Focus on Cognitive Enhancement: A Narrative Overview of Nootropics and “Smart Drug” Use and Misuse
Simple Summary
Abstract
1. Introduction
1.1. Nootropics
1.2. Smart Drugs
2. Methodology
3. Results
3.1. Nootropics
3.1.1. Mechanism of Action
3.1.2. Shift in Energy Metabolism
3.1.3. Cholinergic Effects
3.1.4. Involvement of Excitatory Amino Acids
3.1.5. Steroid Involvement
3.1.6. Nootropics’ Classification
- (a)
- Classical synthetic nootropics
- (b)
- Cerebral Metabolism Enhancers
- (c)
- Natural; Plants and Their Extracts with Nootropic Effects
3.2. Smart Drugs
3.2.1. Mechanism of Action
3.2.2. “Smart” Drugs Popularity as “Study” Drugs
3.2.3. Smart Drugs in Sports and Warfare
3.2.4. Most Popular Smart Drugs
- (a)
- Methylphenidate; Modafinil; Amphetamine-Based Compounds; Psychedelics
- Methylphenidate
- Modafinil
- Amphetamine-Type Substances’ (ATS) Mixtures; Adderall
- Rationale for Stimulant use
- Risks Associated with Stimulant use
- (b)
- Psychedelics’ Microdosing
- (c)
- Other Smart Drugs
- Selegiline
- Benzodiazepine Inverse Agonists
- Unifiram and Its Analogues
4. Discussion
- From Clinical to Cosmetic Psychopharmacology?
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Froestl, W.; Muhs, A.; Pfeifer, A. Cognitive Enhancers (Nootropics). Part 1: Drugs Interacting with Receptors. J. Alzheimer’s Dis. 2012, 32, 793–887. [Google Scholar] [CrossRef]
- Froestl, W.; Muhs, A.; Pfeifer, A. Cognitive Enhancers (Nootropics). Part 2: Drugs Interacting with Enzymes. J. Alzheimer’s Dis. 2013, 33, 547–658. [Google Scholar] [CrossRef]
- Schifano, F.; Catalani, V.; Sharif, S.; Napoletano, F.; Corkery, J.M.; Arillotta, D.; Fergus, S.; Vento, A.; Guirguis, A. Benefits and Harms of “Smart Drugs” (Nootropics) in Healthy Individuals. Drugs 2022, 82, 633–647. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M. Pharmacological Cognitive Enhancement: Current Situation and Perspectives. Yakugaku Zasshi J. Pharm. Soc. Jpn. 2022, 142, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Sharif, S.; Guirguis, A.; Fergus, S.; Schifano, F. The Use and Impact of Cognitive Enhancers among University Students: A Systematic Review. Brain Sci. 2021, 11, 355. [Google Scholar] [CrossRef] [PubMed]
- Cornejo-Plaza, M.I.; Saracini, C. On Pharmacological Neuroenhancement as Part of the New Neurorights’ Pioneering Legislation in Chile: A Perspective. Front. Psychol. 2023, 14, 1177720. [Google Scholar] [CrossRef] [PubMed]
- Hawas, Y.; Ayoub, M.; Esmail, E.; Elsakka, M.M.; Antonios, M.; Azeez, A.; Gahlan, S.; Hamadein, F.; Alabdallat, Y.; for MRGE, group; et al. Cognitive Enhancers Consumption: Prevalence, Knowledge, and Determinants of Use Among Medical Students in Egypt, Sudan, and Jordan. Subst. Use Misuse 2025, 60, 436–441. [Google Scholar] [CrossRef]
- Hajduk, M.; Tiedemann, E.; Romanos, M.; Simmenroth, A. Neuroenhancement and Mental Health in Students from Four Faculties—A Cross-Sectional Questionnaire Study. GMS J. Med. Educ. 2024, 41, Doc9. [Google Scholar] [CrossRef]
- Bayne, T.; Brainard, D.; Byrne, R.W.; Chittka, L.; Clayton, N.; Heyes, C.; Mather, J.; Ölveczky, B.; Shadlen, M.; Suddendorf, T.; et al. What Is Cognition? Curr. Biol. 2019, 29, R608–R615. [Google Scholar] [CrossRef]
- Lanni, C.; Lenzken, S.C.; Pascale, A.; Del Vecchio, I.; Racchi, M.; Pistoia, F.; Govoni, S. Cognition Enhancers between Treating and Doping the Mind. Pharmacol. Res. 2008, 57, 196–213. [Google Scholar] [CrossRef]
