Pclysozyme-RT-F | AGCCCTCGTGGTCGTCTTG | 55 | 186 |
| Pclysozyme-RT-R | GTTGGGATCGGCGTTATTG | ||
| PcRelish-RT-F | GCTGTCCGTGGCAATGAAG | 55 | 138 |
| PcRelish-RT-R | GAGGCAGTGCTGAACGAGTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ren, S.; Xu, W.; Ma, X.; Ma, C.; Wang, A.; Liu, Q.; Dai, L. Ras Homolog A (RhoA) Is Involved in the Innate Immune Defense of the Red Swamp Crayfish Procambarus clarkii. Biology 2026, 15, 112. https://doi.org/10.3390/biology15020112
Ren S, Xu W, Ma X, Ma C, Wang A, Liu Q, Dai L. Ras Homolog A (RhoA) Is Involved in the Innate Immune Defense of the Red Swamp Crayfish Procambarus clarkii. Biology. 2026; 15(2):112. https://doi.org/10.3390/biology15020112
Chicago/Turabian StyleRen, Shengjie, Wenjing Xu, Xianjun Ma, Chunhua Ma, Aimin Wang, Qiuning Liu, and Lishang Dai. 2026. "Ras Homolog A (RhoA) Is Involved in the Innate Immune Defense of the Red Swamp Crayfish Procambarus clarkii" Biology 15, no. 2: 112. https://doi.org/10.3390/biology15020112
APA StyleRen, S., Xu, W., Ma, X., Ma, C., Wang, A., Liu, Q., & Dai, L. (2026). Ras Homolog A (RhoA) Is Involved in the Innate Immune Defense of the Red Swamp Crayfish Procambarus clarkii. Biology, 15(2), 112. https://doi.org/10.3390/biology15020112
