Total Nitrogen Shapes Diversity of Bloom-Forming Dinoflagellates in the Baltic Coastal Waters
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Taxonomic Diversity of Dinoflagellates, Abundance, Dominant Species, and Their TN Niches
3.2. Species Richness of Dinoflagellates in the Gradient of TN Concentrations
3.3. TN Content and Eutrophication Levels in Different Regions of the Baltic Sea
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HABs | Harmful algal blooms |
| TN | Total nitrogen |
| IDH | Intermediate disturbance hypothesis |
References
- Brown, A.R.; Lilley, M.; Shutler, J.; Lowe, C.; Artioli, Y.; Torres, R.; Berdalet, E.; Tyler, C.R. Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries. Rev. Aquac. 2020, 12, 1663–1688. [Google Scholar] [CrossRef]
- Glibert, P.M. Harmful algae at the complex nexus of eutrophication and climate change. Harmful Algae 2020, 91, 101583. [Google Scholar] [CrossRef]
- Anderson, D.M.; Fensin, E.; Gobler, C.J.; Hoeglund, A.E.; Hubbard, K.A.; Kulis, D.M.; Landsberg, J.H.; Lefebvre, K.A.; Provoost, P.; Richlen, M.L.; et al. Marine harmful algal blooms (HABs) in the United States: History, current status and future trends. Harmful Algae 2021, 102, 101975. [Google Scholar] [CrossRef] [PubMed]
- Karlson, B.; Andersen, P.; Arneborg, L.; Cembella, A.; Eikrem, W.; John, U.; West, J.J.; Klemm, K.; Kobos, J.; Lehtinen, S.; et al. Harmful algal blooms and their effects in coastal seas of Northern Europe. Harmful Algae 2021, 102, 101989. [Google Scholar] [CrossRef]
- Hallegraeff, G.M.; Anderson, D.M.; Belin, C.; Bottein, M.-Y.D.; Bresnan, E.; Chinain, M.; Enevoldsen, H.; Iwataki, M.; Karlson, B.; McKenzie, C.H.; et al. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Commun. Earth Environ. 2021, 2, 117. [Google Scholar] [CrossRef]
- Rattner, B.A.; Wazniak, C.E.; Lankton, J.S. Review of harmful algal bloom effects on birds with implications for avian wildlife in the Chesapeake Bay region. Harmful Algae 2022, 120, 102319. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.M.; Wells, M.L.; Trainer, V.L.; Suddleson, M.; Claridge, K.; Coyne, K.J.; Dortch, Q.; Gobler, C.J.; Heil, C.A.; Inaba, N.; et al. Controlling harmful algal blooms (HABs) in marine waters: Review of current status and future prospects. Harmful Algae 2025, 150, 102989. [Google Scholar] [CrossRef]
- Telesh, I.V.; Schubert, H.; Joehnk, K.D.; Heerkloss, R.; Schumann, R.; Feike, M.; Schoor, A.; Skarlato, S.O. Chaos theory discloses triggers and drivers of plankton dynamics in stable environment. Sci. Rep. 2019, 9, 20351. [Google Scholar] [CrossRef]
- Telesh, I.; Schubert, H.; Skarlato, S. Abiotic stability promotes dinoflagellate blooms in marine coastal ecosystems. Estuar. Coast. Shelf Sci. 2021, 251, 107239. [Google Scholar] [CrossRef]
- Telesh, I.V.; Naumenko, E.N.; Skarlato, S.O. Challenges and prospects of modern planktology: New insights into dinoflagellate bloom-formation mechanisms. Protistology 2025, 19, 273–282. Available online: https://www.zin.ru/journals/protistology/num19_4/Telesh_protistology_19-4.pdf (accessed on 19 November 2025).