- Kauer, A.R.; Sowden, P.T. The Role of Attention in the Development of Creativity. In Oxford Handbook of Developmental Cognitive Neuroscience; Cohen Kadosh, K., Ed.; Oxford University Press: Oxford, UK, 2024; pp. 477–508. ISBN 978-0-19-882747-4. [Google Scholar]
- Franken, I.H.A.; Wiers, R.W. Motivational processes in addiction: The role of craving, salience and attention. Tijdschr. Psychiatr. 2013, 55, 833–840. [Google Scholar]
- Giurgea, C.; Salama, M. Nootropic Drugs. Prog. Neuro-Psychopharmacol. 1977, 1, 235–247. [Google Scholar] [CrossRef]
- Pepeu, G.; Spignoli, G. Nootropic Drugs and Brain Cholinergic Mechanisms. Prog. Neuropsychopharmacol. Biol. Psychiatry 1989, 13, S77–S88. [Google Scholar] [CrossRef]
- Malík, M.; Tlustoš, P. Nootropics as Cognitive Enhancers: Types, Dosage and Side Effects of Smart Drugs. Nutrients 2022, 14, 3367. [Google Scholar] [CrossRef]
- Lorca, C.; Mulet, M.; Arévalo-Caro, C.; Sanchez, M.Á.; Perez, A.; Perrino, M.; Bach-Faig, A.; Aguilar-Martínez, A.; Vilella, E.; Gallart-Palau, X.; et al. Plant-Derived Nootropics and Human Cognition: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 5521–5545. [Google Scholar] [CrossRef] [PubMed]
- Wojszel, Z.B. Nootropics (Piracetam, Pyritinol, Co-Dergocrine, Meclophenoxat, Pentoxifylline, Nimodipine). In NeuroPsychopharmacotherapy; Riederer, P., Laux, G., Nagatsu, T., Le, W., Riederer, C., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 2733–2777. ISBN 978-3-030-62058-5. [Google Scholar]
- Don Bosco, R.B.; Selvan Christyraj, J.R.S.; Yesudhason, B.V. Synergistic Activity of Nootropic Herbs as Potent Therapeutics for Alzheimer’s Disease: A Cheminformatics, Pharmacokinetics, and System Pharmacology Approach. J. Alzheimer’s Dis. Rep. 2024, 8, 1745–1762. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, C.S.; CZhang, A.L.; Cai, Y.; Xue, C. Oral Chinese Herbal Medicine Combined with Donepezil for Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. J. Am. Geriatr. Soc. 2024, 72, 3890–3902. [Google Scholar] [CrossRef] [PubMed]
- Mondadori, C.; Petschke, F.; Häusler, A. The Effects of Nootropics on Memory: New Aspects for Basic Research. Pharmacopsychiatry 1989, 22 (Suppl. S2), 102–106. [Google Scholar] [CrossRef] [PubMed]
- Mondadori, C. Nootropics: Preclinical Results in the Light of Clinical Effects; Comparison with Tacrine. Crit. Rev. Neurobiol. 1996, 10, 357–370. [Google Scholar] [CrossRef]
- Volkow, N.D.; Ding, Y.S.; Fowler, J.S.; Gatley, S.J. Imaging Brain Cholinergic Activity with Positron Emission Tomography: Its Role in the Evaluation of Cholinergic Treatments in Alzheimer’s Dementia. Biol. Psychiatry 2001, 49, 211–220. [Google Scholar] [CrossRef]
- Pugliese, A.M.; Corradetti, R.; Ballerini, L.; Pepeu, G. Effect of the Nootropic Drug Oxiracetam on Field Potentials of Rat Hippocampal Slices. Br. J. Pharmacol. 1990, 99, 189–193. [Google Scholar] [CrossRef]
- Rasmussen, K.W.; Kirk, M.; Overgaard, S.B.; Berntsen, D. The Days We Never Forget: Flashbulb Memories across the Life Span in Alzheimer’s Disease. Mem. Cognit. 2024, 52, 1477–1493. [Google Scholar] [CrossRef]
- Flexner, J.B.; Flexner, L.B. Adrenalectomy and the Suppression of Memory by Puromycin. Proc. Natl. Acad. Sci. USA 1970, 66, 48–52. [Google Scholar] [CrossRef]
