Microglial Autophagy and Mitophagy in Ischemic Stroke: From Dual Roles to Therapeutic Modulation
Simple Summary
Abstract
1. Introduction
2. Dual Roles of Microglial Autophagy in Ischemic Stroke: From Neuroprotection to Neurotoxicity
2.1. Protective Role of Microglial Autophagy
2.2. Detrimental Consequences of Dysregulated Microglial Autophagy in Ischemic Stroke
2.3. Microglial Mitophagy in Ischemic Stroke: Mechanistic Crossroads and Therapeutic Promise
3. Discussion
3.1. Mechanistic Duality and Temporal Dynamics
3.2. Mitophagy as an Immunometabolic Checkpoint
3.3. Translational Gaps and Drug Landscape
3.4. Human Evidence and Biomarker Progress
3.5. Delivery Challenges and Future Directions
- Engineering carriers for enhanced BBB penetration and microglia specificity.
- Integrating spatiotemporal monitoring, using advanced imaging and biomarker profiling to guide dosing windows.
3.6. Clinical Outlook
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADSCs | adipose-derived stem cells |
AMPK | AMP-activated protein kinase |
ATG | Autophagy-related gene |
ATP | Adenosine triphosphate |
BBB | blood–brain barrier |
BMECs | brain microvascular endothelial cells |
BNIP3 | Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 |
ceRNA | competing endogenous RNA |
CNS | central nervous system |
CSF | cerebrospinal fluid |
CX3CL1 | C-X3-C motif chemokine ligand 1 |
CX3CR1 | C-X3-C motif chemokine receptor 1 |
DAMPs | Damage-associated molecular patterns |
ER | Endoplasmic reticulum |
ERGICs | endoplasmic-reticulum Golgi intermediate compartments |
EVs | Extracellular vesicles |
GBD | Global Burden of Disease |
HIF-1α | Hypoxia-inducible factor 1-alpha |
IL-18 | Interleukin-18 |
IL-1β | Interleukin-1 beta |
IL-6 | Interleukin-6 |
iNOS | Inducible nitric oxide synthase |
IPOC | ischemic post-conditioning |
IS | ischemic stroke |
JNK | c-Jun N-terminal kinase |
LC3 | Microtubule-associated protein 1A/1B-light chain 3 |
LIR | LC3-interacting region |
MALAT1 | Metastasis-associated lung adenocarcinoma transcript 1 |
MCAO | middle cerebral artery occlusion |
miR | MicroRNA |
mitophagy | Mitochondria-specific autophagy |
mtDNA | Mitochondrial DNA |
mTOR | Mechanistic target of rapamycin |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
NIX | BNIP3-like protein X |
NLRP3 | NOD-like receptor family pyrin domain containing 3 |
NLRX1 | NOD-like receptor X1 |
OGD/R | Oxygen-glucose deprivation/reperfusion |
PARP14 | Poly(ADP-ribose) polymerase family member 14 |
PDE1-B | Phosphodiesterase 1B |
PF11 | pseudoginsenoside-F11 |
PGE2 | prostaglandin E2 |
PINK1 | PTEN-induced kinase 1 |
PSCI | Post-stroke cognitive impairment |
PTP1B | protein tyrosine phosphatase 1B |
ROS | Reactive oxygen species |
rt-PA | recombinant tissue plasminogen activator |
S1P | sphingosine-1-phosphate |
SASP | Senescence-associated secretory phenotype |
SIRT | Sirtuin |
STING | Stimulator of interferon genes |
TLR | Toll-like receptor |
TNF-α | Tumor necrosis factor-alpha |
ULK1 | Unc-51-like kinase 1 |
ULK1/2 | Unc-51-like kinase 1/2 |
UPR | unfolded protein response |
α7nAChR | α7 nicotinic acetylcholine receptor |
Appendix A
References
- GBD 2021 Stroke Risk Factor Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 973–1003. [Google Scholar] [CrossRef]
- Saceleanu, V.M.; Toader, C.; Ples, H.; Covache-Busuioc, R.A.; Costin, H.P.; Bratu, B.G.; Dumitrascu, D.I.; Bordeianu, A.; Corlatescu, A.D.; Ciurea, A.V. Integrative Approaches in Acute Ischemic Stroke: From Symptom Recognition to Future Innovations. Biomedicines 2023, 11, 2617. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Wakhloo, A.K.; Fisher, M. Advances in Acute Ischemic Stroke Therapy. Circ. Res. 2022, 130, 1230–1251. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Li, G.; Yu, J.; Xu, K.; Wu, W. Receptors, Channel Proteins, and Enzymes Involved in Microglia-mediated Neuroinflammation and Treatments by Targeting Microglia in Ischemic Stroke. Neuroscience 2021, 460, 167–180. [Google Scholar] [CrossRef]
- Wang, Y.; Leak, R.K.; Cao, G. Microglia-mediated neuroinflammation and neuroplasticity after stroke. Front. Cell. Neurosci. 2022, 16, 980722. [Google Scholar] [CrossRef]
- Wang, M.; Pan, W.; Xu, Y.; Zhang, J.; Wan, J.; Jiang, H. Microglia-Mediated Neuroinflammation: A Potential Target for the Treatment of Cardiovascular Diseases. J. Inflamm. Res. 2022, 15, 3083–3094. [Google Scholar] [CrossRef]
- Jiang, C.T.; Wu, W.F.; Deng, Y.H.; Ge, J.W. Modulators of microglia activation and polarization in ischemic stroke (Review). Mol. Med. Rep. 2020, 21, 2006–2018. [Google Scholar] [CrossRef]
- Gao, X.; Su, G.; Chai, M.; Shen, M.; Hu, Z.; Chen, W.; Gao, J.; Li, R.; Ma, T.; An, Y.; et al. Research progress on mechanisms of ischemic stroke: Regulatory pathways involving Microglia. Neurochem. Int. 2024, 172, 105656. [Google Scholar] [CrossRef]
- Ajoolabady, A.; Wang, S.; Kroemer, G.; Penninger, J.M.; Uversky, V.N.; Pratico, D.; Henninger, N.; Reiter, R.J.; Bruno, A.; Joshipura, K.; et al. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics. Pharmacol. Ther. 2021, 225, 107848. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, L.; Zhang, X.; Yang, H.; Li, Y.; Li, P. β-elemene promotes microglial M2-like polarization against ischemic stroke via AKT/mTOR signaling axis-mediated autophagy. Chin. Med. 2024, 19, 86. [Google Scholar] [CrossRef]
- Shao, Z.; Dou, S.; Zhu, J.; Wang, H.; Xu, D.; Wang, C.; Cheng, B.; Bai, B. The Role of Mitophagy in Ischemic Stroke. Front. Neurol. 2020, 11, 608610. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, M.; Hou, X.O.; Hu, L.F. Roles of microglial mitophagy in neurological disorders. Front. Aging Neurosci. 2022, 14, 979869. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, W.; Liao, Y.; Wang, W.; Deng, X.; Wang, C.; Shi, W. Autophagy: A double-edged sword in ischemia-reperfusion injury. Cell. Mol. Biol. Lett. 2025, 30, 42. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Avery, L. To be or not to be, the level of autophagy is the question: Dual roles of autophagy in the survival response to starvation. Autophagy 2008, 4, 82–84. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Hu, G.; Yao, Q.; Wu, J.; He, Z.; Law, B.Y.; Hu, G.; Zhou, X.; Du, J.; Wu, A.; et al. Microglia autophagy in ischemic stroke: A double-edged sword. Front. Immunol. 2022, 13, 1013311. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Gao, Y.; Chu, S.; Chen, N. Review of the effects and Mechanisms of microglial autophagy in ischemic stroke. Int. Immunopharmacol. 2022, 108, 108761. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, H.; Chu, Y.H.; Tang, Y.; Pang, X.W.; Qin, C.; Tian, D.S. Microglial autophagy in cerebrovascular diseases. Front. Aging Neurosci. 2022, 14, 1023679. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, J.; Ding, Y.; Wu, J.; Chen, G. Novel Therapeutic Strategies for Ischemic Stroke: Recent Insights into Autophagy. Oxid. Med. Cell. Longev. 2022, 2022, 3450207. [Google Scholar] [CrossRef]
