Ferroptosis—The “Double-Edged Sword” in Cancer: Mechanisms of Tumor Suppression/Resistance and Therapeutic Manipulation
Simple Summary
Abstract
1. Introduction
2. Players in Ferroptosis
2.1. Pro-Ferroptosis
2.2. Anti-Ferroptosis
3. Ferroptosis Activation or Inhibition Contributes to Cancer Suppression or Formation
4. Therapeutic Strategies Targeting Ferroptosis in Cancer
5. Ferroptosis and Its Effects on the Immune System and Immune Evasion
6. Limitations and Promising Opportunities in Therapeutic Targeting
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ROS | Reactive oxygen species |
| PUFA | Polyunsaturated fatty acid |
| HCC | Hepatocellular carcinoma |
| STEAP3 | Six-transmembrane epithelial antigen of prostate 3 |
| NCOA4 | Nuclear receptor coactivator 4 |
| ACSL4 | Acyl-CoA synthetase long-chain family member 4 |
| LPAT3 | Lysophosphatidylcholine acyltransferase 3 |
| ALOX | Arachidonate lipoxygenase |
| POR | Cytochrome P450 oxidoreductase |
| xCT or Xc− | Cystine/glutamate antiporter system |
| SLC7A11 | Cystine transporter solute carrier family 7 member 11 |
| SLC3A2 | Cystine transporter solute carrier family 3 member 2 |
| GSH | Glutathione |
| GPX4 | Glutathione peroxidase 4 |
| GSSG | Glutathione disulfide |
| TP53 | Tumor protein 53 gene |
| p53 | Tumor protein 53 |
| BAP-AMER1 | BRCA-1 associated protein-1 |
| NRF2 | APC membrane recruitment protein 1 |
| KEAP1 | Nuclear factor (erythroid-derived 2)-like 2 |
| ARF | Kelch-like ECH-associated protein 1 |
| FSP1 | Alternative reading frame |
| MLL4 | Ferroptosis suppressor protein 1 |
| RAS | Lysine methyltransferase 2B |
| ENO1 | Rat sarcoma |
| DRP1 | Enolase 1 |
| cGAs | Dynamin-related protein 1 |
| TME | Mitochondrial cyclic GMP-AMP synthase |
| RSL3 | Tumor microenvironment |
| DAMPs | RAS-selective lethal 3 |
| DCs | Damage-associated molecular patterns |
| APC | Dendritic cells |
| PRR | Antigen-presenting cell |
| IFN-γ | Pattern-recognition receptor |
| NK cells | Interferon gamma |
| PD-1 | Natural killer cells |
| PD-L1 | Programmed cell death protein 1 |
References
- Wang, S.; Guo, Q.; Zhou, L.; Xia, X. Ferroptosis: A double-edged sword. Cell Death Discov. 2024, 10, 265. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yan, Y.; Niu, F.; Wang, Y.; Chen, X.; Su, G.; Liu, Y.; Zhao, X.; Qian, L.; Liu, P.; et al. Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 2021, 7, 193. [Google Scholar] [CrossRef]
- Battaglia, A.M.; Chirillo, R.; Aversa, I.; Sacco, A.; Costanzo, F.; Biamonte, F. Ferroptosis and Cancer: Mitochondria Meet the “Iron Maiden” Cell Death. Cells 2020, 9, 1505. [Google Scholar] [CrossRef]
- Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 266–282. [Google Scholar] [CrossRef]
- Kong, Y.; Li, J.; Lin, R.; Lu, S.; Rong, L.; Xue, Y.; Fang, Y. Understanding the unique mechanism of ferroptosis: A promising therapeutic target. Front. Cell Dev. Biol. 2023, 11, 1329147. [Google Scholar] [CrossRef]
- Zhou, Q.; Meng, Y.; Li, D.; Yao, L.; Le, J.; Liu, Y.; Sun, Y.; Zeng, F.; Chen, X.; Deng, G. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct. Target. Ther. 2024, 9, 55. [Google Scholar] [CrossRef]