- Mondadori, C.; Bhatnagar, A.; Borkowski, J.; Häusler, A. Involvement of a Steroidal Component in the Mechanism of Action of Piracetam-like Nootropics. Brain Res. 1990, 506, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Vakulina, O.P.; Iasnetsov, V.V.; Isachenkov, V.A.; Krylova, I.N.; Tishkova, I.P.; Bragin, E.O.; Popkova, E.V. Effects of piracetam on pain sensitivity and levels of beta-endorphin in blood and cAMP in the cerebral cortex of rats. Biulleten’ Eksp. Biol. Med. 1990, 109, 163–165. [Google Scholar]
- Kongsui, R.; Thongrong, S.; Jittiwat, J. In Vivo Neuroprotective Effects of Alpinetin Against Experimental Ischemic Stroke Damage Through Antioxidant and Anti-Inflammatory Mechanisms. Int. J. Mol. Sci. 2025, 26, 5093. [Google Scholar] [CrossRef]
- Huang, S.-Y.; Yang, Z.-J.; Cheng, J.; Li, H.-Y.; Chen, S.; Huang, Z.-H.; Chen, J.-D.; Xiong, R.-G.; Yang, M.-T.; Wang, C.; et al. Choline Alleviates Cognitive Impairment in Sleep-Deprived Young Mice via Reducing Neuroinflammation and Altering Phospholipidomic Profile. Redox Biol. 2025, 81, 103578. [Google Scholar] [CrossRef] [PubMed]
- Napoletano, F.; Schifano, F.; Corkery, J.M.; Guirguis, A.; Arillotta, D.; Zangani, C.; Vento, A. The Psychonauts’ World of Cognitive Enhancers. Front. Psychiatry 2020, 11, 546796. [Google Scholar] [CrossRef]
- Mondadori, C. The Pharmacology of the Nootropics; New Insights and New Questions. Behav. Brain Res. 1993, 59, 1–9. [Google Scholar] [CrossRef]
- Malík, M.; Tlustoš, P. Nootropic Herbs, Shrubs, and Trees as Potential Cognitive Enhancers. Plants 2023, 12, 1364. [Google Scholar] [CrossRef]
- Graziano, S.; Orsolini, L.; Rotolo, M.C.; Tittarelli, R.; Schifano, F.; Pichini, S. Herbal Highs: Review on Psychoactive Effects and Neuropharmacology. Curr. Neuropharmacol. 2017, 15, 750–761. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-Y.; Park, J.-H.; Kim, H.-S.; Lee, C.-Y.; Lee, H.-J.; Kang, K.S.; Kim, C.-E. Systems-Level Mechanisms of Action of Panax ginseng: A Network Pharmacological Approach. J. Ginseng Res. 2018, 42, 98–106. [Google Scholar] [CrossRef]
- Nah, S.-Y. Ginseng Ginsenoside Pharmacology in the Nervous System: Involvement in the Regulation of Ion Channels and Receptors. Front. Physiol. 2014, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Diamond, B.J.; Bailey, M.R. Ginkgo biloba. Psychiatr. Clin. N. Am. 2013, 36, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Kehr, J.; Yoshitake, S.; Ijiri, S.; Koch, E.; Nöldner, M.; Yoshitake, T. Ginkgo biloba Leaf Extract (EGb 761®) and Its Specific Acylated Flavonol Constituents Increase Dopamine and Acetylcholine Levels in the Rat Medial Prefrontal Cortex: Possible Implications for the Cognitive Enhancing Properties of EGb 761®. Int. Psychogeriatr. 2012, 24 (Suppl. S1), S25–S34. [Google Scholar] [CrossRef]
- Sprengel, M.; Laskowski, R.; Jost, Z. Withania somnifera (Ashwagandha) Supplementation: A Review of Its Mechanisms, Health Benefits, and Role in Sports Performance. Nutr. Metab. 2025, 22, 9. [Google Scholar] [CrossRef]
- Gonzales, G.F. Ethnobiology and Ethnopharmacology of Lepidium meyenii (Maca), a Plant from the Peruvian Highlands. Evid Based Complement. Altern. Med. 2012, 2012, 193496. [Google Scholar] [CrossRef]
- Haubrich, J.; Hagena, H.; Tsanov, M.; Manahan-Vaughan, D. Editorial: Dopaminergic Control of Experience Encoding, Memory and Cognition. Front. Behav. Neurosci. 2023, 17, 1230576. [Google Scholar] [CrossRef]