- Fernandes-Salvador, J.A.; Davidson, K.; Sourisseau, M.; Revilla, M.; Schmidt, W.; Clarke, D.; Miller, P.I.; Arce, P.; Fernández, R.; Maman, L.; et al. Current status of forecasting toxic harmful algae for the North-East Atlantic shellfish Aquaculture Industry. Front. Mar. Sci. 2021, 8, 666583. [Google Scholar] [CrossRef]
- Telesh, I.V.; Skarlato, S.O. Harmful blooms of the potentially toxic dinoflagellates in the Baltic Sea: Ecological, cellular and molecular background. Russ. J. Ecol. 2022, 53, 464–477. [Google Scholar] [CrossRef]
- Horemans, D.M.L.; Friedrichs, M.A.M.; St-Laurent, P.; Hood, R.R.; Brown, C.W. Forecasting Prorocentrum minimum blooms in the Chesapeake Bay using empirical habitat models. Front. Mar. Sci. 2023, 10, 1127649. [Google Scholar] [CrossRef]
- Cagle, S.E.; Roelke, D.L. Chaotic mixotroph dynamics arise with nutrient loading: Implications for mixotrophy as a harmful bloom forming mechanism. Ecol. Model. 2024, 492, 110714. [Google Scholar] [CrossRef]
- Adamovich, B.V.; Nurieva, N.I.; Medvinsky, A.B.; Radchikova, N.P.; Rusakov, A.V. Production Capacity of Phytoplankton Under Different Trophic Conditions in the Naroch Lakes, Belarus. Environ. Process. 2025, 12, 34. [Google Scholar] [CrossRef]
- Occhipinti, G.; Solidoro, C.; Grimaudo, R.; Valenti, D.; Lazzari, P. Plankton Communities Behave Chaotically Under Seasonal or Stochastic Temperature Forcings. Ecol. Evol. 2025, 15, e71930. [Google Scholar] [CrossRef]
- Matantseva, O.; Berdieva, M.; Kalinina, V.; Pozdnyakov, I.; Pechkovskaya, S.; Skarlato, S. Stressor-induced ecdysis and thecate cyst formation in the armoured dinoflagellates Prorocentrum cordatum. Sci. Rep. 2020, 10, 18322. [Google Scholar] [CrossRef]
- Pechkovskaya, S.A.; Knyazev, N.A.; Skarlato, S.O.; Filatova, N.A. Day and night regulation of the HO-1/HSP32 synthesis in the harmful dinoflagellate Prorocentrum minimum: Response to salinity stress. J. Exp. Mar. Biol. Ecol. 2021, 539, 151545. [Google Scholar] [CrossRef]
- Kalinina, V.; Matantseva, O.; Berdieva, M.; Skarlato, S. Trophic strategies in dinoflagellates: How nutrients pass through the amphiesma. Protistology 2018, 12, 3–11. Available online: https://www.zin.ru/journals/protistology/num12_1/kalinina_protistology_12-1.pdf (accessed on 20 October 2025). [CrossRef]
- Kalinina, V.; Berdieva, M.; Matantseva, O. The role of the cytoskeleton in the ecdysis of the dinoflagellate Prorocentrum minimum. Protistology 2020, 14, 38–44. [Google Scholar] [CrossRef]
- Kalinina, V.; Berdieva, M.; Aksenov, N.; Skarlato, S. Phosphorus deficiency induce sexual reproduction in the dinoflagellate Prorocentrum cordatum. Sci. Rep. 2023, 13, 14191. [Google Scholar] [CrossRef]
- Berdieva, M.; Fel, A.; Kalinina, V.; Skarlato, S.; Matantseva, O. Induced phagotrophy in the mixotrophic dinoflagellate Prorocentrum cordatum: Exploring the role of cytoskeleton in prey ingestion. Protistology 2020, 14, 178–185. [Google Scholar] [CrossRef]
- Berdieva, M.; Pozdnyakov, I.; Kalinina, V.; Skarlato, S. Putative meiotic toolkit in the dinoflagellate Prorocentrum cordatum: Additional evidence for sexual process from transcriptome. J. Eukaryot. Microbiol. 2021, 68, e12845. [Google Scholar] [CrossRef]
