Synergistic Effects of Gibberellic Acid, Forchlorfenuron, Thidiazuron, and Brassinosteroid Combinations on Seedless Berry Development and Quality Enhancement in ‘Shine Muscat’ and ‘Red Muscat of Alexandria’ Grapes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Experimental Design
2.3. Measurement of Fruit Quality Parameters
- Total Soluble Solids (TSS): Berries were homogenized, and the supernatant was extracted by centrifugation (3000× g, 10 min). TSS was measured using a handheld refractometer at 20 °C, with values expressed as °Brix.
- Single berry weight and longitudinal/transverse diameters: Longitudinal and transverse diameters were measured using an electronic vernier caliper (0.01 mm precision), and single berry weight was recorded with an electronic balance (0.01 g precision).
- Acid Content: Fruit pulp (0.5 g) was homogenized with 20 mL distilled water, filtered, and the volume adjusted to 100 mL. A 20 mL aliquot was titrated with 0.05 M NaOH using 1% phenolphthalein as an indicator until a faint pink color lasted 30 s. TA content was calculated as:
2.4. Histological Analysis
2.5. Statistical Analysis
3. Results
3.1. Modulatory Effects of Plant Growth Regulators on Grape Berry Development and Quality Parameters
3.2. Effects of Plant Growth Regulators on Pedicel Microstructure Development in Grape
4. Discussion
4.1. Cultivar-Specific Responses to PGRs and Implications for Seedless Production
4.2. Microstructural Modifications and Marketability Implications
4.3. Research Method Limitationss
4.4. Risk Assessment and Regulatory Challenges
4.5. Market and Application Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PGR | Plant Growth Regulator |
GA3 | Gibberellic Acid |
CPPU | Forchlorfenuron |
TDZ | Thidiazuron |
EBR | 24-Epibrassinolide |
SM | Streptomycin |
TSS | Total Soluble Solids |
TA | Titratable Acidity |
DAA | Days After Anthesis |
CK | Control (Water Treatment) |
References
- Khan, N.; Fahad, S.; Naushad, M.; Faisal, S. Grape production critical review in the world. SSRN Electron. J. 2020, 2020, 1–28. [Google Scholar] [CrossRef]
- Han, X.; Mi, Y.; Wang, H.; Ye, S.; Abe-Kanoh, N.; Ji, W. Influence of GA3 and CPPU on the Quality Attributes and Peelability of ‘Wuhe Cuibao’ Grape. Agronomy 2025, 15, 1986. [Google Scholar] [CrossRef]
- Hassan, A.E.; Behary, E.H.M. Effect of some gibberellic acid and forchlorfnuron application on productivity and berries development of early sweet grapes. Menoufia J. Plant Prod. 2021, 6, 289–298. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, P.; Li, W.; Li, H.; Zhou, G.; Chen, K.; Fang, Y.; Zhang, K. Effects of Seedlessness and Swelling Treatments Based on GA3 and CPPU on the Fruit Quality of “Shine Muscat” Grapes. Sci. Agric. Sin. 2025, 58, 2008–2021. [Google Scholar] [CrossRef]
- Peng, T.; Liu, C.; Wu, S.L.; Li, J.B.; Liu, F. Effects of different puffing measures on the fruit quality of ‘summer black’ grapes. IOP Conf. Ser. Earth Environ. Sci. 2020, 546, 052057. [Google Scholar] [CrossRef]
- Peppi, M.C.; Fidelibus, M.W. Effects of Forchlorfenuron and Abscisic Acid on the Quality of ‘Flame Seedless’ Grapes. HortScience 2008, 43, 173–177. [Google Scholar] [CrossRef]
- Rademacher, W. Plant Growth Regulators: Backgrounds and Uses in Plant Production. J. Plant Growth Regul. 2015, 34, 845–872. [Google Scholar] [CrossRef]