- Westbrook, A.; Braver, T.S. Dopamine Does Double Duty in Motivating Cognitive Effort. Neuron 2016, 89, 695–710. [Google Scholar] [CrossRef]
- Cools, R.; Froböse, M.; Aarts, E.; Hofmans, L. Dopamine and the Motivation of Cognitive Control. Handb. Clin. Neurol. 2019, 163, 123–143. [Google Scholar] [CrossRef]
- Sharif, S.; Fergus, S.; Guirguis, A.; Smeeton, N.; Schifano, F. Assessing Prevalence, Knowledge and Use of Cognitive Enhancers among University Students in the United Arab Emirates: A Quantitative Study. PLoS ONE 2022, 17, e0262704. [Google Scholar] [CrossRef] [PubMed]
- Nowrouzi, S.; Richelle, L. The Misuse of Cognitive Enhancers by Medical Students: A Cross-Sectional Study Using Questionnaires. Br. J. Gen. Pract. 2024, 74, bjgp24X737625. [Google Scholar] [CrossRef]
- Miranda, M.; Barbosa, M. Use of Cognitive Enhancers by Portuguese Medical Students: Do Academic Challenges Matter? Acta Med. Port. 2022, 35, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Rubin-Kahana, D.S.; Rubin-Kahana, Z.; Kuperberg, M.; Stryjer, R.; Yodashkin-Porat, D. Cognitive Enhancement Drug Use among Resident Physicians: Prevalence and Motivations for Use—Results from a Survey. J. Addict. Dis. 2020, 38, 250–256. [Google Scholar] [CrossRef]
- Zahavi, E.; Lev-Shalem, L.; Yehoshua, I.; Adler, L. Methylphenidate Use and Misuse among Medical Residents in Israel: A Cross-Sectional Study. Hum. Resour. Health 2023, 21, 5. [Google Scholar] [CrossRef]
- Sharif, S.; Fergus, S.; Guirguis, A.; Smeeton, N.; Schifano, F. Exploring the Understanding, Source of Availability and Level of Access of Cognitive Enhancers among University Students in the United Arab Emirates: A Qualitative Study. Hum. Psychopharmacol. 2024, 39, e2888. [Google Scholar] [CrossRef]
- Smith, A.C.T.; Stavros, C.; Westberg, K. Cognitive Enhancing Drugs in Sport: Current and Future Concerns. Subst. Use Misuse 2020, 55, 2064–2075. [Google Scholar] [CrossRef]
- Dietz, P.; Ulrich, R.; Dalaker, R.; Striegel, H.; Franke, A.G.; Lieb, K.; Simon, P. Associations between Physical and Cognitive Doping--a Cross-Sectional Study in 2.997 Triathletes. PLoS ONE 2013, 8, e78702. [Google Scholar] [CrossRef]
- McGrath, M. Study Shows “Brain Doping” Is Common in Amateur Sport. BBC News, 15 January 2014. [Google Scholar]
- Dance, A. Smart Drugs: A Dose of Intelligence. Nature 2016, 531, S2–S3. [Google Scholar] [CrossRef]
- Van Hout, M.C.; Wells, J. Is Captagon (Fenethylline) Helping to Fuel the Syrian Conflict? Addiction 2016, 111, 748–749. [Google Scholar] [CrossRef] [PubMed]
- Fong, S.; Carollo, A.; Rossato, A.; Prevete, E.; Esposito, G.; Corazza, O. Captagon: A Comprehensive Bibliometric Analysis (1962-2024) of Its Global Impact, Health and Mortality Risks. Saudi Pharm. J. 2024, 32, 102188. [Google Scholar] [CrossRef] [PubMed]
- Malish, R.G. The Importance of the Study of Cognitive Performance Enhancement for U.S. National Security. Aerosp. Med. Hum. Perform. 2017, 88, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Kodsi, D. Revealed: Oxford’s Addiction to Study Drugs. Cherwell, 13 May 2016. [Google Scholar]
- Schifano, F.; Orsolini, L.; Duccio Papanti, G.; Corkery, J.M. Novel Psychoactive Substances of Interest for Psychiatry. World Psychiatry 2015, 14, 15–26. [Google Scholar] [CrossRef]
- Carlier, J.; Giorgetti, R.; Varì, M.R.; Pirani, F.; Ricci, G.; Busardò, F.P. Use of Cognitive Enhancers: Methylphenidate and Analogs. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 3–15. [Google Scholar] [CrossRef]