- Qiu, B.; Zandkarimi, F.; Bezjian, C.T.; Reznik, E.; Soni, R.K.; Gu, W.; Jiang, X.; Stockwell, B.R. Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell 2024, 187, 1177–1190 e1118. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef]
- Yang, W.S.; Stockwell, B.R. Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol. 2016, 26, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Comish, P.B.; Tang, D.; Kang, R. Characteristics and Biomarkers of Ferroptosis. Front. Cell Dev. Biol. 2021, 9, 637162. [Google Scholar] [CrossRef]
- Lei, G.; Zhuang, L.; Gan, B. Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer 2022, 22, 381–396. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, H.; Wang, X. Current advances on the role of ferroptosis in tumor immune evasion. Discov. Oncol. 2024, 15, 736. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, G.; Chen, X. Mechanism of ferroptosis resistance in cancer cells. Cancer Drug Resist. 2024, 7, 47. [Google Scholar] [CrossRef]
- Zhou, Q.; Tao, C.; Yuan, J.; Pan, F.; Wang, R. Ferroptosis, a subtle talk between immune system and cancer cells: To be or not to be? Biomed. Pharmacother. 2023, 165, 115251. [Google Scholar] [CrossRef]
- Zhu, X.; Sha, X.; Zang, Y.; Ren, Q.; Zhang, S.; Ma, D.; Wang, L.; Yao, J.; Zhou, X.; Yu, L.; et al. Current Progress of Ferroptosis Study in Hepatocellular Carcinoma. Int. J. Biol. Sci. 2024, 20, 3621–3637. [Google Scholar] [CrossRef]
- Tunc, R.; Ates, I.; Yılmaz, B.; Medoro, A.; Davinelli, S.; Suzen, S.; Saso, L. Modulating Nrf2 to control lipid peroxidation and ferroptosis: Implications for cancer management. Front. Oncol. 2025, 15, 1701249. [Google Scholar] [CrossRef] [PubMed]
- Gong, D.; Chen, M.; Wang, Y.; Shi, J.; Hou, Y. Role of ferroptosis on tumor progression and immunotherapy. Cell Death Discov. 2022, 8, 427. [Google Scholar] [CrossRef] [PubMed]
- Kciuk, M.; Gielecińska, A.; Kałuzińska-Kołat, Ż.; Yahya, E.B.; Kontek, R. Ferroptosis and cuproptosis: Metal-dependent cell death pathways activated in response to classical chemotherapy—Significance for cancer treatment? Biochim. Biophys. Acta Rev. Cancer 2024, 1879, 189124. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.J.; Rose, A.L.; Waite, T.D. Importance of Iron Complexation for Fenton-Mediated Hydroxyl Radical Production at Circumneutral pH. Front. Mar. Sci. 2016, 3, 134. [Google Scholar] [CrossRef]
- Zhang, F.; Tao, Y.; Zhang, Z.; Guo, X.; An, P.; Shen, Y.; Wu, Q.; Yu, Y.; Wang, F. Metalloreductase Steap3 coordinates the regulation of iron homeostasis and inflammatory responses. Haematologica 2012, 97, 1826–1835. [Google Scholar] [CrossRef]
- Ru, Q.; Li, Y.; Chen, L.; Wu, Y.; Min, J.; Wang, F. Iron homeostasis and ferroptosis in human diseases: Mechanisms and therapeutic prospects. Signal Transduct. Target. Ther. 2024, 9, 271. [Google Scholar] [CrossRef]
- Yang, A.; Wang, L.; Jiang, K.; Lei, L.; Li, H. Nuclear receptor coactivator 4-mediated ferritinophagy drives proliferation of dental pulp stem cells in hypoxia. Biochem. Biophys. Res. Commun. 2021, 554, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Endale, H.T.; Tesfaye, W.; Mengstie, T.A. ROS induced lipid peroxidation and their role in ferroptosis. Front. Cell Dev. Biol. 2023, 11, 1226044. [Google Scholar] [CrossRef]