- Li, F.; Kang, X.; Xin, W.; Li, X. The Emerging Role of Extracellular Vesicle Derived from Neurons/Neurogliocytes in Central Nervous System Diseases: Novel Insights into Ischemic Stroke. Front. Pharmacol. 2022, 13, 890698. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, J.; Gong, J.; Shen, J.; Ye, D.; Cheng, D.; Xie, Z.; Zeng, J.; Xu, K.; Shen, J.; et al. PTP1B inhibitor alleviates deleterious microglial activation and neuronal injury after ischemic stroke by modulating the ER stress-autophagy axis via PERK signaling in microglia. Aging 2021, 13, 3405–3427. [Google Scholar] [CrossRef]
- Zong, Y.; Li, H.; Liao, P.; Chen, L.; Pan, Y.; Zheng, Y.; Zhang, C.; Liu, D.; Zheng, M.; Gao, J. Mitochondrial dysfunction: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024, 9, 124. [Google Scholar] [CrossRef]
- Salter, M.W.; Stevens, B. Microglia emerge as central players in brain disease. Nat. Med. 2017, 23, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.; Klionsky, D.J. Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev. Cell 2004, 6, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, Y.M.; Zhu, F.; Tang, S.T.; Xiao, J.D.; Li, L.L.; Lin, X.J. Down-regulated Na(+)/K(+)-ATPase activity in ischemic penumbra after focal cerebral ischemia/reperfusion in rats. Int. J. Clin. Exp. Pathol. 2015, 8, 12708–12717. [Google Scholar] [PubMed]
- Szydlowska, K.; Tymianski, M. Calcium, ischemia and excitotoxicity. Cell Calcium 2010, 47, 122–129. [Google Scholar] [CrossRef]
- Siesjö, B.K.; Bengtsson, F. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: A unifying hypothesis. J. Cereb. Blood Flow. Metab. 1989, 9, 127–140. [Google Scholar] [CrossRef]
- Bano, D.; Nicotera, P. Ca2+ signals and neuronal death in brain ischemia. Stroke 2007, 38, 674–676. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Han, P.P.; Zhao, Y.N.; Shen, X.Y.; Bi, X. Crosstalk between autophagy and ferroptosis mediate injury in ischemic stroke by generating reactive oxygen species. Heliyon 2024, 10, e28959. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Gertner, M.; Pontarelli, F.; Court-Vazquez, B.; Bennett, M.V.; Ofengeim, D.; Zukin, R.S. Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die. Cell Death Differ. 2017, 24, 317–329. [Google Scholar] [CrossRef]
- Ding, W.; Qian, K.; Bao, W.; Wang, Z. Phellodendrine inhibits oxidative stress and promotes autophagy by regulating the AMPK/mTOR pathway in burn sepsis-induced intestinal injury. Toxicol. Res. 2025, 14, tfae233. [Google Scholar] [CrossRef]
- Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends Neurosci. 2013, 36, 587–597. [Google Scholar] [CrossRef]
- Zhao, X.; Li, S.; Mo, Y.; Li, R.; Huang, S.; Zhang, A.; Ni, X.; Dai, Q.; Wang, J. DCA Protects against Oxidation Injury Attributed to Cerebral Ischemia-Reperfusion by Regulating Glycolysis through PDK2-PDH-Nrf2 Axis. Oxid. Med. Cell. Longev. 2021, 2021, 5173035. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.Y.; Wu, Q.L.; Wang, S.S.; Wang, H.Y.; Ye, J.R.; Sun, H.S.; Feng, Z.P.; He, W.B.; Chu, S.F.; Zhang, Z.; et al. A breakdown of metabolic reprogramming in microglia induced by CKLF1 exacerbates immune tolerance in ischemic stroke. J. Neuroinflamm. 2023, 20, 97. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, Y.; Xu, Y.; Ruan, W.; Wang, H.; Zhang, Y.; Saavedra, J.M.; Zhang, L.; Huang, Z.; Pang, T. A Dual AMPK/Nrf2 Activator Reduces Brain Inflammation After Stroke by Enhancing Microglia M2 Polarization. Antioxid. Redox Signal. 2018, 28, 141–163. [Google Scholar] [CrossRef] [PubMed]
- Ogata, M.; Hino, S.; Saito, A.; Morikawa, K.; Kondo, S.; Kanemoto, S.; Murakami, T.; Taniguchi, M.; Tanii, I.; Yoshinaga, K.; et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 2006, 26, 9220–9231. [Google Scholar] [CrossRef]
- Senft, D.; Ronai, Z.A. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci. 2015, 40, 141–148. [Google Scholar] [CrossRef]
- Chen, A.Q.; Fang, Z.; Chen, X.L.; Yang, S.; Zhou, Y.F.; Mao, L.; Xia, Y.P.; Jin, H.J.; Li, Y.N.; You, M.F.; et al. Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death Dis. 2019, 10, 487. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, J.; Wang, Y.; Yang, L.; Han, B.; Zhang, Y.; Bai, Y.; Shen, L.; Li, M.; Jiang, T.; et al. PARP14 inhibits microglial activation via LPAR5 to promote post-stroke functional recovery. Autophagy 2021, 17, 2905–2922. [Google Scholar] [CrossRef]
- Xia, C.Y.; Zhang, S.; Chu, S.F.; Wang, Z.Z.; Song, X.Y.; Zuo, W.; Gao, Y.; Yang, P.F.; Chen, N.H. Autophagic flux regulates microglial phenotype according to the time of oxygen-glucose deprivation/reperfusion. Int. Immunopharmacol. 2016, 39, 140–148. [Google Scholar] [CrossRef]
- Zang, J.; Wu, Y.; Su, X.; Zhang, T.; Tang, X.; Ma, D.; Li, Y.; Liu, Y.; Weng, Z.; Liu, X.; et al. Inhibition of PDE1-B by Vinpocetine Regulates Microglial Exosomes and Polarization Through Enhancing Autophagic Flux for Neuroprotection Against Ischemic Stroke. Front. Cell Dev. Biol. 2020, 8, 616590. [Google Scholar] [CrossRef]
- Huang, T.; Lin, Y.; Pang, Q.; Shen, W.; Chen, X.; Tu, F. The Synergistic Effect of TRPV1 on Oxidative Stress-Induced Autophagy and Apoptosis in Microglia. Anal. Cell. Pathol. 2021, 2021, 7955791. [Google Scholar] [CrossRef]
- Sun, N.; Yun, J.; Liu, J.; Malide, D.; Liu, C.; Rovira, I.I.; Holmström, K.M.; Fergusson, M.M.; Yoo, Y.H.; Combs, C.A.; et al. Measuring In Vivo Mitophagy. Mol. Cell 2015, 60, 685–696. [Google Scholar] [CrossRef]
- Xue, T.; Ji, J.; Sun, Y.; Huang, X.; Cai, Z.; Yang, J.; Guo, W.; Guo, R.; Cheng, H.; Sun, X. Sphingosine-1-phosphate, a novel TREM2 ligand, promotes microglial phagocytosis to protect against ischemic brain injury. Acta Pharm. Sin. B 2022, 12, 1885–1898. [Google Scholar] [CrossRef]
- Deczkowska, A.; Weiner, A.; Amit, I. The Physiology, Pathology, and Potential Therapeutic Applications of the TREM2 Signaling Pathway. Cell 2020, 181, 1207–1217. [Google Scholar] [CrossRef]
- Weidemann, A.; Johnson, R.S. Biology of HIF-1alpha. Cell Death Differ. 2008, 15, 621–627. [Google Scholar] [CrossRef]
- Florance, I.; Ramasubbu, S. Regulation of genes involved in the metabolic adaptation of murine microglial cells in response to elevated HIF-1α mediated activation. Immunogenetics 2024, 76, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Quinsay, M.N.; Thomas, R.L.; Lee, Y.; Gustafsson, A.B. Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy 2010, 6, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Huo, K.; Xu, J.; Ma, K.; Wang, J.; Wei, M.; Zhang, M.; Guo, Q.; Qu, Q. Loganin attenuates neuroinflammation after ischemic stroke and fracture by regulating α7nAChR-mediated microglial polarization. Environ. Toxicol. 2023, 38, 926–940. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.Z.; Ke, P.; Xu, Z.Q.; Wei, W.; Cheng, M.H.; Han, B.Z.; Chen, X.W.; Su, D.F.; Liu, C. Autophagy Plays an Important Role in Anti-inflammatory Mechanisms Stimulated by Alpha7 Nicotinic Acetylcholine Receptor. Front. Immunol. 2017, 8, 553. [Google Scholar] [CrossRef]
- Shi, S.; Liang, D.; Bao, M.; Xie, Y.; Xu, W.; Wang, L.; Wang, Z.; Qiao, Z. Gx-50 Inhibits Neuroinflammation via α7 nAChR Activation of the JAK2/STAT3 and PI3K/AKT Pathways. J. Alzheimers Dis. 2016, 50, 859–871. [Google Scholar] [CrossRef]
- Egea, J.; Buendia, I.; Parada, E.; Navarro, E.; León, R.; Lopez, M.G. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochem. Pharmacol. 2015, 97, 463–472. [Google Scholar] [CrossRef] [PubMed]