- Holborn, T.; Schifano, F.; Smith, E.; Deluca, P. The Use of Novel Stimulants in ADHD Self-Medication: A Mixed Methods Analysis. Brain Sci. 2025, 15, 292. [Google Scholar] [CrossRef]
- Gerrard, P.; Malcolm, R. Mechanisms of Modafinil: A Review of Current Research. Neuropsychiatr. Dis. Treat. 2007, 3, 349–364. [Google Scholar]
- Van Puyvelde, M.; Van Cutsem, J.; Lacroix, E.; Pattyn, N. A State-of-the-Art Review on the Use of Modafinil as A Performance-Enhancing Drug in the Context of Military Operationality. Mil. Med. 2022, 187, 52–64. [Google Scholar] [CrossRef]
- Marsh, S. Universities Must Do More to Tackle Use of Smart Drugs, Say Experts. The Guardian, 10 May 2017. [Google Scholar]
- Battleday, R.M.; Brem, A.-K. Modafinil for Cognitive Neuroenhancement in Healthy Non-Sleep-Deprived Subjects: A Systematic Review. Eur. Neuropsychopharmacol. 2015, 25, 1865–1881. [Google Scholar] [CrossRef]
- Cook, C.E.; Jeffcoat, A.R.; Sadler, B.M.; Hill, J.M.; Voyksner, R.D.; Pugh, D.E.; White, W.R.; Perez-Reyes, M. Pharmacokinetics of Oral Methamphetamine and Effects of Repeated Daily Dosing in Humans. Drug Metab. Dispos. 1992, 20, 856–862. [Google Scholar] [CrossRef]
- Izuo, N. Modulation of Cognitive and Psychiatric Functions by Psychostimulant-responsive Molecules. Yakugaku Zasshi J. Pharm. Soc. Jpn. 2025, 145, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Szczypińska, Z.; Marciniec, K.; Pawlak, A.T. Types of Psychoactive Substance and Manifested Risky Sexual Behaviors among Men—A Review. Postep. Psychiatr. Neurol. 2024, 33, 103–108. [Google Scholar] [CrossRef]
- Schifano, F.; Corkery, J.; Naidoo, V.; Oyefeso, A.; Ghodse, H. Overview of Amphetamine-Type Stimulant Mortality Data—UK, 1997–2007. Neuropsychobiology 2010, 61, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Duflou, J. Psychostimulant Use Disorder and the Heart. Addiction 2020, 115, 175–183. [Google Scholar] [CrossRef]
- Armoon, B.; Grenier, G.; Cao, Z.; Huỳnh, C.; Fleury, M.-J. Frequencies of Emergency Department Use and Hospitalization Comparing Patients with Different Types of Substance or Polysubstance-Related Disorders. Subst. Abus. Treat. Prev. Policy 2021, 16, 89. [Google Scholar] [CrossRef] [PubMed]
- Rouaud, A.; Calder, A.E.; Hasler, G. Microdosing Psychedelics and the Risk of Cardiac Fibrosis and Valvulopathy: Comparison to Known Cardiotoxins. J. Psychopharmacol. 2024, 38, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Tagen, M.; Mantuani, D.; van Heerden, L.; Holstein, A.; Klumpers, L.E.; Knowles, R. The Risk of Chronic Psychedelic and MDMA Microdosing for Valvular Heart Disease. J. Psychopharmacol. 2023, 37, 876–890. [Google Scholar] [CrossRef]
- Harlow, A.F.; Hendricks, P.S.; Leventhal, A.M.; Barrington-Trimis, J.L. Psychedelic Microdosing among Young Adults from Southern California. J. Psychoact. Drugs 2025, 57, 181–192. [Google Scholar] [CrossRef]
- Dear, J.W. CHAPTER 40—Poisoning. In Clinical Biochemistry: Metabolic and Clinical Aspects, 3rd ed.; Marshall, W.J., Lapsley, M., Day, A.P., Ayling, R.M., Eds.; Churchill Livingstone: London, UK, 2014; pp. 787–807. ISBN 978-0-7020-5140-1. [Google Scholar]
- Murphy, R.J.; Muthukumaraswamy, S.; de Wit, H. Microdosing Psychedelics: Current Evidence From Controlled Studies. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2024, 9, 500–511. [Google Scholar] [CrossRef]
