The Convergence of Early-Life Stress and Autism Spectrum Disorder on the Epigenetics of Genes Key to the HPA Axis
Simple Summary
Abstract
1. Introduction
Search Strategy and Study Selection
2. Epigenetics and the HPA Axis
3. FKBP5
4. NR3C1
5. MECP2
6. GAD1
7. RELN
8. SHANK3
9. OXTR
10. BDNF
11. Discussion
12. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takeda, T.; Makinodan, M.; Toritsuka, M.; Iwata, N. Impacts of adverse childhood experiences on individuals with autism spectrum disorder. Curr. Opin. Neurobiol. 2024, 89, 102932. [Google Scholar] [CrossRef]
- Costa, C.I.S.; Madanelo, L.; Wang, J.Y.T.; da Silva Campos, G.; De Sanctis Girardi, A.C.; Scliar, M.; Monfardini, F.; de Cássia Mingroni Pavanello, R.; Cória, V.R.; Vibranovski, M.D.; et al. Understanding rare variant contributions to autism: Lessons from dystrophin-deficient model. NPJ Genom. Med. 2025, 10, 18. [Google Scholar] [CrossRef]
- Kuodza, G.E.; Kawai, R.; LaSalle, J.M. Intercontinental insights into autism spectrum disorder: A synthesis of environmental influences and DNA methylation. Environ. Epigenetics 2024, 10, dvae023. [Google Scholar] [CrossRef]
- Hoover, D.W.; Kaufman, J. Adverse Childhood Experiences in Children with Autism Spectrum Disorder. Curr. Opin. Psychiatry 2018, 31, 128–132. [Google Scholar] [CrossRef]
- Zimmermann, C.A.; Raabe, F.; Hoffmann, A. Epigenetic Programming of the HPA Axis by Early Life Adversity. In Epigenetics and Neuroendocrinology: Clinical Focus on Psychiatry; Spengler, D., Binder, E., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 1, pp. 115–133. [Google Scholar] [CrossRef]
- Gao, J.; Zou, J.; Yang, L.; Zhao, J.; Wang, L.; Liu, T.; Fan, X. Alteration of peripheral cortisol and autism spectrum disorder: A meta-analysis. Front. Psychiatry 2022, 13, 928188. [Google Scholar] [CrossRef]
- Sheng, J.A.; Bales, N.J.; Myers, S.A.; Bautista, A.I.; Roueinfar, M.; Hale, T.M.; Handa, R.J. The Hypothalamic-Pituitary-Adrenal Axis: Development, Programming Actions of Hormones, and Maternal-Fetal Interactions. Front. Behav. Neurosci. 2021, 14, 601939. [Google Scholar] [CrossRef] [PubMed]
- Weaver, I.C.G.; Cervoni, N.; Champagne, F.A.; D’Alessio, A.C.; Sharma, S.; Seckl, J.R.; Dymov, S.; Szyf, M.; Meaney, M.J. Epigenetic programming by maternal behavior. Nat. Neurosci. 2004, 7, 847–854. [Google Scholar] [CrossRef]
- Klengel, T.; Mehta, D.; Anacker, C.; Rex-Haffner, M.; Pruessner, J.C.; Pariante, C.M.; Pace, T.W.W.; Mercer, K.B.; Mayberg, H.S.; Bradley, B.; et al. Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions. Nat. Neurosci. 2013, 16, 33–41. [Google Scholar] [CrossRef]
- OhYang, T.; Liu, J.; Zhang, Y.; Zhang, Q.; Shangguan, L.; Li, Z.; Luo, X.; Gong, J. Coping style predicts sense of security and mediates the relationship between autistic traits and social anxiety: Moderation by a polymorphism of the FKBP5 gene. Behav. Brain Res. 2021, 404, 113142. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Crider, A.; Pandya, C.D.; Ahmed, A.O.; Pillai, A. Altered mRNA Levels of Glucocorticoid Receptor, Mineralocorticoid Receptor, and Co-Chaperones (FKBP5 and PTGES3) in the Middle Frontal Gyrus of Autism Spectrum Disorder Subjects. Mol. Neurobiol. 2016, 53, 2090–2099. [Google Scholar] [CrossRef] [PubMed]