- Telesh, I.V.; Rodin, G.J.; Schubert, H.; Skarlato, S.O. Modeling Unveils How Kleptoplastidy Affects Mixotrophy Boosting Algal Blooms. Biology 2025, 14, 900. [Google Scholar] [CrossRef]
- Telesh, I.V.; Schubert, H.; Skarlato, S.O. Ecological niche partitioning of the invasive dinoflagellate Prorocentrum minimum and its native congeners in the Baltic Sea. Harmful Algae 2016, 59, 100–111. [Google Scholar] [CrossRef]
- Telesh, I.; Schubert, H.; Skarlato, S. Ecological niches of bloom-forming cyanobacteria in brackish Baltic Sea coastal waters. Estuar. Coast. Shelf Sci. 2023, 295, 108571. [Google Scholar] [CrossRef]
- Telesh, I.; Schubert, H.; Skarlato, S. Wide ecological niches ensure frequent harmful dinoflagellate blooms. Heliyon 2024, 10, e26495. [Google Scholar] [CrossRef]
- Telesh, I.V.; Naumenko, E.N.; Arkhipov, A.G. Modern Planktology: Current State and Prospects (Based on materials from the 5th All-Russian Conference “Current Problems of Planktology”). Fisheries 2025, 5, 9–15, (In Russian, English summary). [Google Scholar] [CrossRef]
- Jeong, H.J.; Du Yoo, Y.; Kim, J.S.; Seong, K.A.; Kang, N.S.; Kim, T.H. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 2010, 45, 65–91. [Google Scholar] [CrossRef]
- Jeong, H.J.; Kang, H.C.; Lim, A.S.; Jang, S.H.; Lee, K.; Lee, S.Y.; Ok, J.H.; You, J.H.; Kim, J.H.; Lee, K.H.; et al. Feeding diverse prey as an excellent strategy of mixotrophic dinoflagellates for global dominance. Sci. Adv. 2021, 7, 4214. [Google Scholar] [CrossRef] [PubMed]
- Millette, N.C.; Gast, R.J.; Luo, J.Y.; Moeller, H.V.; Stamieszkin, K.; Andersen, K.H.; Brownlee, E.F.; Cohen, N.R.; Duhamel, S.; Dutkiewicz, S.; et al. Mixoplankton and mixotrophy: Future research priorities. J. Plankton Res. 2023, 45, 576–596. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Caron, D.A.; Faure, E.; Flynn, K.J.; Leles, S.G.; Hansen, P.J.; McManus, G.B.; Not, F.; Gomes, H.D.R.; Santoferrara, L.F.; et al. The Mixoplankton Database—Diversity of photo-phago-trophic plankton in form, function and distribution across the global ocean. J. Eukaryot. Microbiol. 2023, 70, e12972. [Google Scholar] [CrossRef] [PubMed]
- Edwards, K.F. Mixotrophy in nanoflagellates across environmental gradients in the ocean. Proc. Natl. Acad. Sci. USA 2019, 116, 6211–6220. [Google Scholar] [CrossRef]
- García-Oliva, O.; Hantzsche, F.M.; Boersma, M.; Wirtz, K.W. Phytoplankton and particle size spectra indicate intense mixotrophic dinoflagellates grazing from summer to winter. J. Plankton Res. 2022, 44, 224–240. [Google Scholar] [CrossRef]
- Skarlato, S.O.; Telesh, I.V. Kleptoplastidy as a principal driver of mixotrophy in bloom-forming dinoflagellates. Protistology 2024, 18, 286–292. [Google Scholar] [CrossRef]
- Howarth, R.W. Coastal nitrogen pollution: A review of sources and trends globally and regionally. Harmful Algae 2008, 8, 14–20. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, C.; Dong, L.; Zou, T.; Yang, Q.; Wu, J.; Li, H. Evaluating the anthropogenic nitrogen emissions to water using a hybrid approach in a city cluster: Insights into historical evolution, attribution, and mitigation potential. Sci. Total Environ. 2023, 855, 158500. [Google Scholar] [CrossRef]