- Glazer, J.; Murray, C.H.; Nusslock, R.; Lee, R.; de Wit, H. Low Doses of Lysergic Acid Diethylamide (LSD) Increase Reward-Related Brain Activity. Neuropsychopharmacology 2023, 48, 418–426. [Google Scholar] [CrossRef]
- Syed, O.A.; Petranker, R.; Fewster, E.C.; Sobolenko, V.; Beidas, Z.; Husain, M.I.; Lake, S.; Lucas, P. Global Trends in Psychedelic Microdosing: Demographics, Substance Testing Behavior, and Patterns of Use. J. Psychoact. Drugs 2024, 1–11. [Google Scholar] [CrossRef]
- Tully, J.L.; Bridge, O.; Rennie, J.; Krecké, J.; Stevens, T. The Rising Use of Cognitive Enhancement Drugs and Predictors of Use during COVID-19: Findings from a Cross-Sectional Survey of Students and University Staff in the UK. Front. Psychol. 2024, 15, 1356496. [Google Scholar] [CrossRef]
- Murphy, R.J.; Sumner, R.L.; Godfrey, K.; Mabidikama, A.; Roberts, R.P.; Sundram, F.; Muthukumaraswamy, S. Multimodal Creativity Assessments Following Acute and Sustained Microdosing of Lysergic Acid Diethylamide. Psychopharmacology 2025, 242, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Hutten, N.R.P.W.; Quaedflieg, C.W.E.M.; Mason, N.L.; Theunissen, E.L.; Liechti, M.E.; Duthaler, U.; Kuypers, K.P.C.; Bonnelle, V.; Feilding, A.; Ramaekers, J.G. Inter-Individual Variability in Neural Response to Low Doses of LSD. Transl. Psychiatry 2024, 14, 288. [Google Scholar] [CrossRef] [PubMed]
- Gartner, H.T.; Wan, H.Z.; Simmons, R.E.; Sollee, D.R.; Sheikh, S. Psychedelic Mushroom-Containing Chocolate Exposures: Case Series. Am. J. Emerg. Med. 2024, 85, 208–213. [Google Scholar] [CrossRef]
- Yasar, S.; Goldberg, J.P.; Goldberg, S.R. Are Metabolites of L-Deprenyl (Selegiline) Useful or Harmful? Indications from Preclinical Research. J. Neural Transm. Suppl. 1996, 48, 61–73. [Google Scholar] [CrossRef]
- Tatton, W.G.; Wadia, J.S.; Ju, W.Y.; Chalmers-Redman, R.M.; Tatton, N.A. (-)-Deprenyl Reduces Neuronal Apoptosis and Facilitates Neuronal Outgrowth by Altering Protein Synthesis without Inhibiting Monoamine Oxidase. J. Neural Transm. Suppl. 1996, 48, 45–59. [Google Scholar] [CrossRef]
- Gelowitz, D.L.; Richardson, J.S.; Wishart, T.B.; Yu, P.H.; Lai, C.T. Chronic L-Deprenyl or L-Amphetamine: Equal Cognitive Enhancement, Unequal MAO Inhibition. Pharmacol. Biochem. Behav. 1994, 47, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Hamm, R.J.; Reeves, T.M.; Povlishock, J.T.; Phillips, L.L. Postinjury Administration of L-Deprenyl Improves Cognitive Function and Enhances Neuroplasticity after Traumatic Brain Injury. Exp. Neurol. 2000, 166, 136–152. [Google Scholar] [CrossRef]
- Buettelmann, B.; Ballard, T.M.; Gasser, R.; Fischer, H.; Hernandez, M.-C.; Knoflach, F.; Knust, H.; Stadler, H.; Thomas, A.W.; Trube, G. Imidazo [1,5-a][1,2,4]-Triazolo [1,5-d][1,4]Benzodiazepines as Potent and Highly Selective GABAA Alpha5 Inverse Agonists with Potential for the Treatment of Cognitive Dysfunction. Bioorganic Med. Chem. Lett. 2009, 19, 5958–5961. [Google Scholar] [CrossRef]
- Catalani, V.; Botha, M.; Corkery, J.M.; Guirguis, A.; Vento, A.; Schifano, F. Designer Benzodiazepines’ Activity on Opioid Receptors: A Docking Study. Curr. Pharm. Des. 2009, 28, 2639–2652. [Google Scholar] [CrossRef]
- Gualtieri, F. Unifi Nootropics from the Lab to the Web: A Story of Academic (and Industrial) Shortcomings. J. Enzyme Inhib. Med. Chem. 2016, 31, 187–194. [Google Scholar] [CrossRef]