- De Simone, R.; Ajmone-Cat, M.A.; Carnevale, D.; Minghetti, L. Activation of alpha7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2 in rat microglial cultures. J. Neuroinflamm. 2005, 2, 4. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Yang, L.; Cui, H. Extracellular vesicles derived from different brain tissue cells: A potential therapeutic measure for hypoxic-ischemic brain injury in immature brains. Histol. Histopathol. 2025, 18932. [Google Scholar] [CrossRef]
- Mathias, K.; Machado, R.S.; Petronilho, T.; Sulzbacher, V.A.R.; de Rezende, V.L.; Prophiro, J.S.; Petronilho, F. Glial and blood-brain barrier cell-derived exosomes: Implications in stroke. Microvasc. Res. 2025, 160, 104812. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, J.; Tang, N. Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression. Neuroscience 2017, 354, 1–10. [Google Scholar] [CrossRef]
- Xu, M.; Yuan, S.; Luo, X.; Xu, M.; Hu, G.; He, Z.; Yang, X.; Gao, R. Construction of an lncRNA-mediated ceRNA network to investigate the inflammatory regulatory mechanisms of ischemic stroke. PLoS ONE 2025, 20, e0317710. [Google Scholar] [CrossRef]
- Yao, M.; Wang, X.; Lin, H.; Shu, H.; Xu, Z.; Tang, L.; Guo, W.; Xu, P. LncRNA Tug1 Regulates Post-Stroke Microglial Pyroptosis via PINK1/Parkin-Mediated Mitophagy. Inflammation 2025, 48, 2677–2691. [Google Scholar] [CrossRef]
- Yan, Y.; Wu, L.; Wang, L.; Wang, D.; Huang, M.; Peng, J.; Huang, Y. αAsarone alleviates neuronal injury by facilitating autophagy via miR-499-5p/PDCD4/ATG5 signaling pathway in ischemia stroke. Front. Pharmacol. 2025, 16, 1504683. [Google Scholar] [CrossRef]
- Ouvrier, B.; Ismael, S.; Bix, G.J. Senescence and SASP Are Potential Therapeutic Targets for Ischemic Stroke. Pharmaceuticals 2024, 17, 312. [Google Scholar] [CrossRef]
- Torres-Querol, C.; Torres, P.; Vidal, N.; Portero-Otín, M.; Arque, G.; Purroy, F. Acute ischemic stroke triggers a cellular senescence-associated secretory phenotype. Sci. Rep. 2021, 11, 15752. [Google Scholar] [CrossRef]
- Li, H.; Ke, X.; Feng, B.; Tian, H.; Cai, Z.; Zhang, A.; Man, Q. Research progress on the mechanism and markers of metabolic disorders in the occurrence and development of cognitive dysfunction after ischemic stroke. Front. Endocrinol. 2025, 16, 1500650. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, W.; Xue, T.; Zhang, D.; Lv, M.; Jiang, Y. Sphk1-induced autophagy in microglia promotes neuronal injury following cerebral ischaemia-reperfusion. Eur. J. Neurosci. 2022, 56, 4287–4303. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Yin, X.; Lang, Y.; Ding, M.; Zhang, B.; Sun, Q.; Jiang, X.; Song, J.; Cui, L. Cellular Prion Protein Attenuates OGD/R-Induced Damage by Skewing Microglia toward an Anti-inflammatory State via Enhanced and Prolonged Activation of Autophagy. Mol. Neurobiol. 2023, 60, 1297–1316. [Google Scholar] [CrossRef] [PubMed]
- Hegdekar, N.; Sarkar, C.; Bustos, S.; Ritzel, R.M.; Hanscom, M.; Ravishankar, P.; Philkana, D.; Wu, J.; Loane, D.J.; Lipinski, M.M. Inhibition of autophagy in microglia and macrophages exacerbates innate immune responses and worsens brain injury outcomes. Autophagy 2023, 19, 2026–2044. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, C.; Lipinski, M.M. Autophagy in neuroinflammation after traumatic brain injury. Neural Regen. Res. 2024, 19, 951–952. [Google Scholar] [CrossRef]
- Kong, L.; Xu, P.; Shen, N.; Li, W.; Li, R.; Tao, C.; Wang, G.; Zhang, Y.; Sun, W.; Hu, W.; et al. STING orchestrates microglia polarization via interaction with LC3 in autophagy after ischemia. Cell Death Dis. 2024, 15, 824. [Google Scholar] [CrossRef]
- Stanzione, R.; Pietrangelo, D.; Cotugno, M.; Forte, M.; Rubattu, S. Role of autophagy in ischemic stroke: Insights from animal models and preliminary evidence in the human disease. Front. Cell Dev. Biol. 2024, 12, 1360014. [Google Scholar] [CrossRef]
- Liu, Y.; Levine, B. Autosis and autophagic cell death: The dark side of autophagy. Cell Death Differ. 2015, 22, 367–376. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, Y.; Zhong, X.; Chen, X.; Wang, J.; Ying, G. Crosstalk Between Autophagy and Cerebral Ischemia. Front. Neurosci. 2018, 12, 1022. [Google Scholar] [CrossRef]
- Walther, J.; Kirsch, E.M.; Hellwig, L.; Schmerbeck, S.S.; Holloway, P.M.; Buchan, A.M.; Mergenthaler, P. Reinventing the Penumbra—The Emerging Clockwork of a Multi-modal Mechanistic Paradigm. Transl. Stroke Res. 2023, 14, 643–666. [Google Scholar] [CrossRef]
- Bai, S.; Ding, Y.; Simo, L.; Li, F.; Geng, X. Mechanisms of Autophagy in Ineffective Reperfusion After Ischemic Stroke. J. Neurosci. Res. 2025, 103, e70017. [Google Scholar] [CrossRef]
- Wang, H.; Ye, J.; Peng, Y.; Ma, W.; Chen, H.; Sun, H.; Feng, Z.; He, W.; Li, G.; Chu, S.; et al. CKLF induces microglial activation via triggering defective mitophagy and mitochondrial dysfunction. Autophagy 2024, 20, 590–613. [Google Scholar] [CrossRef]
- Li, W.; Shen, N.; Kong, L.; Huang, H.; Wang, X.; Zhang, Y.; Wang, G.; Xu, P.; Hu, W. STING mediates microglial pyroptosis via interaction with NLRP3 in cerebral ischaemic stroke. Stroke Vasc. Neurol. 2024, 9, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Gui, X.; Yang, H.; Li, T.; Tan, X.; Shi, P.; Li, M.; Du, F.; Chen, Z.J. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 2019, 567, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, Y.; Peng, J.; Huang, Y.; Gong, Z.; Lu, H.; Han, L.; Wang, D. Gastrodin against oxidative stress-inflammation crosstalk via inhibiting mtDNA/TLR9 and JAK2/STAT3 signaling to ameliorate ischemic stroke injury. Int. Immunopharmacol. 2024, 141, 113012. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Sun, G.; Li, E.; Kiselyov, K.; Sun, D. ER stress and impaired autophagy flux in neuronal degeneration and brain injury. Ageing Res. Rev. 2017, 34, 3–14. [Google Scholar] [CrossRef]
- Liu, C.; Chen, H.; Tao, X.; Li, C.; Li, A.; Wu, W. ALKBH5 protects against stroke by reducing endoplasmic reticulum stress-dependent inflammation injury via the STAT5/PERK/EIF2α/CHOP signaling pathway in an m(6)A-YTHDF1-dependent manner. Exp. Neurol. 2024, 372, 114629. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, L.; Xue, F.; An, L.; Jin, M.; Li, L. Transmembrane Protein 166 and its Significance. Protein Pept. Lett. 2021, 28, 382–387. [Google Scholar] [CrossRef]
- Li, L.; Khatibi, N.H.; Hu, Q.; Yan, J.; Chen, C.; Han, J.; Ma, D.; Chen, Y.; Zhou, C. Transmembrane protein 166 regulates autophagic and apoptotic activities following focal cerebral ischemic injury in rats. Exp. Neurol. 2012, 234, 181–190. [Google Scholar] [CrossRef]
- He, H.Y.; Ren, L.; Guo, T.; Deng, Y.H. Neuronal autophagy aggravates microglial inflammatory injury by downregulating CX3CL1/fractalkine after ischemic stroke. Neural Regen. Res. 2019, 14, 280–288. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, L.; Wang, C.; Chen, J.; Dai, M.; Yao, S.; Lin, Y. CX3CL1 inhibits NLRP3 inflammasome-induced microglial pyroptosis and improves neuronal function in mice with experimentally-induced ischemic stroke. Life Sci. 2022, 300, 120564. [Google Scholar] [CrossRef]
- Shu, J.; Fang, X.H.; Li, Y.J.; Deng, Y.; Wei, W.S.; Zhang, L. Microglia-induced autophagic death of neurons via IL-6/STAT3/miR-30d signaling following hypoxia/ischemia. Mol. Biol. Rep. 2022, 49, 7697–7707. [Google Scholar] [CrossRef] [PubMed]