- Ding, K.; Liu, C.; Li, L.; Yang, M.; Jiang, N.; Luo, S.; Sun, L. Acyl-CoA synthase ACSL4: An essential target in ferroptosis and fatty acid metabolism. Chin. Med. J. (Engl.) 2023, 136, 2521–2537. [Google Scholar] [CrossRef]
- Gan, B. ACSL4, PUFA, and ferroptosis: New arsenal in anti-tumor immunity. Signal Transduct. Target. Ther. 2022, 7, 128. [Google Scholar] [CrossRef] [PubMed]
- Fujii, J.; Imai, H. Oxidative Metabolism as a Cause of Lipid Peroxidation in the Execution of Ferroptosis. Int. J. Mol. Sci. 2024, 25, 7544. [Google Scholar] [CrossRef] [PubMed]
- Koppula, P.; Zhuang, L.; Gan, B. Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 2021, 12, 599–620. [Google Scholar] [CrossRef]
- Jyotsana, N.; Ta, K.T.; DelGiorno, K.E. The Role of Cystine/Glutamate Antiporter SLC7A11/xCT in the Pathophysiology of Cancer. Front. Oncol. 2022, 12, 858462. [Google Scholar] [CrossRef]
- Chen, X.; Yu, C.; Kang, R.; Tang, D. Iron Metabolism in Ferroptosis. Front. Cell Dev. Biol. 2020, 8, 590226. [Google Scholar] [CrossRef]
- Lei, G.; Zhuang, L.; Gan, B. The roles of ferroptosis in cancer: Tumor suppression, tumor microenvironment, and therapeutic interventions. Cancer Cell 2024, 42, 513–534. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Yang, W.; Sheng, H.; Jia, B.; Cheng, P.; Xu, S.; Hong, X.; Jiang, C.; Yang, Y.; et al. Multiple roles of p53 in cancer development: Regulation of tumor microenvironment, m(6)A modification and diverse cell death mechanisms. J. Adv. Res. 2025, 75, 539–560. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Q.; Wu, J.; Jiang, G.; Shi, H.; Zhang, Y.; Ling, Y.; Sun, W.; Shi, X.; Liu, C. IGF2BP3 enhances ferroptosis resistance in colon cancer by stabilizing SLC7A11 and is regulated by miR-98-5p. Front. Oncol. 2025, 15, 1576895. [Google Scholar] [CrossRef]
- Wang, S.J.; Li, D.; Ou, Y.; Jiang, L.; Chen, Y.; Zhao, Y.; Gu, W. Acetylation Is Crucial for p53-Mediated Ferroptosis and Tumor Suppression. Cell Rep. 2016, 17, 366–373. [Google Scholar] [CrossRef]
- Zhang, Y.; Koppula, P.; Gan, B. Regulation of H2A ubiquitination and SLC7A11 expression by BAP1 and PRC1. Cell Cycle 2019, 18, 773–783. [Google Scholar] [CrossRef]
- Lei, S.; Chen, C.; Han, F.; Deng, J.; Huang, D.; Qian, L.; Zhu, M.; Ma, X.; Lai, M.; Xu, E.; et al. AMER1 deficiency promotes the distant metastasis of colorectal cancer by inhibiting SLC7A11- and FTL-mediated ferroptosis. Cell Rep. 2023, 42, 113110. [Google Scholar] [CrossRef]
- Kang, J.S.; Nam, L.B.; Yoo, O.K.; Keum, Y.S. Molecular mechanisms and systemic targeting of NRF2 dysregulation in cancer. Biochem. Pharmacol. 2020, 177, 114002. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Vaughan, A.J.; Bossowski, J.P.; Hao, Y.; Ziogou, A.; Kim, S.M.; Kim, T.H.; Nakamura, M.N.; Pillai, R.; Mancini, M.; et al. Targeting FSP1 triggers ferroptosis in lung cancer. Nature 2025. [Google Scholar] [CrossRef]