- Martino, M.V.; Guandalini, L.; Di Cesare Mannelli, L.; Menicatti, M.; Bartolucci, G.; Dei, S.; Manetti, D.; Teodori, E.; Ghelardini, C.; Romanelli, M.N. Piperazines as Nootropic Agents: New Derivatives of the Potent Cognition-Enhancer DM235 Carrying Hydrophilic Substituents. Bioorg. Med. Chem. 2017, 25, 1795–1803. [Google Scholar] [CrossRef] [PubMed]
- Galeotti, N.; Ghelardini, C.; Pittaluga, A.; Pugliese, A.M.; Bartolini, A.; Manetti, D.; Romanelli, M.N.; Gualtieri, F. AMPA-Receptor Activation Is Involved in the Antiamnesic Effect of DM 232 (Unifiram) and DM 235 (Sunifiram). Naunyn-Schmiedeberg’s Arch. Pharmacol. 2003, 368, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.A.M.; Simons, C.W.; Thomas, R. Nootropic Foods in Neurodegenerative Diseases: Mechanisms, Challenges, and Future. Transl. Neurodegener. 2025, 14, 17. [Google Scholar] [CrossRef] [PubMed]
- Myrseth, H.; Pallesen, S.; Torsheim, T.; Erevik, E.K. Prevalence and Correlates of Stimulant and Depressant Pharmacological Cognitive Enhancement among Norwegian Students. Nord. Stud. Alcohol Drugs 2018, 35, 372–387. [Google Scholar] [CrossRef]
- Lugg, W. Cosmetic Psychiatry: A Concept in Urgent Need of Consideration. Australas. Psychiatry 2024, 32, 32–37. [Google Scholar] [CrossRef]
- Echarte Alonso, L.E. Neurocosmetics, transhumanism and eliminative materialism: Toward new ways of eugenics. Cuad. Bioet. 2012, 23, 37–51. [Google Scholar]
- Floresta, G.; Apirakkan, O.; Rescifina, A.; Abbate, V. Discovery of High-Affinity Cannabinoid Receptors Ligands through a 3D-QSAR Ushered by Scaffold-Hopping Analysis. Molecules 2018, 23, 2183. [Google Scholar] [CrossRef]
- Floresta, G.; Rescifina, A.; Abbate, V. Structure-Based Approach for the Prediction of Mu-Opioid Binding Affinity of Unclassified Designer Fentanyl-Like Molecules. Int. J. Mol. Sci. 2019, 20, 2311. [Google Scholar] [CrossRef]
- Floresta, G.; Catalani, V.; Abbate, V. Evidence-Based Successful Example of a Structure-Based Approach for the Prediction of Designer Fentanyl-like Molecules. Emerg. Trends Drugs Addict. Health 2024, 4, 100143. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schifano, F.; Bonaccorso, S.; Arillotta, D.; Corkery, J.M.; Floresta, G.; Papanti Pelletier, G.D.; Guirguis, A. Focus on Cognitive Enhancement: A Narrative Overview of Nootropics and “Smart Drug” Use and Misuse. Biology 2025, 14, 1244. https://doi.org/10.3390/biology14091244
Schifano F, Bonaccorso S, Arillotta D, Corkery JM, Floresta G, Papanti Pelletier GD, Guirguis A. Focus on Cognitive Enhancement: A Narrative Overview of Nootropics and “Smart Drug” Use and Misuse. Biology. 2025; 14(9):1244. https://doi.org/10.3390/biology14091244
Chicago/Turabian StyleSchifano, Fabrizio, Stefania Bonaccorso, Davide Arillotta, John Martin Corkery, Giuseppe Floresta, Gabriele Duccio Papanti Pelletier, and Amira Guirguis. 2025. "Focus on Cognitive Enhancement: A Narrative Overview of Nootropics and “Smart Drug” Use and Misuse" Biology 14, no. 9: 1244. https://doi.org/10.3390/biology14091244
APA StyleSchifano, F., Bonaccorso, S., Arillotta, D., Corkery, J. M., Floresta, G., Papanti Pelletier, G. D., & Guirguis, A. (2025). Focus on Cognitive Enhancement: A Narrative Overview of Nootropics and “Smart Drug” Use and Misuse. Biology, 14(9), 1244. https://doi.org/10.3390/biology14091244