- Lucin, K.M.; O’Brien, C.E.; Bieri, G.; Czirr, E.; Mosher, K.I.; Abbey, R.J.; Mastroeni, D.F.; Rogers, J.; Spencer, B.; Masliah, E.; et al. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron 2013, 79, 873–886. [Google Scholar] [CrossRef] [PubMed]
- Heckmann, B.L.; Teubner, B.J.W.; Tummers, B.; Boada-Romero, E.; Harris, L.; Yang, M.; Guy, C.S.; Zakharenko, S.S.; Green, D.R. LC3-Associated Endocytosis Facilitates β-Amyloid Clearance and Mitigates Neurodegeneration in Murine Alzheimer’s Disease. Cell 2019, 178, 536–551.e14. [Google Scholar] [CrossRef] [PubMed]
- Radulova, G.; Kapogianni, A.; Cholakova, G.; Iliev, S.; Ivanova, A.; Bogoeva, V.; Tsacheva, I. Galectin-3—A novel ligand of complement protein C1q. Int. J. Biol. Macromol. 2024, 262, 129930. [Google Scholar] [CrossRef]
- Puigdellívol, M.; Allendorf, D.H.; Brown, G.C. Sialylation and Galectin-3 in Microglia-Mediated Neuroinflammation and Neurodegeneration. Front. Cell. Neurosci. 2020, 14, 162. [Google Scholar] [CrossRef]
- Zhou, R.; Yazdi, A.S.; Menu, P.; Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011, 469, 221–225. [Google Scholar] [CrossRef]
- Fann, D.Y.; Lim, Y.A.; Cheng, Y.L.; Lok, K.Z.; Chunduri, P.; Baik, S.H.; Drummond, G.R.; Dheen, S.T.; Sobey, C.G.; Jo, D.G.; et al. Evidence that NF-κB and MAPK Signaling Promotes NLRP Inflammasome Activation in Neurons Following Ischemic Stroke. Mol. Neurobiol. 2018, 55, 1082–1096. [Google Scholar] [CrossRef]
- Friess, L.; Cheray, M.; Keane, L.; Grabert, K.; Joseph, B. Atg7 deficiency in microglia drives an altered transcriptomic profile associated with an impaired neuroinflammatory response. Mol. Brain 2021, 14, 87. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, M.; Fan, J.; Yan, W.; Zha, X.; Song, H.; Wan, R.; Yin, Y.; Wang, W. Ischemia-induced upregulation of autophagy preludes dysfunctional lysosomal storage and associated synaptic impairments in neurons. Autophagy 2021, 17, 1519–1542. [Google Scholar] [CrossRef]
- Tanaka, T.; Warner, B.M.; Michael, D.G.; Nakamura, H.; Odani, T.; Yin, H.; Atsumi, T.; Noguchi, M.; Chiorini, J.A. LAMP3 inhibits autophagy and contributes to cell death by lysosomal membrane permeabilization. Autophagy 2022, 18, 1629–1647. [Google Scholar] [CrossRef]
- Qin, C.; Liu, Q.; Hu, Z.W.; Zhou, L.Q.; Shang, K.; Bosco, D.B.; Wu, L.J.; Tian, D.S.; Wang, W. Microglial TLR4-dependent autophagy induces ischemic white matter damage via STAT1/6 pathway. Theranostics 2018, 8, 5434–5451. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yang, G.; Xu, D.E.; Du, Y.T.; Zhu, C.; Hu, H.; Luo, L.; Feng, L.; Huang, W.; Sun, Y.Y.; et al. Autophagy in Oligodendrocyte Lineage Cells Controls Oligodendrocyte Numbers and Myelin Integrity in an Age-dependent Manner. Neurosci. Bull. 2025, 41, 374–390. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Wang, H.; Jin, M.; Yang, X.; Ji, H.; Jiang, Y.; Zhang, H.; Wu, F.; Wu, G.; Lai, X.; et al. Exosomes from MiR-30d-5p-ADSCs Reverse Acute Ischemic Stroke-Induced, Autophagy-Mediated Brain Injury by Promoting M2 Microglial/Macrophage Polarization. Cell. Physiol. Biochem. 2018, 47, 864–878. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Zhang, X.; Lu, Y.; Wang, F.; Xu, Z.; Liu, S.; Zheng, H.; Liu, X. Geniposide inhibits NLRP3 inflammasome activation via autophagy in BV-2 microglial cells exposed to oxygen-glucose deprivation/reoxygenation. Int. Immunopharmacol. 2020, 84, 106547. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, X.; Zhang, X.; Huang, L.; Sun, Y.; Cheng, Z.; Xu, W.; Li, C.G.; Zheng, Y.; Huang, M. Pien-Tze-Huang, a Chinese patent formula, attenuates NLRP3 inflammasome-related neuroinflammation by enhancing autophagy via the AMPK/mTOR/ULK1 signaling pathway. Biomed. Pharmacother. 2021, 141, 111814. [Google Scholar] [CrossRef]
- Yang, S.; Wang, H.; Yang, Y.; Wang, R.; Wang, Y.; Wu, C.; Du, G. Baicalein administered in the subacute phase ameliorates ischemia-reperfusion-induced brain injury by reducing neuroinflammation and neuronal damage. Biomed. Pharmacother. 2019, 117, 109102. [Google Scholar] [CrossRef]
- Pluta, R. The Dual Role of Autophagy in Postischemic Brain Neurodegeneration of Alzheimer’s Disease Proteinopathy. Int. J. Mol. Sci. 2023, 24, 13793. [Google Scholar] [CrossRef]
- Izquierdo-Bermejo, S.; Chamorro, B.; Martín-de-Saavedra, M.D.; Lobete, M.; López-Muñoz, F.; Marco-Contelles, J.; Oset-Gasque, M.J. In Vitro Modulation of Autophagy by New Antioxidant Nitrones as a Potential Therapeutic Approach for the Treatment of Ischemic Stroke. Antioxidants 2024, 13, 946. [Google Scholar] [CrossRef]
- Jiang, S.; Li, T.; Ji, T.; Yi, W.; Yang, Z.; Wang, S.; Yang, Y.; Gu, C. AMPK: Potential Therapeutic Target for Ischemic Stroke. Theranostics 2018, 8, 4535–4551. [Google Scholar] [CrossRef]
- Lin, X.H.; Ye, X.J.; Li, Q.F.; Gong, Z.; Cao, X.; Li, J.H.; Zhao, S.T.; Sun, X.D.; He, X.S.; Xuan, A.G. Urolithin A Prevents Focal Cerebral Ischemic Injury via Attenuating Apoptosis and Neuroinflammation in Mice. Neuroscience 2020, 448, 94–106. [Google Scholar] [CrossRef]
- Olah, M.; Menon, V.; Habib, N.; Taga, M.F.; Ma, Y.; Yung, C.J.; Cimpean, M.; Khairallah, A.; Coronas-Samano, G.; Sankowski, R.; et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat. Commun. 2020, 11, 6129. [Google Scholar] [CrossRef]
- Qin, C.; Zhou, L.Q.; Ma, X.T.; Hu, Z.W.; Yang, S.; Chen, M.; Bosco, D.B.; Wu, L.J.; Tian, D.S. Dual Functions of Microglia in Ischemic Stroke. Neurosci. Bull. 2019, 35, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Haupt, M.; Gerner, S.T.; Doeppner, T.R. The dual role of microglia in ischemic stroke and its modulation via extracellular vesicles and stem cells. Neuroprotection 2024, 2, 4–15. [Google Scholar] [CrossRef]
- Zrzavy, T.; Hametner, S.; Wimmer, I.; Butovsky, O.; Weiner, H.L.; Lassmann, H. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain 2017, 140, 1900–1913. [Google Scholar] [CrossRef] [PubMed]
- Beaino, W.; Janssen, B.; Vugts, D.J.; de Vries, H.E.; Windhorst, A.D. Towards PET imaging of the dynamic phenotypes of microglia. Clin. Exp. Immunol. 2021, 206, 282–300. [Google Scholar] [CrossRef]
- Nutma, E.; Fancy, N.; Weinert, M.; Tsartsalis, S.; Marzin, M.C.; Muirhead, R.C.J.; Falk, I.; Breur, M.; de Bruin, J.; Hollaus, D.; et al. Translocator protein is a marker of activated microglia in rodent models but not human neurodegenerative diseases. Nat. Commun. 2023, 14, 5247. [Google Scholar] [CrossRef]
- Mo, Y.; Sun, Y.Y.; Liu, K.Y. Autophagy and inflammation in ischemic stroke. Neural Regen. Res. 2020, 15, 1388–1396. [Google Scholar] [CrossRef]
- An, H.; Zhou, B.; Ji, X. Mitochondrial quality control in acute ischemic stroke. J. Cereb. Blood Flow. Metab. 2021, 41, 3157–3170. [Google Scholar] [CrossRef]
- Yang, J.L.; Mukda, S.; Chen, S.D. Diverse roles of mitochondria in ischemic stroke. Redox Biol. 2018, 16, 263–275. [Google Scholar] [CrossRef]
- Yang, X.; Li, W.; Ding, M.; Liu, K.J.; Qi, Z.; Zhao, Y. Contribution of zinc accumulation to ischemic brain injury and its mechanisms about oxidative stress, inflammation, and autophagy: An update. Metallomics 2024, 16, mfae012. [Google Scholar] [CrossRef]
