Detection of Expressed Otx mRNA Isoforms in Sea Urchins by Mapping NGS Reads to Single-Gene/Transcript Sequences
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. NGS Data Analysis
2.2. Animals and Sample Preparations
2.3. RNA Isolation
2.4. RT-qPCR
3. Results
3.1. Application and Visualization of Single-Gene/Transcript Mapping
3.2. RT-qPCR Analysis of Otx Isoforms Expression in S. intermedius Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Q.; Fang, L.; Wu, C. Alternative splicing and isoforms: From mechanisms to diseases. Genes 2022, 13, 401. [Google Scholar] [CrossRef] [PubMed]
- Alfonso-Gonzalez, C.; Legnini, I.; Holec, S.; Arrigoni, L.; Ozbulut, H.C.; Mateos, F.; Koppstein, D.; Rybak-Wolf, A.; Bönisch, U.; Rajewsky, N.; et al. Sites of transcription initiation drive mRNA isoform selection. Cell 2023, 186, 2438–2455.e22. [Google Scholar] [CrossRef] [PubMed]
- Tellier, M.; Maudlin, I.; Murphy, S. Transcription and splicing: A two-way street. Wiley Interdiscip. Rev. RNA 2020, 11, e1593. [Google Scholar] [CrossRef] [PubMed]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef]
- Sodergren, E.; Weinstock, G.M.; Davidson, E.H.; Cameron, R.A.; Gibbs, R.A.; Angerer, R.C.; Angerer, L.M.; Arnone, M.I.; Burgess, D.R.; Burke, R.D.; et al. The genome of the sea urchin Strongylocentrotus purpuratus. Science 2006, 314, 941–952. [Google Scholar] [CrossRef]
- Kiyama, T.; Akasaka, K.; Takata, K.; Mitsunaga-Nakatsubo, K.; Sakamoto, N.; Shimada, H. Structure and function of a sea urchin orthodenticle-related gene (HpOtx). Dev. Biol. 1998, 193, 139–145. [Google Scholar] [CrossRef]
- Li, X.; Chuang, C.-K.; Mao, C.-A.; Angerer, L.M.; Klein, W.H. Two Otx proteins generated from multiple transcripts of a single gene in Strongylocentrotus purpuratus. Dev. Biol. 1997, 187, 253–266. [Google Scholar] [CrossRef]
- Angerer, L.M.; Oleksyn, D.W.; Levine, A.M.; Li, X.; Klein, W.H.; Angerer, R.C. Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes. Development 2001, 128, 4393–4404. [Google Scholar] [CrossRef]
- Chuang, C.-K.; Wikramanayake, A.H.; Mao, C.-A.; Li, X.; Klein, W.H. Transient appearance of Strongylocentrotus purpuratus Otx in micromere nuclei: Cytoplasmic retention of SpOtx possibly mediated through an α-actinin interaction. Dev. Genet. 1996, 19, 231–237. [Google Scholar] [CrossRef]
- Kiyama, T.; Zhang, N.; Dayal, S.; Yun Lee, P.; Liang, S.; Villinski, J.T.; Klein, W.H. Strongylocentrotus purpuratus transcription factor GATA-E binds to and represses transcription at an Otx-Goosecoid cis-regulatory element within the aboral ectoderm-specific spec2a enhancer. Dev. Biol. 2005, 280, 436–447. [Google Scholar] [CrossRef]
- Mao, C.-A.; Gan, L.; Klein, W.H. Multiple Otx binding sites required for expression of the Strongylocentrotus purpuratus Spec2a gene. Dev. Biol. 1994, 165, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Morris, V.B.; Byrne, M. Involvement of two Hox genes and Otx in echinoderm body-plan morphogenesis in the sea urchin Holopneustes purpurescens. J. Exp. Zool. B Mol. Dev. Evol. 2005, 304, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Paganos, P.; Ullrich-Lüter, E.; Caccavale, F.; Zakrzewski, A.; Voronov, D.; Fournon-Berodia, I.; Cocurullo, M.; Lüter, C.; Arnone, M.I. A new model organism to investigate extraocular photoreception: Opsin and retinal gene expression in the sea urchin Paracentrotus lividus. Cells 2022, 11, 2636. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Kraemer, E.; Liu, H.; Theodoris, C.; Davidson, E. A spatially dynamic cohort of regulatory genes in the endomesodermal gene network of the sea urchin embryo. Dev. Biol. 2008, 313, 863–875. [Google Scholar] [CrossRef]