- Ren, J.; Li, X.; Song, X.; Ren, C.; Shen, Y.; Tao, J. Effects of GA3 and TDZ on Fruit Growth and Quality of Summer Black Grape. Acta Agric. Jiangxi 2020, 51, 145–152. [Google Scholar]
- Clouse, S.D.; Sasse, J.M. BRASSINOSTEROIDS: Essential Regulators of Plant Growth and Development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 427–451. [Google Scholar] [CrossRef] [PubMed]
- Bhat, Z.A.; Reddy, Y.N.; Srihari, D.; Bhat, J.A.; Rashid, R.; Rather, J.A. New Generation Growth Regulators–Brassinosteroids and CPPU Improve Bunch and Berry Characteristics in ‘Tas–A–Ganesh’ Grape. Int. J. Fruit Sci. 2011, 11, 309–315. [Google Scholar] [CrossRef]
- Li, J.; Javed, H.U.; Wu, Z.; Wang, L.; Han, J.; Zhang, Y.; Ma, C.; Jiu, S.; Zhang, C.; Wang, S. Improving berry quality and antioxidant ability in ‘Ruidu Hongyu’ grapevine through preharvest exogenous 2, 4–epibrassinolide, jasmonic acid and their signaling inhibitors by regulating endogenous phytohormones. Front. Plant Sci. 2022, 13, 1035022. [Google Scholar] [CrossRef]
- Dong, T.; Hao, T.; Hakeem, A.; Ren, Y.; Fang, J. Synergistic variation in abscisic acid and brassinolide treatment signaling component alleviates fruit quality of ‘Shine Muscat’ grape during cold storage. Food Chem. 2025, 464, 141584. [Google Scholar] [CrossRef]
- Eshghi, S.; Kavoosi, B.; Hosseinifarahi, M. Influence of Streptomycin and CuSO4 on Seedlessness and Fruit Quality in ‘Rotabi Seyah’ Table Grape. Acta Hortic. 2010, 884, 461–466. [Google Scholar] [CrossRef]
- Osako, Y.; Kaite, T.; Yamane, H.; Morimoto, T.; Itai, A.; Tao, R. Effects of streptomycin, gibberellic acid, and the synthetic cytokinin forchlorfenuron on the seed size of muscadine grape. Acta Hortic. 2023, 1370, 163–170. [Google Scholar] [CrossRef]
- European Parliament and Council of the European Union. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC; European Parliament and of the Council: Strasbourg, France, 2009. [Google Scholar]
- European Parliament and Council of the European Union. Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC; European Parliament and of the Council: Strasbourg, France, 2005. [Google Scholar]
- Mok, D.W.; Mok, M.C. Cytokinin Metabolism and Action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 89–118. [Google Scholar] [CrossRef]
- Verhaegen, M.; Bergot, T.; Liebana, E.; Stancanelli, G.; Streissl, F.; Mingeot-Leclercq, M.P. On the use of antibiotics to control plant pathogenic bacteria: A genetic and genomic perspective. Front. Microbiol. 2023, 14, 1221478. [Google Scholar] [CrossRef]
- Dong, Y.; Huang, L.; Zhang, W.; Liu, J.; Nong, H.; Wang, X.; Zheng, H.; Tao, J. Transcriptomic and functional analysis reveals that VvSAUR43 may be involved the elongation of grape berries. Sci. Hortic. 2023, 318, 112119. [Google Scholar] [CrossRef]
- Geng, K.; Zhan, Z.; Xue, X.; Hou, C.; Li, D.; Wang, Z. Genome-wide identification of the SWEET gene family in grape (Vitis vinifera L.) and expression analysis of VvSWEET14a in response to water stress. Physiol. Mol. Biol. Plants 2024, 30, 1565–1579. [Google Scholar] [CrossRef] [PubMed]