- Shibata, H.; Branquinho, C.; McDowell, W.H.; Mitchell, M.J.; Monteith, D.T.; Tang, J.; Arvola, L.; Cruz, C.; Cusack, D.F.; Halada, L.; et al. Consequence of altered nitrogen cycles in the coupled human and ecological system under changing climate: The need for long-term and site-based research. AMBIO 2015, 44, 178–193. [Google Scholar] [CrossRef]
- Keiser, D.A.; Shapiro, J.S. Consequences of the Clean Water Act and the Demand for Water Quality. Q. J. Econ. 2018, 134, 349–396. [Google Scholar] [CrossRef]
- Yu, C.; Huang, X.; Chen, H.; Godfray, H.C.J.; Wright, J.S.; Hall, J.W.; Gong, P.; Ni, S.Q.; Qiao, S.C.; Huang, G.R.; et al. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520. [Google Scholar] [CrossRef]
- Rönnberg, C.; Bonsdorf, E. Baltic Sea eutrophication: Area-specific consequences. Hydrobiologia 2004, 514, 227–241. [Google Scholar] [CrossRef]
- Schiewer, U. Introduction. In Ecology of Baltic Coastal Waters; Schiewer, U., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 197, pp. 1–22. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Global Gray Water Footprint and Water Pollution Levels Related to Anthropogenic Nitrogen Loads to Fresh Water. Environ. Sci. Technol. 2015, 49, 12860–12868. [Google Scholar] [CrossRef] [PubMed]
- Cruz, S.; Cartaxana, P. Kleptoplasty: Getting away with stolen chloroplasts. PLoS Biol. 2022, 20, e3001857. [Google Scholar] [CrossRef] [PubMed]
- Connell, J.H. Diversity in Tropical Rain Forests and Coral Reefs. Science 1978, 199, 1302–1310. Available online: https://www.science.org/doi/10.1126/science.199.4335.1302 (accessed on 14 November 2025). [CrossRef] [PubMed]
- Grinnell, J. The niche-relationships of the California thrasher. Auk 1917, 34, 427–433. [Google Scholar] [CrossRef]
- Hutchinson, G.E. Homage to Santa Rosalia or Why are there so many kinds of animals? Am. Nat. 1959, 93, 145–159. Available online: https://www.jstor.org/stable/2458768 (accessed on 15 November 2025). [CrossRef]
- Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 2000, 31, 343–366. [Google Scholar] [CrossRef]
- Moore, J.C. Diversity, taxonomic versus functional. In Encyclopedia of Biodiversity, 2nd ed.; Levin, S.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 648–656. [Google Scholar] [CrossRef]
- Sagert, S.; Rieling, T.; Eggert, A.; Schubert, H. Development of a phytoplankton indicator system for the ecological assessment of brackish coastal waters (German Baltic Sea coast). Hydrobiologia 2008, 611, 91–103. [Google Scholar] [CrossRef]
- Snoeijs-Leijonmalm, P.; Andrén, E. Why is the Baltic Sea so special to live in? In Biological Oceanography of the Baltic Sea; Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 23–84. [Google Scholar] [CrossRef]
- Hansen, P.J. Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagial food web. Mar. Ecol. Prog. Ser. 1991, 73, 253–261. [Google Scholar] [CrossRef]
- Werlang, C.C.; De Souza, M.S.; Mendes, C.R.B. A review on the diversity and distribution of athecate dinoflagellates in South Atlantic and in the Atlantic sector of the Southern Ocean: Research insights and gaps. An. Acad. Bras. Cienc. 2024, 96, E20230746. [Google Scholar] [CrossRef]