- Tsironis, I.; Paganos, P.; Gouvi, G.; Tsimpos, P.; Stamopoulou, A.; Arnone, M.I.; Flytzanis, C.N. Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus. Dev. Biol. 2021, 475, 131–144. [Google Scholar] [CrossRef]
- Yuh, C.H.; Dorman, E.R.; Howard, M.L.; Davidson, E.H. An otx cis-regulatory module: A key node in the sea urchin endomesoderm gene regulatory network. Dev. Biol. 2004, 269, 536–551. [Google Scholar] [CrossRef]
- Yuh, C.-H.; Brown, C.T.; Livi, C.B.; Rowen, L.; Clarke, P.J.C.; Davidson, E.H. Patchy interspecific sequence similarities efficiently identify positive cis-regulatory elements in the sea urchin. Dev. Biol. 2002, 246, 148–161. [Google Scholar] [CrossRef]
- Yuh, C.-H.; Li, X.; Davidson, E.H.; Klein, W.H. Correct expression of spec2a in the sea urchin embryo requires both Otx and other cis-regulatory elements. Dev. Biol. 2001, 232, 424–438. [Google Scholar] [CrossRef]
- Tu, Q.; Cameron, R.A.; Davidson, E.H. Quantitative developmental transcriptomes of the sea urchin Strongylocentrotus purpuratus. Dev. Biol. 2014, 385, 160–167. [Google Scholar] [CrossRef]
- Tu, Q.; Cameron, R.A.; Worley, K.C.; Gibbs, R.A.; Davidson, E.H. Gene structure in the sea urchin Strongylocentrotus purpuratus based on transcriptome analysis. Genome Res. 2012, 22, 2079–2087. [Google Scholar] [CrossRef]
- Kipryushina, Y.O.; Maiorova, M.A.; Yakovlev, K.V. An approach to quantitate maternal transcripts localized in sea urchin egg cortex using RT-qPCR with accurate normalization. PLoS ONE 2022, 17, e0260831. [Google Scholar] [CrossRef]
- Kober, K.M.; Pogson, G.H. Genome-wide signals of positive selection in strongylocentrotid sea urchins. BMC Genom. 2017, 18, 555. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2012, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef]
- Barnett, D.W.; Garrison, E.K.; Quinlan, A.R.; Strömberg, M.P.; Marth, G.T. BamTools: A C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 2011, 27, 1691–1692. [Google Scholar] [CrossRef]
- Community, G. The Galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update. Nucleic Acids Res. 2024, 52, W83–W94. [Google Scholar] [CrossRef]
- Thorvaldsdóttir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 2012, 14, 178–192. [Google Scholar] [CrossRef]
- Okonechnikov, K.; Golosova, O.; Fursov, M.; UGENE Development Team. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef] [PubMed]
- Juliano, C.E.; Voronina, E.; Stack, C.; Aldrich, M.; Cameron, A.R.; Wessel, G.M. Germ line determinants are not localized early in sea urchin development, but do accumulate in the small micromere lineage. Dev. Biol. 2006, 300, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Juliano, C.E.; Yajima, M.; Wessel, G.M. Nanos functions to maintain the fate of the small micromere lineage in the sea urchin embryo. Dev. Biol. 2010, 337, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Perillo, M.; Wang, Y.J.; Leach, S.D.; Arnone, M.I. A pancreatic exocrine-like cell regulatory circuit operating in the upper stomach of the sea urchin Strongylocentrotus purpuratus larva. BMC Evol. Biol. 2016, 16, 117. [Google Scholar] [CrossRef]