- Koyama, K.; Kono, A.; Ban, Y.; Bahena-Garrido, S.M.; Ohama, T.; Iwashita, K.; Fukuda, H.; Goto-Yamamoto, N. Genetic architecture of berry aroma compounds in a QTL (quantitative trait loci) mapping population of interspecific hybrid grapes (Vitis labruscana × Vitis vinifera). BMC Plant Biol. 2022, 22, 458. [Google Scholar] [CrossRef] [PubMed]
- Ren, R.; Wan, Z.; Chen, H.; Zhang, Z. The effect of inter–varietal variation in sugar hydrolysis and transport on sugar content and photosynthesis in Vitis vinifera L. leaves. Plant Physiol. Biochem. 2022, 189, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cuenca, J.; Wang, N.; Liang, Z.; Sun, H.; Gutierrez, B.; Xi, X.; Arro, J.; Wang, Y.; Fan, P.; et al. A key ‘foxy’ aroma gene is regulated by homology–induced promoter indels in the iconic juice grape ‘Concord’. Hortic. Res. 2020, 7, 67. [Google Scholar] [CrossRef]
- Wang, S.; Shen, Y.; Zhang, C.; Xu, W.; Lu, J. Breeding report of new grape variety “Red Alexandria (Muscat)”. S. China Fruits 2008, 37, 65–66. [Google Scholar]
- Cheng, D.; Li, H.; Wang, H. Effects of plant growth regulators on grape fruit quality. Acta Hortic. Sin. 2015, 42, 1456–1464. [Google Scholar]
- Li, H.; Zhang, L.; Wang, L.; Yin, Y.; Jia, H. Effects of Two Plant Growth Regulators on Fruit Quality of Shine Muscat Grape. J. Zhejiang Univ. (Agric. Life Sci.) 2016, 42, 419–426. [Google Scholar]
- Mehretie, S.; Inoue, S.; Hayashi, T.; Nakashima, H.; Panintorn, P.; Ninomiya, K.; Kondo, N. Ultra sensor based on color and UV–excited fluorescence images for predicting quality attributes of Shine–Muscat grape bunches at different maturity stages. Food Chem. 2024, 461, 140894. [Google Scholar] [CrossRef]
- Li, J.; Ma, T.; Bao, S.; Yin, D.; Ge, Q.; Li, C.; Fang, Y.; Sun, X. Suitable crop loading: An effective method to improve “Shine Muscat” grape quality. Food Chem. 2023, 424, 136451. [Google Scholar] [CrossRef]
- Choi, K.O.; Hur, Y.Y.; Park, S.J.; Lee, D.H.; Kim, S.J.; Im, D. Relationships between Instrumental and Sensory Quality Indices of Shine Muscat Grapes with Different Harvesting Times. Foods 2022, 11, 2482. [Google Scholar] [CrossRef]
- Bai, Y.; Yu, J.; Yang, S.; Ning, J. An improved YOLO algorithm for detecting flowers and fruits on strawberry seedlings. Biosyst. Eng. 2024, 237, 1–12. [Google Scholar] [CrossRef]
- Dequeker, B.; Šalagovič, J.; Retta, M.; Verboven, P.; Nicolaï, B.M. A biophysical model of apple (Malus domestica Borkh.) and pear (Pyrus communis L.) fruit growth. Biosyst. Eng. 2024, 239, 130–146. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Huo, S.F.; Wang, L.T.; Meng, J.F.; Zhang, Z.W.; Xi, Z.M. Exogenous 24-Epibrassinolide alleviates oxidative damage from copper stress in grape (Vitis vinifera L.) cuttings. Plant Physiol. Biochem. 2018, 130, 555–565. [Google Scholar] [CrossRef]
- Meng, C.; Yang, W.; Ren, X.; Wang, D.; Li, M. In–situ soil texture classification and physical clay content measurement based on multi–source information fusion. Int. J. Agric. Biol. Eng. 2023, 16, 203–211. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Heo, J.-Y. Combined treatment with gibberellic acid and thidiazuron improves fruit quality of ‘Red Dream’ grape cultivar. Not. Sci. Biol. 2023, 15, 11499. [Google Scholar] [CrossRef]
- Chen, X.; Ayesha, K.; Wen, X.; Zhang, Y.; Dou, M.; Jia, K.; Wang, Y.; Li, Y.; Sun, F.; Liu, G.; et al. An integrate methods to improve the high efficiency of embryo rescue breeding in seedless grapes. J. Integr. Agric. 2025, in press. [Google Scholar]