- Xavier da Silva, T.N.; Schulte, C.; Alves, A.N.; Maric, H.M.; Friedmann Angeli, J.P. Molecular characterization of AIFM2/FSP1 inhibition by iFSP1-like molecules. Cell Death Dis. 2023, 14, 281. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Huang, L.; Sun, S.; Chen, M.; Cai, J.; Zhang, Y.; Wang, L.; Cai, L.; Peng, M. The cyclin-dependent kinase inhibitor p27 facilitates chemosensitivity by promoting ferroptosis in epithelial ovarian cancer. J. Biol. Chem. 2025. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.K.M.; Delaidelli, A.; Minaker, S.W.; Zhang, H.F.; Colovic, M.; Yang, H.; Negri, G.L.; von Karstedt, S.; Lockwood, W.W.; Schaffer, P.; et al. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc. Natl. Acad. Sci. USA 2019, 116, 9433–9442. [Google Scholar] [CrossRef]
- Borquez, D.A.; Urrutia, P.J. Iron regulatory protein 1: The deadly switch of ferroptosis. Neural Regen. Res. 2024, 19, 477–478. [Google Scholar] [CrossRef]
- Qiu, S.; Zhong, X.; Meng, X.; Li, S.; Qian, X.; Lu, H.; Cai, J.; Zhang, Y.; Wang, M.; Ye, Z.; et al. Mitochondria-localized cGAS suppresses ferroptosis to promote cancer progression. Cell Res. 2023, 33, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Zhi, Y.; Gao, L.; Wang, B.; Ren, W.; Liang, K.X.; Zhi, K. Ferroptosis Holds Novel Promise in Treatment of Cancer Mediated by Non-coding RNAs. Front. Cell Dev. Biol. 2021, 9, 686906. [Google Scholar] [CrossRef]
- Mao, X.; Liu, K.; Shen, S.; Meng, L.; Chen, S. Ferroptosis, a new form of cell death: Mechanisms, biology and role in gynecological malignant tumor. Am. J. Cancer Res. 2023, 13, 2751–2762. [Google Scholar] [PubMed]
- Zhao, Y.; Li, Y.; Zhang, R.; Wang, F.; Wang, T.; Jiao, Y. The Role of Erastin in Ferroptosis and Its Prospects in Cancer Therapy. Onco Targets Ther. 2020, 13, 5429–5441. [Google Scholar] [CrossRef]
- Li, J.; Cao, F.; Yin, H.L.; Huang, Z.J.; Lin, Z.T.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis. 2020, 11, 88. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Conrad, M. The Metabolic Underpinnings of Ferroptosis. Cell Metab. 2020, 32, 920–937. [Google Scholar] [CrossRef]
- Huang, A.; Li, Q.; Shi, X.; Gao, J.; Ma, Y.; Ding, J.; Hua, S.; Zhou, W. An iron-containing nanomedicine for inducing deep tumor penetration and synergistic ferroptosis in enhanced pancreatic cancer therapy. Mater. Today Bio 2024, 27, 101132. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.M.; Shi, X.H.; Ye, K.; Fu, X.L.; Wang, X.; Guo, S.M.; Ma, J.Q.; Xu, F.F.; Sun, H.M.; et al. Sorafenib triggers ferroptosis via inhibition of HBXIP/SCD axis in hepatocellular carcinoma. Acta Pharmacol. Sin. 2023, 44, 622–634. [Google Scholar] [CrossRef]
- Yu, W.; Jiao, K.; Wang, K.; Li, X.; Wan, Q.; Qin, W.; Hao, X.; Wan, M.; Ma, Y.; Wu, J.; et al. Metabolic support protects mucosa from ferroptosis in radiation-induced mucositis. Nat. Commun. 2025. [Google Scholar] [CrossRef]
- Guo, Z.; Cui, L.; Yao, R.; Lin, Y.; Wang, Z.; Jin, H.; Guo, H.; Xie, C.; Li, L.; Huang, P.; et al. The microbial metabolite I3A inhibits ferroptosis and the effectiveness of redox-based cancer therapy. J. Biol. Chem. 2025. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Ren, Y.; Chen, S.; Wang, Y.; Chu, L. Ferroptosis and tumor immunotherapy: A promising combination therapy for tumors. Front. Oncol. 2023, 13, 1119369. [Google Scholar] [CrossRef]