- Kundakovic, M.; Jaric, I. The Epigenetic Link between Prenatal Adverse Environments and Neurodevelopmental Disorders. Genes 2017, 8, 104. [Google Scholar] [CrossRef]
- Oh, M.; Yoon, N.-H.; Kim, S.A.; Yoo, H.J. Epigenetic Insights into Autism Spectrum Disorder: DNA Methylation Levels of NR3C1, ASCL1, and FOXO3 in Korean Autism Spectrum Disorder Sibling Pairs. Clin. Psychopharmacol. Neurosci. 2024, 22, 635–645. [Google Scholar] [CrossRef]
- Zhou, C.; Yan, S.; Qian, S.; Wang, Z.; Shi, Z.; Xiong, Y.; Zhou, Y. Atypical Response Properties of the Auditory Cortex of Awake MECP2-Overexpressing Mice. Front. Neurosci. 2019, 13, 439. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, R.; Hogart, A.; Gwye, Y.; Martin, M.R.; LaSalle, J.M. Reduced MeCP2 Expression is Frequent in Autism Frontal Cortex and Correlates with Aberrant MECP2 Promoter Methylation. Epigenetics 2006, 1, 172–182. [Google Scholar] [CrossRef]
- Zhubi, A.; Chen, Y.; Dong, E.; Cook, E.H.; Guidotti, A.; Grayson, D.R. Increased binding of MeCP2 to the GAD1 and RELN promoters may be mediated by an enrichment of 5-hmC in autism spectrum disorder (ASD) cerebellum. Transl. Psychiatry 2014, 4, e349. [Google Scholar] [CrossRef] [PubMed]
- Zhubi, A.; Chen, Y.; Guidotti, A.; Grayson, D. Epigenetic regulation of RELN and GAD1 in the frontal cortex (FC) of autism spectrum disorder (ASD) subjects. Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev. Neurosci. 2017, 62, 63–72. [Google Scholar] [CrossRef]
- Szyf, M. DNA methylation, the early-life social environment and behavioral disorders. J. Neurodev. Disord. 2011, 3, 238–249. [Google Scholar] [CrossRef]
- Miyata, S.; Kakizaki, T.; Fujihara, K.; Obinata, H.; Hirano, T.; Nakai, J.; Tanaka, M.; Itohara, S.; Watanabe, M.; Tanaka, K.F.; et al. Global knockdown of glutamate decarboxylase 67 elicits emotional abnormality in mice. Mol. Brain 2021, 14, 5. [Google Scholar] [CrossRef]
- Dick, A.; Chen, A. The role of TET proteins in stress-induced neuroepigenetic and behavioural adaptations. Neurobiol. Stress 2021, 15, 100352. [Google Scholar] [CrossRef]
- Cheng, Y.; Sun, M.; Chen, L.; Li, Y.; Lin, L.; Yao, B.; Li, Z.; Wang, Z.; Chen, J.; Miao, Z.; et al. Ten-Eleven Translocation Proteins Modulate the Response to Environmental Stress in Mice. Cell Rep. 2018, 25, 3194–3203.e4. [Google Scholar] [CrossRef]
- Pearson, G.; Song, C.; Hohmann, S.; Prokhorova, T.; Sheldrick-Michel, T.M.; Knöpfel, T. DNA Methylation Profiles of GAD1 in Human Cerebral Organoids of Autism Indicate Disrupted Epigenetic Regulation during Early Development. Int. J. Mol. Sci. 2022, 23, 9188. [Google Scholar] [CrossRef]
- Lintas, C.; Sacco, R.; Persico, A.M. Differential methylation at the RELN gene promoter in temporal cortex from autistic and typically developing post-puberal subjects. J. Neurodev. Disord. 2016, 8, 18. [Google Scholar] [CrossRef] [PubMed]