- Khalil, U.; Rajwana, I.A.; Razzaq, K.; Farooq, U.; Saleem, B.A. Physical, Biochemical and Phytochemical Quality Variations in Grapes Treated by Exogenous Application of Gibberellic Acid. Erwerbs–Obstbau 2023, 65, 2031–2044. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, W.; Wang, W.; Nieuwenhuizen, N.J.; Atkinson, R.G.; Gao, L.; Hu, H.; Zhao, W.; Ma, R.; Zheng, H.; et al. Integrated Transcriptomic and Proteomic Analysis Identifies Novel Regulatory Genes Associated with Plant Growth Regulator–Induced Astringency in Grape Berries. J. Agric. Food Chem. 2024, 72, 4433–4447. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, K.; Maoz, I.; Kochanek, B.; Sela, N.; Lerno, L.; Ebeler, S.E.; Lichter, A. Cytokinin but not gibberellin application had major impact on the phenylpropanoid pathway in grape. Hortic. Res. 2021, 8, 51. [Google Scholar] [CrossRef]
- Ghimire, U.; Abeli, P.; Brecht, J.K.; Pliakoni, E.; Liu, T. Unique molecular mechanisms revealed for the effects of temperature, CA, ethylene exposure, and 1–MCP on postharvest senescence of broccoli. Postharvest Biol. Technol. 2024, 213, 112919. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, J.; Zhang, S.; Gong, Y.; Wang, N.; Zhang, Z.; Chen, X. Auxin responsive factor MdARF17 promotes ethylene synthesis in apple fruits by activating MdERF003 expression. Plant Cell Rep. 2024, 43, 212. [Google Scholar] [CrossRef]
- Ordoñez Trejo, E.J.; Brizzolara, S.; Cardillo, V.; Ruperti, B.; Bonghi, C.; Tonutti, P. The impact of PGRs applied in the field on the postharvest behavior of fruit crops. Sci. Hortic. 2023, 318, 112103. [Google Scholar] [CrossRef]
- Li, Y.; Tang, X.; Feng, W.; Wan, S.; Bian, Y.; Xie, Z. Differential regulation of xylem and phloem differentiation in grape berries by GA3 and CPPU. Sci. Hortic. 2024, 337, 113582. [Google Scholar] [CrossRef]
- Cheng, D.; He, S.; Li, L.; Tong, X.; Gu, H.; Sun, X.; Li, M.; Chen, J. Effects of Mepiquat Chloride and Chlormequat Chloride on the Growth and Fruit Quality of ‘Shine Muscat’ Grapevines. Agriculture 2025, 15, 1267. [Google Scholar] [CrossRef]
- Huang, H.; He, X.; Sun, Q.; Liu, G.; Tang, Y.; Sun, J. Differential changes in cuticular wax affect the susceptibility to fruit decay in pitaya after harvest: A cultivar comparative study. Postharvest Biol. Technol. 2024, 210, 112751. [Google Scholar] [CrossRef]
- Wakchaure, G.C.; Minhas, P.S.; Kumar, S.; Khapte, P.S.; Dalvi, S.G.; Rane, J.; Reddy, K.S. Pod quality, yields responses and water productivity of okra (Abelmoschus esculentus L.) as affected by plant growth regulators and deficit irrigation. Agric. Water Manag. 2023, 282, 108267. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Hayasaka, Y.; Vidal, S.; Waters, E.J.; Jones, G.P. Composition of Grape Skin Proanthocyanidins at Different Stages of Berry Development. J. Agric. Food Chem. 2001, 49, 5348–5355. [Google Scholar] [CrossRef]
- Wang, L.; Brouard, E.; Prodhomme, D.; Hilbert, G.; Renaud, C.; Petit, J.P.; Edwards, E.; Betts, A.; Delrot, S.; Ollat, N.; et al. Regulation of anthocyanin and sugar accumulation in grape berry through carbon limitation and exogenous ABA application. Food Res. Int. 2022, 160, 111478. [Google Scholar] [CrossRef]