- Buskey, E.J. Behavioral components of feeding selectivity of the heterotrophic dinoflagellate Protoperidinium pellucidum. Mar. Ecol. Prog. Ser. 1997, 153, 77–89. [Google Scholar] [CrossRef]
- Olseng, C.D.; Naustvoll, L.; Paasche, E. Grazing by the heterotrophic dinoflagellate Protoperidinium steinii on a Ceratium bloom. Mar. Ecol. Prog. Ser. 2002, 225, 161–167. [Google Scholar] [CrossRef]
- Sathishkumar, R.S.; Sahu, G.; Mohanty, A.K.; Arunachalam, K.D.; Venkatesan, R. First report of Protoperidinium steinii (Dinophyceae) bloom from the coastal marine ecosystem—An observation from tropical Indian water. Oceanologia 2021, 63, 391–402. [Google Scholar] [CrossRef]
- Baek, S.H.; Shimode, S.; Han, M.-S.; Kikuchi, T. Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: The role of nutrients. Harmful Algae 2008, 7, 729–739. [Google Scholar] [CrossRef]
- Phyto’pedia—The Phytoplankton Encyclopaedia Project. Available online: https://phytoplankton.eoas.ubc.ca/ (accessed on 24 November 2025).
- Park, M.G.; Kim, S.J.; Kim, H.S.; Myung, G.O.; Kang, I.G.; Yih, W.H. First successful culture of the marine dinoflagellate Dinophysis acuminata. Aquat. Microb. Ecol. 2006, 45, 101–106. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Chisholm, S.W.; Krebs, C.J.; Schindler, D.W.; Wright, R.F. Ecosystem Experiments. Science 1995, 269, 324–327. [Google Scholar] [CrossRef]
- Jeong, H.; Park, J.; Nho, J.; Park, M.; Ha, J.; Seong, K.; Jeng, C.; Seong, C.; Lee, K.; Yih, W. Feeding by red-tide dinoflagellates on the cyanobacterium Synechococcus. Aquat. Microb. Ecol. 2005, 41, 131–143. [Google Scholar] [CrossRef]
- Schiewer, U. Darß-Zingst Boddens, Northern Rügener Boddens and Schlei. In Ecology of Baltic Coastal Waters; Schiewer, U., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 197, pp. 35–86. [Google Scholar] [CrossRef]
- Schiewer, U. Greifswalder Bodden, Wismar-Bucht and Salzhaff. In Ecology of Baltic Coastal Waters; Schiewer, U., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 197, pp. 87–114. [Google Scholar] [CrossRef]
- Łysiak-Pastuszak, E.; Drgas, N.; Piątkowska, Z. Eutrophication in the Polish coastal zone: The past, present status and future scenarios. Mar. Pollut. Bull. 2004, 49, 186–195. [Google Scholar] [CrossRef]
- Chubarenko, B.; Margoński, P. The Vistula Lagoon. In Ecology of Baltic Coastal Waters; Schiewer, U., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 197, pp. 167–195. [Google Scholar] [CrossRef]
- Gasiūnaitė, Z.R.; Daunys, D.; Olenin, S.; Razinkovas, A. The Curonian Lagoon. In Ecology of Baltic Coastal Waters; Schiewer, U., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 197, pp. 197–215. [Google Scholar] [CrossRef]
- Frumin, G.T.; Kryuchkov, A.M. Hydrochemical characteristics. In Gulf of Finland in the Conditions of Anthropogenic Impact; Rumyantsev, V.A., Drabkova, V.G., Eds.; Institute of Limnology RAS: St. Petersburg, Russia, 1999; pp. 48–66. (In Russian) [Google Scholar]
- Ipatova, S.V.; Alyautdinov, A.R.; Dolgova, A.O. The Baltic Sea. In Marine Water Pollution: Annual Report 2022; Korshenko, A.N., Ed.; PresSto: Ivanovo, Russia, 2024; pp. 115–156, (In Russian). Available online: http://www.oceanography.institute/index.php/component/jdownloads/finish/41/1862 (accessed on 19 November 2025).