- Reinardy, H.C.; Emerson, C.E.; Manley, J.M.; Bodnar, A.G. Tissue regeneration and biomineralization in sea urchins: Role of Notch signaling and presence of stem cell markers. PLoS ONE 2015, 10, e0133860. [Google Scholar] [CrossRef]
- Camacho Londoño, J.; Philipp, S.E. A reliable method for quantification of splice variants using RT-qPCR. BMC Mol. Biol. 2016, 17, 8. [Google Scholar] [CrossRef]
- Vandenbroucke, I.I.; Vandesompele, J.; Paepe, A.D.; Messiaen, L. Quantification of splice variants using real-time PCR. Nucleic Acids Res. 2001, 29, E68. [Google Scholar] [CrossRef]
- Virtue, S.; Dale, M.; Sethi, J.K.; Vidal-Puig, A. LEM-PCR: A method for determining relative transcript isoform proportions using real-time PCR without a standard curve. Genome 2010, 53, 637–642. [Google Scholar] [CrossRef]
- Su, Y.; Yu, Z.; Jin, S.; Ai, Z.; Yuan, R.; Chen, X.; Xue, Z.; Guo, Y.; Chen, D.; Liang, H.; et al. Comprehensive assessment of mRNA isoform detection methods for long-read sequencing data. Nat. Commun. 2024, 15, 3972. [Google Scholar] [CrossRef]




| Sequence (GenBank Accession Number) | Oligos | Product Size, bp |
|---|---|---|
| Common sequence | F: TGTTAAAATGAACCACCACCAATC R: AGCAACATTCGATGATAATCGTTC | 146 |
| Otxα (PV009158) | F: TCAACAGCGTTATCAGCTGGAC R: TTGATTTCACGACTAGCAAGATCAG | 130 |
| Otxβ (PV009157) | F: CGAATATGTGCGCTTAACGAGT R: TGCGTGTCAAATTACAAAGCAAG | 180 |
| Otxβ (PV009157) and Otxβ3 (putative) common sequence | F: CTGGATCATTCTGCCTTGACAG R: TGTTCTGAAGGTGGTGGTGATG | 106 |
| Tissue/Stage | Minimap2 | BWA-MEM2 | Bowtie2 | STAR | ||||
|---|---|---|---|---|---|---|---|---|
| Exon Coverage | Non- Specificity | Exon Coverage | Non- Specificity | Exon Coverage | Non- Specificity | Exon Coverage | Non- Specificity | |
| Radial nerve | – | + | – | + | + | + | + | + |
| Ovary | + | + | – | + | + | + | + | + |
| Cleavage (10 hpf) | + | + | + | + | + | – | + | – |
| Early gastrula (30 hpf) | + | + | + | + | + | – | + | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Maiorova, M.A.; Kipryushina, Y.O.; Yakovlev, K.V. Detection of Expressed Otx mRNA Isoforms in Sea Urchins by Mapping NGS Reads to Single-Gene/Transcript Sequences. Biology 2026, 15, 72. https://doi.org/10.3390/biology15010072
Maiorova MA, Kipryushina YO, Yakovlev KV. Detection of Expressed Otx mRNA Isoforms in Sea Urchins by Mapping NGS Reads to Single-Gene/Transcript Sequences. Biology. 2026; 15(1):72. https://doi.org/10.3390/biology15010072
Chicago/Turabian StyleMaiorova, Mariia A., Yulia O. Kipryushina, and Konstantin V. Yakovlev. 2026. "Detection of Expressed Otx mRNA Isoforms in Sea Urchins by Mapping NGS Reads to Single-Gene/Transcript Sequences" Biology 15, no. 1: 72. https://doi.org/10.3390/biology15010072
APA StyleMaiorova, M. A., Kipryushina, Y. O., & Yakovlev, K. V. (2026). Detection of Expressed Otx mRNA Isoforms in Sea Urchins by Mapping NGS Reads to Single-Gene/Transcript Sequences. Biology, 15(1), 72. https://doi.org/10.3390/biology15010072