- Xiao, L.; Xian, M.; Zhang, C.; Guo, Q.; Yi, Q. Lipid peroxidation of immune cells in cancer. Front. Immunol. 2023, 14, 1322746. [Google Scholar] [CrossRef]
- Han, L.; Bai, L.; Qu, C.; Dai, E.; Liu, J.; Kang, R.; Zhou, D.; Tang, D.; Zhao, Y. PPARG-mediated ferroptosis in dendritic cells limits antitumor immunity. Biochem. Biophys. Res. Commun. 2021, 576, 33–39. [Google Scholar] [CrossRef]
- Gao, W.; Tan, J.; Yu, C. Ferroptosis in the tumor microenvironment: Mechanisms, advances, and therapeutic perspectives. Front. Oncol. 2025, 15, 1650219. [Google Scholar] [CrossRef]
- Li, J.Y.; Yao, Y.M.; Tian, Y.P. Ferroptosis: A Trigger of Proinflammatory State Progression to Immunogenicity in Necroinflammatory Disease. Front. Immunol. 2021, 12, 701163. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Kagan, J.C. Oxidized phospholipid damage signals as modulators of immunity. Open Biol. 2025, 15, 240391. [Google Scholar] [CrossRef]
- Lin, Z.; Zou, S.; Wen, K. The crosstalk of CD8+ T cells and ferroptosis in cancer. Front. Immunol. 2023, 14, 1255443. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, H.; Liang, S.; Hu, Y.; Ding, J.; Wu, X.; Hua, D. Bridging the gap: Ferroptosis of immune cells in the tumor microenvironment. Front. Immunol. 2025, 16, 1648432. [Google Scholar] [CrossRef]
- Xu, H.; Lu, Y.; Zeng, Q.; Zhu, X.; Guan, W.; Liu, S. Ferroptosis of Immune Cells in Infection, Inflammation and Tumor Progression. Biomolecules 2025, 15, 1464. [Google Scholar] [CrossRef]
- Shen, G.; Liu, J.; Wang, Y.; Deng, Z.; Deng, F. Ferroptosis in Cancer and Inflammatory Diseases: Mechanisms and Therapeutic Implications. MedComm 2025, 6, e70349. [Google Scholar] [CrossRef]
- Dang, Q.; Sun, Z.; Wang, Y.; Wang, L.; Liu, Z.; Han, X. Ferroptosis: A double-edged sword mediating immune tolerance of cancer. Cell Death Dis. 2022, 13, 925. [Google Scholar] [CrossRef]
- Zhang, T.; Gu, F.; Lin, W.; Shao, H.; Jiang, A.; Guan, X. Boosting cancer immunotherapy: Drug delivery systems leveraging ferroptosis and immune checkpoint blockade. Front. Immunol. 2025, 16, 1611299. [Google Scholar] [CrossRef]
- Liu, Y.; Zhan, J.; Wang, J.; Zeng, X.; Liu, S.; Huang, L.; Niu, L.; Sun, C.; Ding, Z.; Xing, Y.; et al. Ferroptosis: A double-edged sword that enhances radiation sensitivity and facilitates radiation-induced injury in tumors. Front. Immunol. 2025, 16, 1591172. [Google Scholar] [CrossRef]
- Ojo, O.A.; Grant, S.; Nwafor-Ezeh, P.I.; Maduakolam-Aniobi, T.C.; Akinborode, T.I.; Ezenabor, E.H.; Ojo, A.B. Ferroptosis as the new approach to cancer therapy. Cancer Treat. Res. Commun. 2025, 43, 100913. [Google Scholar] [CrossRef]
- Pawlowska, M.; Nuszkiewicz, J.; Jarek, D.J.; Wozniak, A. Ferroptosis and Metabolic Dysregulation: Emerging Chemical Targets in Cancer and Infection. Molecules 2025, 30, 3020. [Google Scholar] [CrossRef]
- Reed, J.C.; Pellecchia, M. Ironing out cell death mechanisms. Cell 2012, 149, 963–965. [Google Scholar] [CrossRef]
- U.S. National Library of Medicine. Carbon Nanoparticle-Loaded Iron [CNSI-Fe(II)] in the Treatment of Advanced Solid Tumor (Clinical Trial No. NCT06048367). ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT06048367 (accessed on 22 November 2025).