- Hill, C.; Wallström, K. The Stockholm Archipelago. In Ecology of Baltic Coastal Waters; Schiewer, U., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 197, pp. 309–334. [Google Scholar] [CrossRef]
- Kautsky, H. Askö Area and Himmerfjärden. In Ecology of Baltic Coastal Waters; Schiewer, U., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 197, pp. 335–360. [Google Scholar] [CrossRef]
- Riisgård, H.U.; Jensen, M.H.; Rask, N. Odense Fjord and Kerteminde Fjord/Kertinge Nor. In Ecology of Baltic Coastal Waters; Schiewer, U., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 197, pp. 361–394. [Google Scholar] [CrossRef]
- Kanter, D.R. Nitrogen Pollution: A Key Building Block for Addressing Climate Change. Clim. Change 2018, 147, 11–21. [Google Scholar] [CrossRef]
- Keeler, B.L.; Gourevitch, J.D.; Polasky, S.; Isbell, F.; Tessum, C.W.; Hill, J.D.; Marshall, J.D. The Social Costs of Nitrogen. Sci. Adv. 2016, 2, e1600219. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.; Provins, A.; Holland, M.; Mills, G.; Hayes, F.; Emmett, B.; Harper-Simmonds, L. A review and application of the evidence for nitrogen impacts on ecosystem services. Ecosyst. Serv. 2014, 7, 76–88. [Google Scholar] [CrossRef]
- Turner, R.E.; Rabalais, N.N.; Justic, D.; Dortch, Q. Global patterns of dissolved N, P and Si in large rivers. Biogeochemistry 2003, 64, 297–317. [Google Scholar] [CrossRef]
- Diaz, R.J.; Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.; Tilman, D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 2008, 451, 712–715. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; et al. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef]
- Andersen, J.H.; Carstensen, J.; Conley, D.J.; Dromph, K.; Fleming-Lehtinen, V.; Gustafsson, B.G.; Josefson, A.B.; Norkko, A.; Villnäs, A.; Murray, C. Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biol. Rev. 2017, 92, 135–149. [Google Scholar] [CrossRef]
- Murray, C.J.; Müller-Karulis, B.; Carstensen, J.; Conley, D.J.; Gustafsson, B.G.; Andersen, J.H. Past, Present and Future Eutrophication Status of the Baltic Sea. Front. Mar. Sci. 2019, 6, 2. [Google Scholar] [CrossRef]
- HELCOM. HELCOM (2023): State of the Baltic Sea. Third HELCOM Holistic Assessment 2016–2021. Baltic Sea Environment Proceedings 194. 2023. Available online: https://stateofthebalticsea.helcom.fi/wp-content/uploads/2023/11/State-of-the-Baltic-Sea-2023_Nov23.pdf (accessed on 10 November 2025).