- Guo, Y.; Jiang, H.; Wang, M.; Ma, Y.; Zhang, J.; Jing, L. Metformin alleviates cerebral ischemia/reperfusion injury aggravated by hyperglycemia via regulating AMPK/ULK1/PINK1/Parkin pathway-mediated mitophagy and apoptosis. Chem. Biol. Interact. 2023, 384, 110723. [Google Scholar] [CrossRef]
- Moore, A.S.; Holzbaur, E.L. Spatiotemporal dynamics of autophagy receptors in selective mitophagy. Autophagy 2016, 12, 1956–1957. [Google Scholar] [CrossRef]
- Yan, J.; Chen, X.; Choksi, S.; Liu, Z.G. TGFB signaling induces mitophagy via PLSCR3-mediated cardiolipin externalization in conjunction with a BNIP3L/NIX-, BNIP3-, and FUNDC1-dependent mechanism. Autophagy 2025, 21, 1791–1801. [Google Scholar] [CrossRef] [PubMed]
- Youn, D.H.; Kim, Y.; Kim, B.J.; Jeong, M.S.; Lee, J.; Rhim, J.K.; Kim, H.C.; Jeon, J.P. Mitochondrial dysfunction associated with autophagy and mitophagy in cerebrospinal fluid cells of patients with delayed cerebral ischemia following subarachnoid hemorrhage. Sci. Rep. 2021, 11, 16512. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Jiang, W.; Cui, P.; Zheng, K.; Dang, C.; Wang, J.; Li, H.; Chen, L.; Zhang, R.; Wang, Q.M.; et al. Microglial PGC-1α protects against ischemic brain injury by suppressing neuroinflammation. Genome Med. 2021, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Wu, Y.; Xu, J.; Cao, H.; Du, M.; Jiang, H.; Qiu, F. Sodium Tanshinone IIA Sulfonate Ameliorates Oxygen-glucose Deprivation/Reoxygenation-induced Neuronal Injury via Protection of Mitochondria and Promotion of Autophagy. Neurochem. Res. 2023, 48, 3378–3390. [Google Scholar] [CrossRef]
- Wang, L.; Xiong, X.; Zhang, X.; Ye, Y.; Jian, Z.; Gao, W.; Gu, L. Sodium Tanshinone IIA Sulfonate Protects Against Cerebral Ischemia-reperfusion Injury by Inhibiting Autophagy and Inflammation. Neuroscience 2020, 441, 46–57. [Google Scholar] [CrossRef]
- Duan, W.L.; Ma, Y.P.; Wang, X.J.; Ma, C.S.; Han, B.; Sheng, Z.M.; Dong, H.; Zhang, L.Y.; Li, P.A.; Zhang, B.G.; et al. N6022 attenuates cerebral ischemia/reperfusion injury-induced microglia ferroptosis by promoting Nrf2 nuclear translocation and inhibiting the GSNOR/GSTP1 axis. Eur. J. Pharmacol. 2024, 972, 176553. [Google Scholar] [CrossRef]
- Zhang, J.; Ney, P.A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 2009, 16, 939–946. [Google Scholar] [CrossRef]
- Zhang, W. The mitophagy receptor FUN14 domain-containing 1 (FUNDC1): A promising biomarker and potential therapeutic target of human diseases. Genes Dis. 2021, 8, 640–654. [Google Scholar] [CrossRef]
- Guo, D.; Ma, J.; Yan, L.; Li, T.; Li, Z.; Han, X.; Shui, S. Down-Regulation of Lncrna MALAT1 Attenuates Neuronal Cell Death Through Suppressing Beclin1-Dependent Autophagy by Regulating Mir-30a in Cerebral Ischemic Stroke. Cell. Physiol. Biochem. 2017, 43, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Geng, W.; Tang, H.; Luo, S.; Lv, Y.; Liang, D.; Kang, X.; Hong, W. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. Am. J. Transl. Res. 2019, 11, 780–792. [Google Scholar] [PubMed]
- Zhao, Y.; Gan, Y.; Xu, G.; Hua, K.; Liu, D. Exosomes from MSCs overexpressing microRNA-223-3p attenuate cerebral ischemia through inhibiting microglial M1 polarization mediated inflammation. Life Sci. 2020, 260, 118403. [Google Scholar] [CrossRef] [PubMed]
- Anzell, A.R.; Fogo, G.M.; Gurm, Z.; Raghunayakula, S.; Wider, J.M.; Maheras, K.J.; Emaus, K.J.; Bryson, T.D.; Wang, M.; Neumar, R.W.; et al. Mitochondrial fission and mitophagy are independent mechanisms regulating ischemia/reperfusion injury in primary neurons. Cell Death Dis. 2021, 12, 475. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Chen, T.; Yang, Y.L.; Han, H.N.; Xu, L.M. E2F1/CDK5/DRP1 axis mediates microglial mitochondrial division and autophagy in the pathogenesis of cerebral ischemia-reperfusion injury. Clin. Transl. Med. 2025, 15, e70197. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Y.; Chen, X.; Huang, S.; Li, Y.; Ye, G.; Cao, X.; Su, W.; Zhuo, Y. Empagliflozin targets Mfn1 and Opa1 to attenuate microglia-mediated neuroinflammation in retinal ischemia and reperfusion injury. J. Neuroinflamm. 2023, 20, 296. [Google Scholar] [CrossRef]
- Yang, Z.; Zhong, L.; Zhong, S.; Xian, R.; Yuan, B. Hypoxia induces microglia autophagy and neural inflammation injury in focal cerebral ischemia model. Exp. Mol. Pathol. 2015, 98, 219–224. [Google Scholar] [CrossRef]
- Chauhan, C.; Kaundal, R.K. Understanding the role of cGAS-STING signaling in ischemic stroke: A new avenue for drug discovery. Expert Opin. Drug Discov. 2023, 18, 1133–1149. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Li, J.; Zhao, H.; Ma, Q. HMGB1: A New Target for Ischemic Stroke and Hemorrhagic Transformation. Transl. Stroke Res. 2025, 16, 990–1015. [Google Scholar] [CrossRef]
- He, X.; Zhang, Y.; Xu, C.; Zhang, R.; Li, Y. Geniposide protects against cerebral ischemic injury by targeting SOX2/RIPK1 axis. Naunyn Schmiedebergs Arch. Pharmacol. 2025. [Google Scholar] [CrossRef]
- Song, W.; Teng, L.; Wang, H.; Pang, R.; Liang, R.; Zhu, L. Exercise preconditioning increases circulating exosome miR-124 expression and alleviates apoptosis in rats with cerebral ischemia-reperfusion injury. Brain Res. 2025, 1851, 149457. [Google Scholar] [CrossRef]
- Mavroudis, I.; Balmus, I.M.; Ciobica, A.; Nicoara, M.N.; Luca, A.C.; Palade, D.O. The Role of Microglial Exosomes and miR-124-3p in Neuroinflammation and Neuronal Repair after Traumatic Brain Injury. Life 2023, 13, 1924. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Peraza, F.; Nogueras-Ortiz, C.; Simonsen, A.H.; Knight, D.D.; Yao, P.J.; Goetzl, E.J.; Jensen, C.S.; Høgh, P.; Gottrup, H.; Vestergaard, K.; et al. Neuron-derived extracellular vesicles in blood reveal effects of exercise in Alzheimer’s disease. Alzheimers Res. Ther. 2023, 15, 156. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Tian, L.; Liu, J.; Wu, Q.; Wang, N.; Wang, G.; Wang, Y.; Seto, S. Ligustilide ameliorates hippocampal neuronal injury after cerebral ischemia reperfusion through activating PINK1/Parkin-dependent mitophagy. Phytomedicine 2022, 101, 154111. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Mao, Z.; Liu, J.; Huang, J.; Wang, N. Ligustilide Attenuates Ischemia Reperfusion-Induced Hippocampal Neuronal Apoptosis via Activating the PI3K/Akt Pathway. Front. Pharmacol. 2020, 11, 979. [Google Scholar] [CrossRef]
- Yao, H.; Cai, C.; Huang, W.; Zhong, C.; Zhao, T.; Di, J.; Tang, J.; Wu, D.; Pang, M.; He, L.; et al. Enhancing mitophagy by ligustilide through BNIP3-LC3 interaction attenuates oxidative stress-induced neuronal apoptosis in spinal cord injury. Int. J. Biol. Sci. 2024, 20, 4382–4406. [Google Scholar] [CrossRef]
- Shi, R.Y.; Zhu, S.H.; Li, V.; Gibson, S.B.; Xu, X.S.; Kong, J.M. BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci. Ther. 2014, 20, 1045–1055. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, H.; Fang, J.; Dai, W.; Zhou, J.; Wang, X.; Zhou, M. SS-31 Provides Neuroprotection by Reversing Mitochondrial Dysfunction after Traumatic Brain Injury. Oxid. Med. Cell. Longev. 2018, 2018, 4783602. [Google Scholar] [CrossRef]
- Ahsan, A.; Zheng, Y.R.; Wu, X.L.; Tang, W.D.; Liu, M.R.; Ma, S.J.; Jiang, L.; Hu, W.W.; Zhang, X.N.; Chen, Z. Urolithin A-activated autophagy but not mitophagy protects against ischemic neuronal injury by inhibiting ER stress in vitro and in vivo. CNS Neurosci. Ther. 2019, 25, 976–986. [Google Scholar] [CrossRef]