- Gan, L.; Lin, X.; Zhong, Z.; Zheng, Y.; Chen, X.; Chen, J.; Yue, X.; Liu, Y.; Pan, X.; Wu, C.; et al. Ferroptosis meets cancer immunotherapy: Overcoming the crosstalk challenges through advanced drug delivery strategies. Acta Pharm. Sin. B 2025, 15, 6307–6341. [Google Scholar] [CrossRef]
- Grube, J.; Woitok, M.M.; Mohs, A.; Erschfeld, S.; Lynen, C.; Trautwein, C.; Otto, T. ACSL4-dependent ferroptosis does not represent a tumor-suppressive mechanism but ACSL4 rather promotes liver cancer progression. Cell Death Dis. 2022, 13, 704. [Google Scholar] [CrossRef]
- Ke, P.; Bao, X.; Liu, C.; Zhou, B.; Huo, M.; Chen, Y.; Wang, X.; Wu, D.; Ma, X.; Liu, D.; et al. LPCAT3 is a potential prognostic biomarker and may be correlated with immune infiltration and ferroptosis in acute myeloid leukemia: A pan-cancer analysis. Transl. Cancer Res. 2022, 11, 3491–3505. [Google Scholar] [CrossRef]
- Zou, Y.; Li, H.; Graham, E.T.; Deik, A.A.; Eaton, J.K.; Wang, W.; Sandoval-Gomez, G.; Clish, C.B.; Doench, J.G.; Schreiber, S.L. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat. Chem. Biol. 2020, 16, 302–309. [Google Scholar] [CrossRef]
- Du, K.; Oh, S.H.; Dutta, R.K.; Sun, T.; Yang, W.H.; Chi, J.T.; Diehl, A.M. Inhibiting xCT/SLC7A11 induces ferroptosis of myofibroblastic hepatic stellate cells but exacerbates chronic liver injury. Liver Int. Off. J. Int. Assoc. Study Liver 2021, 41, 2214–2227. [Google Scholar] [CrossRef]
- Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014, 156, 317–331. [Google Scholar] [CrossRef]
- Xie, Y.; Zhu, S.; Song, X.; Sun, X.; Fan, Y.; Liu, J.; Zhong, M.; Yuan, H.; Zhang, L.; Billiar, T.R.; et al. The Tumor Suppressor p53 Limits Ferroptosis by Blocking DPP4 Activity. Cell Rep. 2017, 20, 1692–1704. [Google Scholar] [CrossRef]
- Fan, Z.; Wirth, A.K.; Chen, D.; Wruck, C.J.; Rauh, M.; Buchfelder, M.; Savaskan, N. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 2017, 6, e371. [Google Scholar] [CrossRef]
- Egolf, S.; Zou, J.; Anderson, A.; Simpson, C.L.; Aubert, Y.; Prouty, S.; Ge, K.; Seykora, J.T.; Capell, B.C. MLL4 mediates differentiation and tumor suppression through ferroptosis. Sci. Adv. 2021, 7, eabj9141. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, L.; Hao, Y.; Suo, C.; Shen, S.; Wei, H.; Ma, W.; Zhang, P.; Wang, T.; Gu, X.; et al. ENO1 suppresses cancer cell ferroptosis by degrading the mRNA of iron regulatory protein 1. Nat. Cancer 2022, 3, 75–89. [Google Scholar] [CrossRef]


| Category | Player | Function/Mechanism | Effect on Ferroptosis | References |
|---|---|---|---|---|
| Iron metabolism | Transferrin receptor | Mediates uptake of ferric iron (Fe3+) into the cell | Promotes ferroptosis by increasing the intracellular iron pool | [17] |
| Iron metabolism | STEAP3 | Reduces Fe3+ to Fe2+ in endosomes | Increases labile Fe2+ available for the Fenton reaction | [17] |
| Iron metabolism | NCOA4 | Promotes ferritinophagy (ferritin degradation) | Increases labile iron pool and ROS generation | [19] |
| Iron metabolism | Ferritin | Stores iron and prevents free iron accumulation | Inhibits ferroptosis by limiting iron availability | [19,26,32] |
| Iron metabolism | Iron chelators | Binds and sequesters free iron | Inhibits ferroptosis | [26] |
| Lipid Metabolism | ACSL4 | Activates PUFAs for incorporation into phospholipids | Promotes lipid peroxidation | [21,22,66,70] |