- Fox, J.W. The intermediate disturbance hypothesis should be abandoned. Trends Ecol. Evol. 2013, 28, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Gaedecke, A.; Sommer, U. The influence of the frequency of periodic disturbances on the maintenance of phytoplankton diversity. Oecologia 1986, 71, 25–28. [Google Scholar] [CrossRef]
- Weider, L.J. Disturbance, competition and maintenance of clonal diversity in Daphnia pulex. J. Evol. Biol. 1992, 5, 505–522. [Google Scholar] [CrossRef]
- Lampert, W.; Sommer, U. Limnoecology: The Ecology of Lakes and Streams, 2nd ed.; Oxford University Press: Oxford, UK, 2007; p. 334. [Google Scholar]
- Jia, Y.; Gao, H.; Tong, M.; Anderson, D.M. Cell cycle regulation of the mixotrophic dinoflagellate Dinophysis acuminata: Growth, photosynthetic efficiency and toxin production. Harmful Algae 2019, 89, 101672. [Google Scholar] [CrossRef] [PubMed]
- Baho, D.L.; Drakare, S.; Johnson, R.K.; Allen, C.R.; Angeler, D.G. Is the impact of eutrophication on phytoplankton diversity dependent on lake volume/ecosystem size? J. Limnol. 2016, 76, 199–210. [Google Scholar] [CrossRef]
- Wang, H.; Molinos, J.G.; Heino, J.; Zhang, H.; Zhang, P.; Xu, J. Eutrophication causes invertebrate biodiversity loss and decreases cross-taxon congruence across anthropogenically-disturbed lakes. Environ. Int. 2021, 153, 106494. [Google Scholar] [CrossRef]
- Zhong, J.; Chen, Q.; Deng, X.; Guan, Y.; He, Q.; Nethmini, R.T.; Tang, J.; Hou, Q.; Li, X.; Jiang, G.; et al. Eutrophication influences diversity and community-level change points of mycoplankton in subtropical estuaries. Front. Microbiol. 2025, 16, 1620942. [Google Scholar] [CrossRef]
- Silva, F.S.; Moura, A.N.; Amorim, C.A. Eutrophication drives functional and beta diversity loss in epiphytic cyanobacteria. Hydrobiologia 2025, 852, 4459–4474. [Google Scholar] [CrossRef]
- Rosset, V.; Angélibert, S.; Arthaud, F.; Bornette, G.; Robin, J.; Wezel, A.; Vallod, D.; Oertli, B. Is eutrophication really a major impairment for small waterbody biodiversity? J. Appl. Ecol. 2014, 51, 415–425. [Google Scholar] [CrossRef]
- Matantseva, O.; Skarlato, S.; Vogts, A.; Pozdnyakov, I.; Liskow, I.; Schubert, H.; Voss, M. Superposition of individual activities: Urea-mediated suppression of nitrate uptake in the dinoflagellate Prorocentrum minimum revealed at the population and single-cell levels. Front. Microbiol. 2016, 7, 1310. [Google Scholar] [CrossRef] [PubMed]
- Matantseva, O.; Pozdnyakov, I.; Voss, M.; Liskow, I.; Skarlato, S. The uncoupled assimilation of carbon and nitrogen from urea and glycine by the bloom-forming dinoflagellate Prorocentrum minimum. Protist 2018, 169, 603–614. [Google Scholar] [CrossRef]





| Species | n | TN opt (μmol/L) | TN Niche Limits, Min–Max (μmol/L) | TN Niche Width (μmol/L) | Nutrition Mode [Reference] |
|---|---|---|---|---|---|
| Amphidinium crassum * | 115 | 146.90 | 91.12–202.69 | 111.57 | HTD [52,53] |
| Protoperidinium pellucidum * | 165 | 18.52 | 14.48–22.55 | 8.07 | HTD [54] |
| Protoperidinium steinii * | 107 | 19.50 | 15.31–23.0 | 7.69 | HTD [55,56] |
| Ceratium fusus | 253 | 29.19 | 16.92–41.47 | 24.55 | MTD [57] |
| Ceratium lineatum | 108 | 19.22 | 0.87–37.57 | 36.70 | MTD [58] |