- Palacios-García, I.; Lara-Vásquez, A.; Montiel, J.F.; Díaz-Véliz, G.F.; Sepúlveda, H.; Utreras, E.; Montecino, M.; González-Billault, C.; Aboitiz, F. Prenatal Stress Down-Regulates Reelin Expression by Methylation of Its Promoter and Induces Adult Behavioral Impairments in Rats. PLoS ONE 2015, 10, e0117680. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.-H.; Chen, Y.-F.; Chen, S.; Hao, B.; Xue, L.; Wang, X.-G.; Shi, Y.-W.; Zhao, H. Maternal Deprivation Enhances Contextual Fear Memory via Epigenetically Programming Second-Hit Stress-Induced Reelin Expression in Adult Rats. Int. J. Neuropsychopharmacol. 2018, 21, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Banker, S.M.; Gu, X.; Schiller, D.; Foss-Feig, J.H. Hippocampal contributions to social and cognitive deficits in autism spectrum disorder. Trends Neurosci. 2021, 44, 793–807. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, X.; Li, X.-L.; Towers, A.; Cao, X.; Wang, P.; Bowman, R.; Yang, H.; Goldstein, J.; Li, Y.-J.; et al. Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Hum. Mol. Genet. 2014, 23, 1563–1578. [Google Scholar] [CrossRef]
- Li, K.; Liang, X.; Xie, X.; Tian, L.; Yan, J.; Lin, B.; Liu, H.; Lai, W.; Liu, X.; Xi, Z. Role of SHANK3 in concentrated ambient PM2. 5 exposure induced autism-like phenotype. Heliyon 2023, 9, e14328. [Google Scholar] [CrossRef]
- Loke, Y.J.; Hannan, A.J.; Craig, J.M. The Role of Epigenetic Change in Autism Spectrum Disorders. Front. Neurol. 2015, 6, 107. [Google Scholar] [CrossRef]
- Gregory, S.G.; Connelly, J.J.; Towers, A.J.; Johnson, J.; Biscocho, D.; Markunas, C.A.; Lintas, C.; Abramson, R.K.; Wright, H.H.; Ellis, P.; et al. Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Med. 2009, 7, 62. [Google Scholar] [CrossRef]
- Kumsta, R.; Hummel, E.; Chen, F.S.; Heinrichs, M. Epigenetic regulation of the oxytocin receptor gene: Implications for behavioral neuroscience. Front. Neurosci. 2013, 7, 83. [Google Scholar] [CrossRef]
- Perkeybile, A.M.; Carter, C.S.; Wroblewski, K.L.; Puglia, M.H.; Kenkel, W.M.; Lillard, T.S.; Karaoli, T.; Gregory, S.G.; Mohammadi, N.; Epstein, L.; et al. Early nurture epigenetically tunes the oxytocin receptor. Psychoneuroendocrinology 2019, 99, 128–136. [Google Scholar] [CrossRef]
- Unternaehrer, E.; Meyer, A.H.; Burkhardt, S.C.; Dempster, E.; Staehli, S.; Theill, N.; Lieb, R.; Meinlschmidt, G. Childhood maternal care is associated with DNA methylation of the genes for brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OXTR) in peripheral blood cells in adult men and women. Stress 2015, 18, 451–461. [Google Scholar] [CrossRef]
- Simons, R.L.; Lei, M.K.; Beach, S.R.; Cutrona, C.E.; Philibert, R.A. Methylation of the oxytocin receptor gene mediates the effect of adversity on negative schemas and depression. Dev. Psychopathol. 2017, 29, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, K.; Goldbeck, L.; Puglia, M.H.; Morris, J.P.; Connelly, J.J. DNA methylation of OXTR is associated with parasympathetic nervous system activity and amygdala morphology. Soc. Cogn. Affect. Neurosci. 2018, 13, 1155–1162. [Google Scholar] [CrossRef]
- Puglia, M.H.; Lillard, T.S.; Morris, J.P.; Connelly, J.J. Epigenetic modification of the oxytocin receptor gene influences the perception of anger and fear in the human brain. Proc. Natl. Acad. Sci. USA 2015, 112, 3308–3313. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Pan, F.; Tang, Y.; Huang, J.H. Editorial: Early Life Stress-Induced Epigenetic Changes Involved in Mental Disorders. Front. Genet. 2021, 12, 684844. [Google Scholar] [CrossRef]
- Puglia, M.H.; Connelly, J.J.; Morris, J.P. Epigenetic regulation of the oxytocin receptor is associated with neural response during selective social attention. Transl. Psychiatry 2018, 8, 116. [Google Scholar] [CrossRef]