| Lipid Metabolism | LPAT3 | Incorporates PUFAs into membrane phospholipids | Enhances susceptibility to lipid peroxidation | [21,22,71] |
| Lipid Metabolism | ALOXs | Catalyzes oxygenation of PUFAs to lipid peroxides | Promotes ferroptosis | [21,23,27] |
| Lipid Metabolism | POR (cytochrome P450 oxidoreductase) | Supplies electrons for lipid peroxidation | Promotes ferroptosis | [23,72] |
| Antioxidant Defense | xCT System (SLC7A11/SLC3A2) | Imports cystine for glutathione (GSH) synthesis | Inhibits ferroptosis by sustaining antioxidant defense | [24,28,39,51,73] |
| Antioxidant Defense | Glutathione (GSH) | Major antioxidant reducing lipid peroxides | Inhibits ferroptosis | [25,74] |
| Antioxidant Defense | GPX4 | Helps neutralize harmful lipid peroxides | Inhibits ferroptosis | [25,75] |
| Tumor Suppressors and Oncogenes | TP53 | Repress SLC7A11 transcription and promote ROS production | Promote ferroptosis | [27,75] |
| Tumor Suppressors and Oncogenes | BAP1 | Deubiquitinate histone H2A on SLC7A11 promoter | Promote ferroptosis | [27,31] |
| Tumor Suppressors and Oncogenes | AMER1 | Promote degradation of SLC7A11 and ferritin | Promote ferroptosis | [27,32] |
| Tumor Suppressors and Oncogenes | NRF2 | Activate antioxidant and iron metabolism genes | Inhibit ferroptosis | [27,33,76] |
| Tumor Suppressors and Oncogenes | KEAP1/ARF | Negatively regulate NRF2 | Promote ferroptosis | [27,33,76] |
| Tumor Suppressors and Oncogenes | MLL4 | Regulate expression of ferroptosis-related genes | Promote ferroptosis | [27,77] |
| Tumor Suppressors and Oncogenes | RAS (mutant) | Upregulate SLC7A11, which in turn increases GSH | Inhibit ferroptosis | [34] |
| Tumor Suppressors and Oncogenes | ENO1 | Restrict labile pool of iron via the iron regulatory protein 1-mitoferrin-1 pathway | Inhibit ferroptosis | [35,78] |
| Tumor Suppressors and Oncogenes | DRP1/cGAS | Enhance mitophagy, which reduces mitochondrial ROS production | Inhibit ferroptosis | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Quaranto, D.; DeSouza, N.R.; Carnazza, M.; Moscatello, A.; Islam, H.K.; Li, X.-M.; Tiwari, R.K.; Geliebter, J. Ferroptosis—The “Double-Edged Sword” in Cancer: Mechanisms of Tumor Suppression/Resistance and Therapeutic Manipulation. Biology 2026, 15, 67. https://doi.org/10.3390/biology15010067
Quaranto D, DeSouza NR, Carnazza M, Moscatello A, Islam HK, Li X-M, Tiwari RK, Geliebter J. Ferroptosis—The “Double-Edged Sword” in Cancer: Mechanisms of Tumor Suppression/Resistance and Therapeutic Manipulation. Biology. 2026; 15(1):67. https://doi.org/10.3390/biology15010067
Chicago/Turabian StyleQuaranto, Danielle, Nicole R. DeSouza, Michelle Carnazza, Augustine Moscatello, Humayun K. Islam, Xiu-Min Li, Raj K. Tiwari, and Jan Geliebter. 2026. "Ferroptosis—The “Double-Edged Sword” in Cancer: Mechanisms of Tumor Suppression/Resistance and Therapeutic Manipulation" Biology 15, no. 1: 67. https://doi.org/10.3390/biology15010067
APA StyleQuaranto, D., DeSouza, N. R., Carnazza, M., Moscatello, A., Islam, H. K., Li, X.-M., Tiwari, R. K., & Geliebter, J. (2026). Ferroptosis—The “Double-Edged Sword” in Cancer: Mechanisms of Tumor Suppression/Resistance and Therapeutic Manipulation. Biology, 15(1), 67. https://doi.org/10.3390/biology15010067