- Li, F.; Wu, Q.; Liao, B.; Yu, K.; Huo, Y.; Meng, L.; Wang, S.; Wang, B.; Du, M.; Tian, X.; et al. Thidiazuron Promotes Leaf Abscission by Regulating the Crosstalk Complexities between Ethylene, Auxin, and Cytokinin in Cotton. Int. J. Mol. Sci. 2022, 23, 2696. [Google Scholar] [CrossRef]
- Ren, M.; Wang, Y.; Yi, S.; Chen, J.; Zhang, W.; Li, H.; Du, K.; Tao, J.; Zheng, H. Combined Transcriptome Analysis Reveals the Mechanism of ‘Shine Muscat’ Pollen Abortion Induced by CPPU and TDZ Treatment. Horticulturae 2025, 11, 549. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, P.; Bai, W.; Chen, Z.; Cheng, Z.; Su, L.; Chen, X.; Bi, Y.; Feng, R.; Liu, Z. Fine mapping and functional validation of the candidate gene BhGA2ox3 for fruit pedicel length in wax gourd (Benincasa hispida). Theor. Appl. Genet. 2024, 137, 272. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; He, Y.; Yan, S.; Sun, Z.; Cai, R.; Zhang, Y. Histological, transcriptomic, and gene functional analyses reveal the regulatory events underlying gibberellin–induced parthenocarpy in tomato. Hortic. Plant J. 2024, 10, 156–170. [Google Scholar] [CrossRef]
- Li, B.; Zang, Y.; Xun, J.; Wang, X.; Lu, H.; Qi, J.; Wang, X.; Xi, Z. 24–Epibrassinolide improves quality and resistance against Botrytis cinerea of harvest table grapes through modulating reactive oxygen species homeostasis. Postharvest Biol. Technol. 2024, 215, 113016. [Google Scholar] [CrossRef]
- Massolo, J.F.; Díaz, A.A. Brassinosteroid biology, potential uses in post–harvest technology and future challenges. Postharvest Biol. Technol. 2024, 212, 112853. [Google Scholar] [CrossRef]
- Vrobel, O.; Ćavar Zeljković, S.; Dehner, J.; Spíchal, L.; De Diego, N.; Tarkowski, P. Multi–class plant hormone HILIC–MS/MS analysis coupled with high–throughput phenotyping to investigate plant–environment interactions. Plant J. 2024, 120, 818–832. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Xu, P.; Pan, J.; Li, Y.; Zhou, J.; Kuang, H.; Lian, H. Inhibition of FvMYB10 transcriptional activity promotes color loss in strawberry fruit. Plant Sci. 2020, 298, 110578. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.; Chen, Z.Y.; Jiang, Y.; Duan, B.B.; Xi, Z.M. Involvement of ABA and antioxidant system in brassinosteroid-induced water stress tolerance of grapevine (Vitis vinifera L.). Sci. Hortic. 2019, 256, 108596. [Google Scholar] [CrossRef]
- Quamruzzaman, M.; Manik, S.M.N.; Shabala, S.; Zhou, M. Improving Performance of Salt–Grown Crops by Exogenous Application of Plant Growth Regulators. Biomolecules 2021, 11, 788. [Google Scholar] [CrossRef]
- Chen, L.; Hou, J.; Hu, X.L.; Zhang, J.Z.; Wang, H.D. Environmental Behaviors of Plant Growth Regulators in Soil: A Review. Huan Jing Ke Xue 2022, 43, 11–25. (In Chinese) [Google Scholar] [CrossRef]
- Hu, X.L.; Yang, H.R.; Li, C.H. Regulating Mechanism of Drought in Maize with ABA. Acta Bot.-Boreali–Occident. Sin. 2009, 29, 191–195. [Google Scholar]
- Ghosh, S.N.; Tarai, R.K.; Ahlawat, T.R. Plant Growth Regulators in Tropical and Sub–Tropical Fruit Crops; CRC Press: Boca Raton, FL, USA, 2022; pp. 241–249. [Google Scholar] [CrossRef]
- Wu, X.; Gong, D.; Zhao, K.; Chen, D.; Dong, Y.; Gao, Y.; Wang, Q.; Hao, G.F. Research and development trends in plant growth regulators. Adv. Agrochem. 2024, 3, 99–106. [Google Scholar] [CrossRef]