- Porcher, C.; Medina, I.; Gaiarsa, J.-L. Mechanism of BDNF Modulation in GABAergic Synaptic Transmission in Healthy and Disease Brains. Front. Cell. Neurosci. 2018, 12, 273. [Google Scholar] [CrossRef]
- Kasarpalkar, N.J.; Kothari, S.T.; Dave, U.P. Brain-Derived Neurotrophic Factor in children with Autism Spectrum Disorder. Ann. Neurosci. 2014, 21, 129–133. [Google Scholar] [CrossRef]
- Ma, K.; Taylor, C.; Williamson, M.; Newton, S.S.; Qin, L. Diminished activity-dependent BDNF signaling differentially causes autism-like behavioral deficits in male and female mice. Front. Psychiatry 2023, 14, 1182472. [Google Scholar] [CrossRef]
- Roth, T.L.; Sweatt, J.D. Epigenetic marking of the BDNF gene by early-life adverse experiences. Horm. Behav. 2011, 59, 315–320. [Google Scholar] [CrossRef]
- Daskalakis, N.P.; De Kloet, E.R.; Yehuda, R.; Malaspina, D.; Kranz, T.M. Early Life Stress Effects on Glucocorticoid—BDNF Interplay in the Hippocampus. Front. Mol. Neurosci. 2015, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, S.L.; Ilieva, M.; Maria Michel, T. Epigenetics and cerebral organoids: Promising directions in autism spectrum disorders. Transl. Psychiatry 2018, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Jones, R. Trauma and stress, from child to adult. Nat. Rev. Neurosci. 2013, 14, 77. [Google Scholar] [CrossRef]
- Hill, K.T.; Warren, M.; Roth, T.L. The influence of infant-caregiver experiences on amygdala Bdnf, OXTr, and NPY expression in developing and adult male and female rats. Behav. Brain Res. 2014, 272, 175–180. [Google Scholar] [CrossRef]
- Kinlein, S.A.; Wilson, C.D.; Karatsoreos, I.N. Dysregulated Hypothalamic–Pituitary–Adrenal Axis Function Contributes to Altered Endocrine and Neurobehavioral Responses to Acute Stress. Front. Psychiatry 2015, 6, 31. [Google Scholar] [CrossRef]
- Liston, C.; Gan, W.-B. Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo. Proc. Natl. Acad. Sci. USA 2011, 108, 16074–16079. [Google Scholar] [CrossRef]
- Makris, G.; Agorastos, A.; Chrousos, G.P.; Pervanidou, P. Stress System Activation in Children and Adolescents with Autism Spectrum Disorder. Front. Neurosci. 2021, 15, 756628. [Google Scholar] [CrossRef]
- Gutierrez-Arcelus, M.; Ongen, H.; Lappalainen, T.; Montgomery, S.B.; Buil, A.; Yurovsky, A.; Bryois, J.; Padioleau, I.; Romano, L.; Planchon, A.; et al. Tissue-Specific Effects of Genetic and Epigenetic Variation on Gene Regulation and Splicing. PLoS Genet. 2015, 11, e1004958. [Google Scholar] [CrossRef]
- Schaafsma, S.M.; Gagnidze, K.; Reyes, A.; Norstedt, N.; Månsson, K.; Francis, K.; Pfaff, D.W. Sex-specific gene–environment interactions underlying ASD-like behaviors. Proc. Natl. Acad. Sci. USA 2017, 114, 1383–1388. [Google Scholar] [CrossRef]


| Gene | Function | Direction of Epigenetic Modifications After ELS (Human and Mammal Models) | Direction in ASD Tissue (Brain and Peripheral) | References |
|---|---|---|---|---|
| NR3C1 Glucocorticoid receptor | Ligand-activated nuclear receptor that mediates glucocorticoid negative feedback onto the HPA axis | Increased promoter methylation (mC) in mice | Increased promoter mC in humans | [8,13] Weaver et al. 2004; Oh et al. 2024 |