| Ceratium tripos | 282 | 32.04 | 8.69–55.38 | 46.69 | MTD [58] |
| Dinophysis acuminata | 197 | 31.38 | 12.07–50.68 | 38.61 | MTD [59] |
| Dinophysis norvegica | 232 | 30.65 | 12.37–48.92 | 36.55 | MTD [60] |
| Prorocentrum cordatum | 457 | 32.66 | 9.74–55.59 | 45.85 | MTD [61] |
| Prorocentrum micans | 242 | 31.38 | 21.95–40.82 | 18.87 | MTD [61] |
| TN Range Classes | TN Cut-Off Thresholds (µmol/L) | Eutrophication Level | TN Median (µmol/L) | Number of Taxa | ±SD | n |
|---|---|---|---|---|---|---|
| 1 | 1–15 | Low (1) | 13.7 | 7.0 | 5.1 | 82 |
| 2 | 16–25 | Moderate (2) | 19.2 | 5.8 | 5.4 | 428 |
| 3 | 26–35 | High (3) | 30.1 | 3.6 | 4.3 | 180 |
| 4 | 36–45 | Very high (4) | 40.0 | 2.9 | 4.0 | 77 |
| 5 | 46–60 | Extremely high (5) | 51.7 | 1.3 | 1.2 | 58 |
| Region, Year | TN, μmol/L [Source] | Eutrophication Level After U. Schiewer [42]/This Study |
|---|---|---|
| South-western (German) Baltic coastal waters | 32.9 (median), 57.3 (mean), SD 65.1, range 0.18–659.8 [this study] | very serious/high (3) to extremely high (5) |
| Kattegat | 22 ± 3 [51] | moderate/moderate (2) |
| Baltic Sea proper | 22 ± 3 [51] | moderate/moderate (2) |
| Darss-Zingster Bodden, 1996–2004 | 205 (138–253) [62] | very serious/extremely high (5) |
| Greifswalder Bodden | 376 [63] | very serious/extremely high (5) |
| Gulf of Gdańsk | 26.96 [64] | very serious/high (3) |
| Vistula Lagoon | 20–400 [65] | very serious/extremely high (5) |
| Curonian Lagoon | 119.7 (15–453.2) [66] | very serious/extremely high (5) |
| Gulf of Riga | 39 ± 11 [51] | very serious/very high (4) |
| Gulf of Finland | 30 ± 3 [51] | very serious/high (3) |
| Eastern Gulf of Finland, 1990s | 23.5–31.1 [67] | very serious/high (3) |
| Eastern Gulf of Finland (deep), 2022 | 31.5 (max 42.19) [68] | very serious/high (3) |
| Eastern Gulf of Finland (shallow), 2022 | 41.27 (max 97.74) [68] | very serious/very high (4) |
| Neva Bay, 1990s | 24.9–30.4 [67] | very serious/high (3) |
| Neva Bay, 2022 | 45.32 (max 148.6) [68] | very serious/very high (4) |
| Stockholm Archipelago | 60 [69] | very serious/extremely high (5) |
| Askö Area | 17 [70] | small/moderate (2) |
| Odense Fjord, 1979–2003 | 23–115 [71] | very serious/extremely high (5) |
| Bothnian Sea | 19 ± 2 [51] | small or moderate/moderate (2) |
| Bothnian Bay | 20 ± 2 [51] | small or moderate/moderate (2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Telesh, I.V.; Schubert, H.; Skarlato, S.O. Total Nitrogen Shapes Diversity of Bloom-Forming Dinoflagellates in the Baltic Coastal Waters. Biology 2026, 15, 48. https://doi.org/10.3390/biology15010048
Telesh IV, Schubert H, Skarlato SO. Total Nitrogen Shapes Diversity of Bloom-Forming Dinoflagellates in the Baltic Coastal Waters. Biology. 2026; 15(1):48. https://doi.org/10.3390/biology15010048
Chicago/Turabian StyleTelesh, Irena V., Hendrik Schubert, and Sergei O. Skarlato. 2026. "Total Nitrogen Shapes Diversity of Bloom-Forming Dinoflagellates in the Baltic Coastal Waters" Biology 15, no. 1: 48. https://doi.org/10.3390/biology15010048
APA StyleTelesh, I. V., Schubert, H., & Skarlato, S. O. (2026). Total Nitrogen Shapes Diversity of Bloom-Forming Dinoflagellates in the Baltic Coastal Waters. Biology, 15(1), 48. https://doi.org/10.3390/biology15010048