- Crupi, P.; Alba, V.; Masi, G.; Caputo, A.R.; Tarricone, L. Effect of two exogenous plant growth regulators on the color and quality parameters of seedless table grape berries. Food Res. Int. 2019, 126, 108667. [Google Scholar] [CrossRef]
- Qian, W.; Hu, Y.; Lin, X.; Yu, D.; Jia, S.; Ye, Y.; Mao, Y.; Yi, L.; Gao, S. Phenological Growth Stages of Abelmoschus manihot: Codification and Description According to the BBCH Scale. Agronomy 2023, 13, 1328. [Google Scholar] [CrossRef]
- Yirmibeş, B.; Lachin, A.; Ülger, N.; Karaçam, E. The Utilization of Plant Growth Regulators (PGRs) in Agricultural Application and The Effecting Mechanisms. Res. Agric. Sci. 2025, 56, 180–185. [Google Scholar] [CrossRef]
Treatment Group | Full Bloom (D0) | 14 Days Post-Anthesis (D14) |
---|---|---|
1 | EBR 0.2 mg/L | EBR 0.5 mg/L |
2 | EBR 0.5 mg/L | EBR 0.5 mg/L |
3 | EBR 0.8 mg/L | EBR 0.5 mg/L |
4 | EBR 1.0 mg/L | EBR 0.5 mg/L |
5 | 0.5 mg/L EBR + 200 mg/L SM | EBR 0.5 mg/L |
6 | 2 mg/L TDZ + 25 mg/L GA3 | TDZ 2 mg/L |
7 | 200 mg/L SM + 2 mg/L TDZ | TDZ 2 mg/L |
8 | CPPU 5.0 mg/L | CPPU 10 mg/L |
9 | 200 mg/L SM + CPPU 5.0 mg/L | CPPU 10 mg/L |
10 | 25 mg/L GA3 + CPPU 3.0 mg/L | 25 mg/L GA3 + CPPU 5.0 mg/L |
11 | 25 mg/L GA3 | 25 mg/L GA3 |
CK | Solvent (Water) | Solvent (Water) |
Treatment | Cultivar | Days After Anthesis (DAA) | ||||||
---|---|---|---|---|---|---|---|---|
D0 | D5 | D14 | D24 | D44 | D74 | D104 | ||
T2 | Red | 1 | 1 | 1 | 2 | 2 | 2 | 1 |
Shine | 1 | 1 | 2 | 2 | 2 | 1 | 2 | |
T6 | Red | 1 | 1 | 1 | 2 | 2 | 3 | 2 |
Shine | 1 | 1 | 2 | 3 | 3 | 3 | 3 | |
T8 | Red | 1 | 1 | 1 | 2 | 2 | 3 | 3 |
Shine | 1 | 1 | 1 | 2 | 2 | 3 | 3 | |
T11 | Red | 1 | 1 | 2 | 2 | 2 | 3 | 3 |
Shine | 1 | 1 | 2 | 3 | 2 | 3 | 2 | |
CK | Red | 1 | 1 | 1 | 2 | 1 | 3 | 2 |
Shine | 1 | 1 | 2 | 2 | 1 | 3 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Wu, Z.; Liu, B.; Wang, L.; Wang, S. Synergistic Effects of Gibberellic Acid, Forchlorfenuron, Thidiazuron, and Brassinosteroid Combinations on Seedless Berry Development and Quality Enhancement in ‘Shine Muscat’ and ‘Red Muscat of Alexandria’ Grapes. Biology 2025, 14, 1270. https://doi.org/10.3390/biology14091270
Yang P, Wu Z, Liu B, Wang L, Wang S. Synergistic Effects of Gibberellic Acid, Forchlorfenuron, Thidiazuron, and Brassinosteroid Combinations on Seedless Berry Development and Quality Enhancement in ‘Shine Muscat’ and ‘Red Muscat of Alexandria’ Grapes. Biology. 2025; 14(9):1270. https://doi.org/10.3390/biology14091270
Chicago/Turabian StyleYang, Pengcheng, Zishu Wu, Boyang Liu, Lei Wang, and Shiping Wang. 2025. "Synergistic Effects of Gibberellic Acid, Forchlorfenuron, Thidiazuron, and Brassinosteroid Combinations on Seedless Berry Development and Quality Enhancement in ‘Shine Muscat’ and ‘Red Muscat of Alexandria’ Grapes" Biology 14, no. 9: 1270. https://doi.org/10.3390/biology14091270
APA StyleYang, P., Wu, Z., Liu, B., Wang, L., & Wang, S. (2025). Synergistic Effects of Gibberellic Acid, Forchlorfenuron, Thidiazuron, and Brassinosteroid Combinations on Seedless Berry Development and Quality Enhancement in ‘Shine Muscat’ and ‘Red Muscat of Alexandria’ Grapes. Biology, 14(9), 1270. https://doi.org/10.3390/biology14091270