| FKBP5 GR co-chaperone | Decreases GR ligand affinity and nuclear translocation; expressed in hippocampus, cortex, pituitary | Decreased intron 7 mC (human) | Decreased intron 7 mC (human) | [9,11] Klengel et al. 2013; Patel et al. 2016 |
| MECP2 Methyl-CpG binding protein | Epigenetic reader in cortex and hypothalamus; binds methylated and hydroxymethylated CpGs and regulates transcription of AVP, BDNF, GAD1, RELN, and other stress-related genes | Increased phosphorylation (mice): decreased function | Increased promoter mC or coding variants; bidirectional expression changes leading to similar phenotypes | [15,18] Szyf et al. 2011; Nagarajan et al. 2006 |
| RELN Reelin | Organizes cortical/hippocampal synaptic plasticity, influencing cortical–hippocampal control of the HPA axis | Region-specific (humans): increased mC (cortex)/decreased mC (hippocampus) | Increased mC (mice cortex) | [23,24] Lintas et al. 2016; Palacios-García et al. 2015 |
| GAD1 GAD67; glutamate decarboxylase 1 | GABA synthesis: critical for inhibitory control of prefrontal, hippocampal, and cerebellar circuits that regulate stress responses | Increased hydroxymethylation (5-hmC), mixed mC (human) | Increased 5-hmC (human) | [17] Zhubi et al. 2017 |
| SHANK3 SH3 | Postsynaptic density scaffolding protein at glutamatergic synapses; shapes cortico-striatal and limbic circuits relevant to social behavior and stress coping | Limited data: increased promoter mC after pollution stress (rat) | Increased CpG-island mC; altered mRNA splicing (human) | [27,28] Li et al. 2023; Zhu et al. 2014 |
| OXTR Oxytocin receptor | G-protein-coupled receptor in hypothalamus, amygdala, and PFC; modulates social bonding and inhibition of HPA activation | Increased promoter mC (prairie voles) | Increased promoter mC (human) | [31,32] Perkeybile et al. 2019; Kumsta et al. 2013 |
| BDNF Brain-derived neurotrophic factor | Supports synaptogenesis, particularly of GABAergic interneurons, and hippocampal/prefrontal plasticity important for HPA feedback | Increased exon IV mC (rat); increased promoter mC (human) | Mixed: increased mC in mild ASD, decreased in severe ASD (human) | [33,40,42,44] Roth & Sweatt 2011; Unternaehrer et al. 2015; Kasarpalkar et al. 2014; Forsberg et al. 2018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Han, E.; Canada, K.A.; Puglia, M.H.; Pelphrey, K.A.; Evans, T.M. The Convergence of Early-Life Stress and Autism Spectrum Disorder on the Epigenetics of Genes Key to the HPA Axis. Biology 2026, 15, 66. https://doi.org/10.3390/biology15010066
Han E, Canada KA, Puglia MH, Pelphrey KA, Evans TM. The Convergence of Early-Life Stress and Autism Spectrum Disorder on the Epigenetics of Genes Key to the HPA Axis. Biology. 2026; 15(1):66. https://doi.org/10.3390/biology15010066
Chicago/Turabian StyleHan, Edric, Katherine A. Canada, Meghan H. Puglia, Kevin A. Pelphrey, and Tanya M. Evans. 2026. "The Convergence of Early-Life Stress and Autism Spectrum Disorder on the Epigenetics of Genes Key to the HPA Axis" Biology 15, no. 1: 66. https://doi.org/10.3390/biology15010066
APA StyleHan, E., Canada, K. A., Puglia, M. H., Pelphrey, K. A., & Evans, T. M. (2026). The Convergence of Early-Life Stress and Autism Spectrum Disorder on the Epigenetics of Genes Key to the HPA Axis. Biology, 15(1), 66. https://doi.org/10.3390/biology15010066