- Luan, P.; D’Amico, D.; Andreux, P.A.; Laurila, P.P.; Wohlwend, M.; Li, H.; Imamura de Lima, T.; Place, N.; Rinsch, C.; Zanou, N.; et al. Urolithin A improves muscle function by inducing mitophagy in muscular dystrophy. Sci. Transl. Med. 2021, 13, eabb0319. [Google Scholar] [CrossRef]
- Karaa, A.; Bertini, E.; Carelli, V.; Cohen, B.H.; Enns, G.M.; Falk, M.J.; Goldstein, A.; Gorman, G.S.; Haas, R.; Hirano, M.; et al. Efficacy and Safety of Elamipretide in Individuals with Primary Mitochondrial Myopathy: The MMPOWER-3 Randomized Clinical Trial. Neurology 2023, 101, e238–e252. [Google Scholar] [CrossRef]
- PRNewswire. Stealth Biotherapeutics Resubmits New Drug Application for Elamipretide for the Treatment of Barth Syndrome. PRNewswire, 18 August 2025; p. 2018. [Google Scholar]
- Yang, L.; Wang, H.; Shen, Q.; Feng, L.; Jin, H. Long non-coding RNAs involved in autophagy regulation. Cell Death Dis. 2017, 8, e3073. [Google Scholar] [CrossRef]
- Weber, R.Z.; Buil, B.A.; Rentsch, N.H.; Bosworth, A.; Zhang, M.; Kisler, K.; Tackenberg, C.; Zlokovic, B.V.; Rust, R. A molecular brain atlas reveals cellular shifts during the repair phase of stroke. bioRxiv 2024. bioRxiv:2024.08.21.608971. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wu, L.; Zhang, M.; Kan, M.; Chen, H.; Wang, X.; Qu, J. Autophagy-related 5 in acute ischemic stroke: Variation and linkage with neurofunction, and survival. Ann. Clin. Transl. Neurol. 2024, 11, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chi, J.; Dai, H.; Liang, M.; Wang, Y.; Tian, S.; Zhu, H.; Xu, H. Salidroside attenuates cerebral ischemia/reperfusion injury by regulating TSC2-induced autophagy. Exp. Brain Res. 2023, 241, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qiu, L.; Deng, S.; Liu, F.; He, Z.; Li, M.; Wang, Y. Ursolic acid promotes microglial polarization toward the M2 phenotype via PPARγ regulation of MMP2 transcription. Neurotoxicology 2023, 96, 81–91. [Google Scholar] [CrossRef]
- Qiu, L.; Wang, Y.; Wang, Y.; Liu, F.; Deng, S.; Xue, W.; Wang, Y. Ursolic Acid Ameliorated Neuronal Damage by Restoring Microglia-Activated MMP/TIMP Imbalance in vitro. Drug Des. Dev. Ther. 2023, 17, 2481–2493. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, T.; He, S.; Zhang, Y.; Tan, Y.; Bai, Y.; Shi, J.; Deng, W.; Qiu, J.; Wang, Z.; et al. Ursolic acid reduces oxidative stress injury to ameliorate experimental autoimmune myocarditis by activating Nrf2/HO-1 signaling pathway. Front. Pharmacol. 2023, 14, 1189372. [Google Scholar] [CrossRef]
- Lu, M.; Su, C.; Qiao, C.; Bian, Y.; Ding, J.; Hu, G. Metformin Prevents Dopaminergic Neuron Death in MPTP/P-Induced Mouse Model of Parkinson’s Disease via Autophagy and Mitochondrial ROS Clearance. Int. J. Neuropsychopharmacol. 2016, 19, pyw047. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, R.; Zhao, Y.; Zhang, P.; Xie, D.; Peng, S.; Li, R.; Zhang, J. Salidroside Derivative SHPL-49 Exerts Anti-Neuroinflammatory Effects by Modulating Excessive Autophagy in Microglia. Cells 2025, 14, 425. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.; Shen, R.; Li, Y.; Shi, W.; Xia, W. LAMP3 exacerbates autophagy-mediated neuronal damage through NF-kB in microglia. Cell Signal. 2025, 129, 111658. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Zhang, X.; Zhan, G.; Zheng, L.; Mao, M.; Zhao, Y.; Zhao, Y.; Li, X. A cell-penetrating peptide exerts therapeutic effects against ischemic stroke by mediating the lysosomal degradation of sirtuin 5. MedComm 2023, 4, e436. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yan, L.; Huang, H.; Li, X.; Xia, Q.; Zheng, L.; Shao, B.; Gao, Q.; Sun, N.; Shi, J. Tat-NTS peptide protects neurons against cerebral ischemia-reperfusion injury via ANXA1 SUMOylation in microglia. Theranostics 2023, 13, 5561–5583. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Zhong, Y.; Ye, Y.; Hu, X.; Gu, L.; Xiong, X. Inflammation-Mediated Angiogenesis in Ischemic Stroke. Front. Cell. Neurosci. 2021, 15, 652647. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Zhang, T.Y.; Xue, X.; Liu, D.M.; Zhang, H.T.; Yuan, L.L.; Liu, Y.L.; Yang, H.L.; Sun, S.B.; Zhang, C.; et al. Pseudoginsenoside-F11 attenuates cerebral ischemic injury by alleviating autophagic/lysosomal defects. CNS Neurosci. Ther. 2017, 23, 567–579. [Google Scholar] [CrossRef]
- Liu, L.; Ma, Z.; Han, Q.; Meng, W.; Wang, H.; Guan, X.; Shi, Q. Myricetin Oligomer Triggers Multi-Receptor Mediated Penetration and Autophagic Restoration of Blood-Brain Barrier for Ischemic Stroke Treatment. ACS Nano 2024, 18, 9895–9916. [Google Scholar] [CrossRef]
- Xie, D.; Liu, Y.; Xu, F.B.; Zhang, J.S. The role of SASP in ischemic stroke: A deep dive into cellular mechanisms. Front. Neurol. 2024, 15, 1513357. [Google Scholar] [CrossRef]
- Nakahira, K.; Haspel, J.A.; Rathinam, V.A.; Lee, S.J.; Dolinay, T.; Lam, H.C.; Englert, J.A.; Rabinovitch, M.; Cernadas, M.; Kim, H.P.; et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 2011, 12, 222–230. [Google Scholar] [CrossRef]
- Lazarou, M.; Sliter, D.A.; Kane, L.A.; Sarraf, S.A.; Wang, C.; Burman, J.L.; Sideris, D.P.; Fogel, A.I.; Youle, R.J. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 2015, 524, 309–314. [Google Scholar] [CrossRef]
- Zhang, Q.; Fu, X.; Wang, J.; Yang, M.; Kong, L. Treatment Effects of Ischemic Stroke by Berberine, Baicalin, and Jasminoidin from Huang-Lian-Jie-Du-Decoction (HLJDD) Explored by an Integrated Metabolomics Approach. Oxid. Med. Cell. Longev. 2017, 2017, 9848594. [Google Scholar] [CrossRef]
- Pan, J.; Chai, X.; Li, C.; Wu, Y.; Ma, Y.; Wang, S.; Xue, Y.; Zhao, Y.; Chen, S.; Zhu, X.; et al. Eucommia ulmoides Oliv. Bark Extracts Alleviate MCAO/Reperfusion-Induced Neurological Dysfunction by Suppressing Microglial Inflammation in the Gray Matter. Int. J. Mol. Sci. 2025, 26, 1572. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, L.; Zhao, F.; Cheng, Y.; Jin, M.; Xue, F.S. Esketamine at a Clinical Dose Attenuates Cerebral Ischemia/Reperfusion Injury by Inhibiting AKT Signaling Pathway to Facilitate Microglia M2 Polarization and Autophagy. Drug Des. Dev.Ther. 2025, 19, 369–387. [Google Scholar] [CrossRef]
- Peng, Y.; Long, Y.; Wan, C. NOD-like receptor X1 promotes autophagy and inactivates NLR family pyrin domain containing 3 inflammasome signaling by binding autophagy-related gene 5 to alleviate cerebral ischemia/reperfusion-induced neuronal injury. J. Neuropathol. Exp. Neurol. 2025, 84, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Cui, M.Y.; Li, Z.L.; Fu, Y.Q.; Zheng, Y.; Yu, Y.; Zhang, C.; Huang, X.Y.; Chen, B.H. ULK1 confers neuroprotection by regulating microglial/macrophages activation after ischemic stroke. Int. Immunopharmacol. 2024, 127, 111379. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, Z.L.; Wang, X.W.; Li, T.; Cui, M.Y.; Wang, M.M.; Fu, Y.Q.; Zheng, Y.; Xiang, W.W.; Wang, Y.; et al. ULK1 Knockout Exacerbates Ischemia-Induced Microglial Dysfunction via TRAF6/NF-κB Signaling Pathway. ACS Chem. Neurosci. 2025, 16, 2978–2988. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Q.; Zhu, F.; Jiang, R.; Lu, Z.; Wang, C.; Gong, P.; Yao, Q.; Xia, T.; Sun, J.; et al. An engineered cellular carrier delivers miR-138-5p to enhance mitophagy and protect hypoxic-injured neurons via the DNMT3A/Rhebl1 axis. Acta Biomater. 2024, 186, 424–438. [Google Scholar] [CrossRef]
- Kang, C.; Sang, Q.; Liu, D.; Wang, L.; Li, J.; Liu, X. Polyphyllin I alleviates neuroinflammation after cerebral ischemia-reperfusion injury via facilitating autophagy-mediated M2 microglial polarization. Mol. Med. 2024, 30, 59. [Google Scholar] [CrossRef]
- Dai, L.; Wu, Z.; Yin, L.; Cheng, L.; Zhou, Q.; Ding, F. Exogenous Functional Mitochondria Derived from Bone Mesenchymal Stem Cells That Respond to ROS Can Rescue Neural Cells Following Ischemic Stroke. J. Inflamm. Res. 2024, 17, 3383–3395. [Google Scholar] [CrossRef]
- Gao, L.; Jiang, T.; Guo, J.; Liu, Y.; Cui, G.; Gu, L.; Su, L.; Zhang, Y. Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS ONE 2012, 7, e46092. [Google Scholar] [CrossRef]
- Yang, X.Y.; Wang, S.L.; Xue, W.C.; Zhang, Y.P.; Li, L.L.; Luo, Z.H.; Zhang, F.J. Nattokinase’s Neuroprotective Mechanisms in Ischemic Stroke: Targeting Inflammation, Oxidative Stress, and Coagulation. Antioxid. Redox Signal. 2025, 42, 228–248. [Google Scholar] [CrossRef]
- Liu, X.; Feng, Z.; Du, L.; Huang, Y.; Ge, J.; Deng, Y.; Mei, Z. The Potential. Role of MicroRNA-124 in Cerebral Ischemia Injury. Int. J. Mol. Sci. 2019, 21, 120. [Google Scholar] [CrossRef]
- Zhou, X.; Qi, L. miR-124 Is Downregulated in Serum of Acute Cerebral Infarct Patients and Shows Diagnostic and Prognostic Value. Clin. Appl. Thromb. Hemost. 2021, 27, 10760296211035446. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qiu, S.; Li, X.; Li, M.; Peng, Y. Autophagy biomarkers in CSF correlates with infarct size, clinical severity and neurological outcome in AIS patients. J. Transl. Med. 2015, 13, 359. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.J.; Vercouillie, J.; Debiais, S.; Cottier, J.P.; Bonnaud, I.; Camus, V.; Banister, S.; Kassiou, M.; Arlicot, N.; Guilloteau, D. Could (18) F-DPA-714 PET imaging be interesting to use in the early post-stroke period? EJNMMI Res. 2014, 4, 28. [Google Scholar] [CrossRef] [PubMed]
- Mahemuti, Y.; Kadeer, K.; Su, R.; Abula, A.; Aili, Y.; Maimaiti, A.; Abulaiti, S.; Maimaitituerxun, M.; Miao, T.; Jiang, S.; et al. TSPO exacerbates acute cerebral ischemia/reperfusion injury by inducing autophagy dysfunction. Exp. Neurol. 2023, 369, 114542. [Google Scholar] [CrossRef]
- Lartey, F.M.; Ahn, G.O.; Shen, B.; Cord, K.T.; Smith, T.; Chua, J.Y.; Rosenblum, S.; Liu, H.; James, M.L.; Chernikova, S.; et al. PET imaging of stroke-induced neuroinflammation in mice using [18F]PBR06. Mol. Imaging Biol. 2014, 16, 109–117. [Google Scholar] [CrossRef]
- Orhii, P.D.; Haque, M.E.; Fujita, M.; Selvaraj, S. Advances in PET imaging of ischemic stroke. Front. Stroke 2023, 1, 1093386. [Google Scholar] [CrossRef]
- Singh, A.; D’Amico, D.; Andreux, P.A.; Fouassier, A.M.; Blanco-Bose, W.; Evans, M.; Aebischer, P.; Auwerx, J.; Rinsch, C. Urolithin A improves muscle strength, exercise performance, and biomarkers of mitochondrial health in a randomized trial in middle-aged adults. Cell Rep. Med. 2022, 3, 100633. [Google Scholar] [CrossRef]
- Sabogal-Guáqueta, A.M.; Marmolejo-Garza, A.; Trombetta-Lima, M.; Oun, A.; Hunneman, J.; Chen, T.; Koistinaho, J.; Lehtonen, S.; Kortholt, A.; Wolters, J.C.; et al. Species-specific metabolic reprogramming in human and mouse microglia during inflammatory pathway induction. Nat. Commun. 2023, 14, 6454. [Google Scholar] [CrossRef]
- Sun, Y.; Wan, G.; Bao, X. Extracellular Vesicles as a Potential Therapy for Stroke. Int. J. Mol. Sci. 2025, 26, 3130. [Google Scholar] [CrossRef]
- Choi, S.G.; Shin, J.; Lee, K.Y.; Park, H.; Kim, S.I.; Yi, Y.Y.; Kim, D.W.; Song, H.J.; Shin, H.J. PINK1 siRNA-loaded poly(lactic-co-glycolic acid) nanoparticles provide neuroprotection in a mouse model of photothrombosis-induced ischemic stroke. Glia 2023, 71, 1294–1310. [Google Scholar] [CrossRef]
- Yang, Z.; Goronzy, J.J.; Weyand, C.M. Autophagy in autoimmune disease. J. Mol. Med. 2015, 93, 707–717. [Google Scholar] [CrossRef]
- Yin, H.; Wu, H.; Chen, Y.; Zhang, J.; Zheng, M.; Chen, G.; Li, L.; Lu, Q. The Therapeutic and Pathogenic Role of Autophagy in Autoimmune Diseases. Front. Immunol. 2018, 9, 1512. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; You, H.; Hu, X.; Luo, Y.; Zhang, Z.; Song, Y.; An, J.; Lu, H. Microglia-Astrocyte Interaction in Neural Development and Neural Pathogenesis. Cells 2023, 12, 1942. [Google Scholar] [CrossRef] [PubMed]
- Singh, D. Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease. J. Neuroinflamm. 2022, 19, 206. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, Y.; Guo, Z.; Cui, M.; Pang, P.; Yang, J.; Wu, C. Enhancement of oligodendrocyte autophagy alleviates white matter injury and cognitive impairment induced by chronic cerebral hypoperfusion in rats. Acta Pharm. Sin. B 2023, 13, 2107–2123. [Google Scholar] [CrossRef] [PubMed]
- Kreher, C.; Favret, J.; Maulik, M.; Shin, D. Lysosomal Functions in Glia Associated with Neurodegeneration. Biomolecules 2021, 11, 400. [Google Scholar] [CrossRef]
- Patergnani, S.; Bonora, M.; Ingusci, S.; Previati, M.; Marchi, S.; Zucchini, S.; Perrone, M.; Wieckowski, M.R.; Castellazzi, M.; Pugliatti, M.; et al. Antipsychotic drugs counteract autophagy and mitophagy in multiple sclerosis. Proc. Natl. Acad. Sci. USA 2021, 118, e2020078118. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [CrossRef]
- Berge, E.; Whiteley, W.; Audebert, H.; De Marchis, G.M.; Fonseca, A.C.; Padiglioni, C.; de la Ossa, N.P.; Strbian, D.; Tsivgoulis, G.; Turc, G. European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur. Stroke J. 2021, 6, I–LXII. [Google Scholar] [CrossRef]
- Munoz, A.; Jabre, R.; Orenday-Barraza, J.M.; Eldin, M.S.; Chen, C.J.; Al-Saiegh, F.; Abbas, R.; El Naamani, K.; Gooch, M.R.; Jabbour, P.M.; et al. A review of mechanical thrombectomy techniques for acute ischemic stroke. Interv. Neuroradiol. 2023, 29, 450–458. [Google Scholar] [CrossRef]
- Lee, H.J.; Yoon, Y.S.; Lee, S.J. Mechanism of neuroprotection by trehalose: Controversy surrounding autophagy induction. Cell Death Dis. 2018, 9, 712. [Google Scholar] [CrossRef]
- Fang, E.F.; Hou, Y.; Palikaras, K.; Adriaanse, B.A.; Kerr, J.S.; Yang, B.; Lautrup, S.; Hasan-Olive, M.M.; Caponio, D.; Dan, X.; et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 2019, 22, 401–412. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Jabir, M.S.; Al-Gareeb, A.I.; Saad, H.M.; Batiha, G.E.; Klionsky, D.J. The beneficial role of autophagy in multiple sclerosis: Yes or No? Autophagy 2024, 20, 259–274. [Google Scholar] [CrossRef]
- Misrielal, C.; Mauthe, M.; Reggiori, F.; Eggen, B.J.L. Autophagy in Multiple Sclerosis: Two Sides of the Same Coin. Front. Cell. Neurosci. 2020, 14, 603710. [Google Scholar] [CrossRef] [PubMed]
- Schreurs, R.; Koulis, A.; Booiman, T.; Boeser-Nunnink, B.; Cloherty, A.P.M.; Rader, A.G.; Patel, K.S.; Kootstra, N.A.; Ribeiro, C.M.S. Autophagy-enhancing ATG16L1 polymorphism is associated with improved clinical outcome and T-cell immunity in chronic HIV-1 infection. Nat. Commun. 2024, 15, 2465. [Google Scholar] [CrossRef] [PubMed]
Role | Mechanisms/Features | Functional Outcomes | References |
---|---|---|---|
Neuroprotective (adaptive/M2-like/reparative) |
|
| [15,102,103,104] |
Neurotoxic (maladaptive/M1-like/inflammatory) |
|
| [105,106,107,108] |
Molecule/Regulator | Pathway/Mechanism | Effect on Microglial Autophagy/Mitophagy | Stroke Phase | References |
---|---|---|---|---|
PINK1/Parkin | Ubiquitin–proteasome signaling; mitochondrial depolarization sensor | Induces mitophagy, clears damaged mitochondria, reduces ROS | Acute/Subacute | [12,42,112,113] |
BNIP3/NIX | Hypoxia-inducible, LC3-interacting region (LIR) receptor | Promotes receptor-mediated mitophagy, suppresses inflammasome activation | Acute/Subacute | [45,46,47,120] |
FUNDC1 | Mitochondrial outer membrane receptor; LIR motif | Promotes mitophagy under hypoxia/ischemia, regulates mitochondrial quality control | Acute | [114,120,121] |
HIF-1α | Hypoxia-inducible factor, transcriptional activation of BNIP3/NIX | Indirectly enhances mitophagy under ischemia/hypoxia | Acute | [45,46,47,120] |
Beclin-1 | Class III PI3K complex | Initiates autophagosome formation, regulates autophagy flux | Acute/Subacute | [46,47,122] |
PGC-1α/ULK1 | Mitochondrial biogenesis coactivator; ULK1 initiates autophagy | PGC-1α enhances ULK1-dependent mitophagy; shifts microglia toward M2 phenotype | Subacute/Recovery | [116] |
MALAT1 (lncRNA) | Competes with miR-30d/ULK2 axis | Promotes autophagy by derepressing ULK2, regulates polarization | Acute/Subacute | [55,122] |
TUG1 (lncRNA) | Regulates PINK1/Parkin pathway | Enhances mitophagy and protects against ischemic injury | Acute/Subacute | [57] |
miR-26b | Targets ULK2 | Suppresses autophagy, promotes pro-inflammatory activation | Acute | [55] |
miR-30a | Targets Beclin-1 | Inhibits autophagy, exacerbates ischemic injury | Acute | [122] |
miR-124 | Targets STAT3, modulates inflammatory response | Enhances autophagy, promotes M2-like phenotype | Subacute/Recovery | [121,122] |
Exosomal miRNAs (miR-126, miR-223) | Delivered via MSC- or exercise-derived exosomes | Modulate autophagy/mitophagy, reduce neuroinflammation | Subacute/Recovery | [123,124] |
DRP1 | Mitochondrial fission mediator | Excessive activation induces fragmentation and autophagic stress | Acute | [125,126] |
MFN2/OPA1 | Mitochondrial fusion proteins | Promote mitochondrial integrity, restrain excessive mitophagy | Subacute/Recovery | [127] |
Compound | Target Pathway/Mechanism | Effect on Microglial Autophagy/Mitophagy | Key Findings (Preclinical Model) | Development Stage | References |
---|---|---|---|---|---|
β-Elemene | AKT/mTOR | Promotes autophagy and shifts microglia toward M2 phenotype | Reduces infarct size and neuroinflammation in MCAO mice | Preclinical (rodent models) | [10] |
Baicalein | PI3K/Akt/mTOR | Inhibits autophagy, reduces neuronal apoptosis via anti-autophagic signaling | Promotes PI3K/Akt/mTOR activation, reduces LC3-II/LC3-I ratio, protects neurons from I/R injury | Preclinical | [97] |
Salidroside | AMPK/TSC2/mTOR | Activates autophagy, reduces oxidative stress | Neuroprotection in ischemia/reperfusion (I/R) models | Preclinical | [147] |
Ursolic Acid | PPARγ–MMP2 regulation; antioxidant via Nrf2/HO-1 | Indirect modulation of autophagy via microglial polarization and ECM balance | Promotes microglial M2 polarization via PPARγ–MMP2; restores MMP/TIMP balance and reduces neuronal injury | Preclinical | [148,149,150] |
PTP1B inhibitor | PERK/ER stress–autophagy axis | Regulates microglial autophagy and inflammatory signaling | Reduces ischemic neuronal death and neuroinflammation | Preclinical | [20] |
Metformin | AMPK activation | Promotes autophagy/mitophagy, enhances mitochondrial clearance | Neuroprotection in stroke and neurodegeneration models | Approved drug (diabetes); preclinical in stroke | [112,151] |
STS (Sodium Tanshinone IIA Sulfonate) | PP2A-mediated enhancement of autophagy in microglia | Promotes autophagic flux and exerts anti-inflammatory effects | Restores mitochondrial function and reduces neuronal apoptosis in OGD/R models; increases Beclin-1 and ATG5 expression, decreases p62, upregulates IL-10/TGF-β/BDNF, while inhibiting IL-1β/IL-2/TNF-α | Preclinical | [117] |
Ligustilide | PINK1/Parkin-dependent mitophagy; BNIP3–LC3-mediated mitophagy; PI3K/Akt-mediated anti-apoptotic signaling | Enhances mitophagy, reduces oxidative stress and apoptosis | Improves mitochondrial function and neuronal survival via mitophagy in MCAO/R models; attenuates ROS and apoptosis via PI3K/Akt; preserves BBB integrity in OGD models | Preclinical (rodent, in vitro models) | [135,136,137] |
Urolithin A | Activates autophagy and suppresses ER stress; mitophagy observed in non-CNS models | Enhances autophagy, reduces neuronal apoptosis and inflammation | Protects against ischemic injury; mitophagy demonstrated in muscular dystrophy models | Phase I safety trial completed; no stroke-specific trials | [101,141] |
SS-31 (Elamipretide) | Cardiolipin binding; mitochondrial stabilization; modulation of AKT/mTOR | Restores autophagic flux and improves mitochondrial function | Demonstrates neuroprotection in traumatic brain injury (TBI) and non-CNS ischemia models by reversing mitochondrial dysfunction; limited direct stroke evidence | Clinical (other diseases, incl. mitochondrial myopathy); none in stroke | [140,142] |
SHPL-49 (Salidroside derivative) | LAMP-2/autophagosome–lysosome fusion | Inhibits excessive autophagy and restores flux | Reduces infarct size and inflammation in I/R models | Preclinical | [152,153] |
Tat-SIRT5-CTM (peptide) | SIRT5 degradation/ANXA1 pathway | Modulates microglial autophagy, enhances anti-inflammatory response | Improves ischemic outcomes in rodent models | Preclinical (proof-of-concept) | [154] |
Tat-NTS peptide | Enhances ANXA1 SUMOylation → NBR1-mediated selective autophagic degradation of IKKα, suppressing NF-κB | Modulates microglial selective autophagy and shifts phenotype toward anti-inflammation | Reduces infarct volume and improves neurobehavioral recovery in MCAO mice via microglial autophagy modulation | Preclinical (proof-of-concept) | [155] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Liu, J.; Li, Y.; Du, F.; Li, W.; Thilakavathy, K.; Lim, J.C.W.; Sun, Z.; Deng, J. Microglial Autophagy and Mitophagy in Ischemic Stroke: From Dual Roles to Therapeutic Modulation. Biology 2025, 14, 1269. https://doi.org/10.3390/biology14091269
Wu J, Liu J, Li Y, Du F, Li W, Thilakavathy K, Lim JCW, Sun Z, Deng J. Microglial Autophagy and Mitophagy in Ischemic Stroke: From Dual Roles to Therapeutic Modulation. Biology. 2025; 14(9):1269. https://doi.org/10.3390/biology14091269
Chicago/Turabian StyleWu, Juan, Jiaxin Liu, Yanwen Li, Fang Du, Weijia Li, Karuppiah Thilakavathy, Jonathan Chee Woei Lim, Zhong Sun, and Juqing Deng. 2025. "Microglial Autophagy and Mitophagy in Ischemic Stroke: From Dual Roles to Therapeutic Modulation" Biology 14, no. 9: 1269. https://doi.org/10.3390/biology14091269
APA StyleWu, J., Liu, J., Li, Y., Du, F., Li, W., Thilakavathy, K., Lim, J. C. W., Sun, Z., & Deng, J. (2025). Microglial Autophagy and Mitophagy in Ischemic Stroke: From Dual Roles to Therapeutic Modulation. Biology, 14(9), 1269. https://doi.org/10.3390/biology14091269