Research on 5S rDNA, Mitochondria and Nutritional Components of Cambaroides dauricus
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mitochondrial Experiment
2.2. Amplification, Cloning and Sequencing of 5S rDNA Sequences
2.3. Determination Method of Amino Acid Content Composition
3. Results
3.1. Mitochondrial Analysis
3.2. 5S rDNA Analysis
3.3. Nutrition Ingredient Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, L.; Xu, Y.; Wang, S.; Zhang, R.; Guo, K.; Xu, W.; Zhao, Z. Complete Mitochondrial Genome Sequence and Phylogenetic Analysis of Procambarus clarkii and Cambaroides dauricus from China. Int. J. Mol. Sci. 2023, 24, 11282. [Google Scholar] [CrossRef]
- Hobbs, H.H. On the cray-fishes of the limosus section of the genus Orconectes & lpar; Decapoda & comma; Astacidae & rpar. J. Wash. Acad. Sci. 1948, 38, 14–21. [Google Scholar]
- Holdich, D.M. Biology of Freshwater Crayfish; Wiley-Blackwell: Oxford, UK, 2002. [Google Scholar]
- Kawai, T. Morphology of the mandible and gill of the Asian freshwater crayfish Cambaroides (Decapoda: Cambaridae) with implications for their phylogeny. J. Crustac. Biol. 2012, 32, 15–23. [Google Scholar] [CrossRef]
- Alda. Form Alternation of the Gonopod and Chela from Breeding to Non-breeding Season in Males of the Crayfish Cambaroides dauricus (Decapoda: Cambaroididae). Zool. Stud. 2024, 63, e24. [Google Scholar]
- Turanov, S.V.; Barabanshchikov, E.I. Characterization of the Cambaroides wladiwostokiensis Birstein & Vinogradov, 1934 (Decapoda: Astacidea) Mitochondrial Genome Using Genome Skimming and the Phylogenetic Implications within the Astacidea Infraorder. Front. Biosci. 2023, 15, 15. [Google Scholar] [CrossRef]
- Audo, D.; Kawai, T.; Letenneur, C.; Huang, D. Crayfishes from the Jehol biota. Geodiversitas 2023, 45, 689–719. [Google Scholar] [CrossRef]
- Vopal, C.G.; Loughman, Z.J. Life history of the Big Sandy crayfish Cambarus callainus Thoma, Loughman & Fetzner, 2014 (Decapoda: Astacoidea: Cambaridae), an imperiled crayfish in the central Appalachian coalfields, USA. J. Crustac. Biol. 2021, 41, ruab027. [Google Scholar] [CrossRef]
- Ding, J.; Kang, J.; Xu, J. Comparison of nutritional compositions in muscle of Cambaroides dauricus and Procambarus clarkii. Food Sci. 2010, 31, 427–431. [Google Scholar]
- Bao, J.; Xing, Y.; Feng, C.; Kou, S.; Jiang, H.; Li, X. Acute and sub-chronic effects of copper on survival, respiratory metabolism, and metal accumulation in Cambaroides dauricus. Sci. Rep. 2020, 10, 16700. [Google Scholar] [CrossRef]
- Kawai, T.; Machino, Y.; Ko, H.S. Reassessment of Cambaroides dauricus and C. schrenckii (Crustacea: Decapoda: Cambaridae). Korean J. Biol. Sci. 2003, 7, 191–196. [Google Scholar] [CrossRef]
- Mu, F.; Cheng, Y.; Wu, X. Distribution and industrial development of crayfish in the world. J. Shanghai Fish. Univ. 2007, 16, 64–72. [Google Scholar]
- Zhang, L.J.; Li, Y.J.; Ge, X.Y.; Li, X.Y.; Yang, Y.X.; Bai, M.; Ge, S.Q. Mitochondrial genomes of Sternochetus species (Coleoptera: Curculionidae) and the phylogenetic implications. Arch. Insect Biochem. Physiol. 2022, 111, e21898. [Google Scholar] [CrossRef]
- Willerslev, E.; Gilbert, M.T.P.; Binladen, J.; Ho, S.Y.; Campos, P.F.; Ratan, A.; Tomsho, L.P.; Fonseca, R.R.D.; Sher, A.; Kuznetsova, T.V.; et al. Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution. BMC Evol. Biol. 2009, 9, 95. [Google Scholar] [CrossRef]
- Rosset, R.; Monier, R.; Julien, J. Escherichia coli Ribosomes. i. Demonstration of a Ribosomal RNA of Low Molecular Weight. Bull. Soc. Chim. Biol. 1964, 46, 87–109. [Google Scholar]
- Szymański, M.; Barciszewska, M.Z.; Erdmann, V.A.; Barciszewski, J. 5 S rRNA: Structure and interactions. Biochem. J. 2003, 371, 641–651. [Google Scholar] [CrossRef]
- Szymanski, M.; Karlowski, W.M. Assessing the 5S ribosomal RNA heterogeneity in Arabidopsis thaliana using short RNA next generation sequencing data. Acta Biochim. Pol. 2016, 63, 841–844. [Google Scholar] [CrossRef]
- Barciszewska, M.Z.; Szymański, M.; Erdmann, V.A.; Barciszewski, J. Structure and functions of 5S rRNA. Acta Biochim. Pol. 2001, 48, 191. [Google Scholar] [CrossRef]
- Rebordinos, L.; Cross, I.; Merlo, A. High Evolutionary Dynamism in 5S rDNA of Fish: State of the Art. Cytogenet. Genome Res. 2013, 141, 103–113. [Google Scholar] [CrossRef]
- Martins, C.; Wasko, A.P. Organization and evolution of 5S ribosomal DNA in the fish genome. In Focus on Genome Research; Nova Science Publishers, Inc.: New York, NY, USA, 2004. [Google Scholar]
- Ciganda, M.; Williams, N. Eukaryotic 5S rRNA biogenesis. Wiley Interdiscip. Rev. RNA 2011, 2, 523–533. [Google Scholar] [CrossRef]
- McBryant, S.J.; Gottesfeld, J.M. Differential kinetics of transcription complex assembly distinguish oocyte and somatic 5S RNA genes of Xenopus. Gene Expr. 1997, 6, 387–399. [Google Scholar]
- Pellett, P.L.; Young, V.R. Nutritional Evaluation of Protein Foods; The United Nations University: Tokyo, Japan, 1981. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef]
- Yang, Z.; Rannala, B. Molecular phylogenetics: Principles and practice. Nat. Rev. Genet. 2012, 13, 303–314. [Google Scholar] [CrossRef]
- Azuma, C.; Saji, F.; Tokugawa, Y.; Kimura, T.; Nobunaga, T.; Takemura, M.; Kameda, T.; Tanizawa, O. Application of gene amplification by polymerase chain reaction to genetic analysis of molar mitochondrial DNA: The detection of anuclear empty ovum as the cause of complete mole. Gynecol. Oncol. 1991, 40, 29–33. [Google Scholar] [CrossRef]
- Molina, W.F.; Costa, G.W.W.F.; Cunha, I.M.C.; Bertollo, L.A.C.; Ezaz, T.; Liehr, T.; Cioffi, M.B. Molecular Cytogenetic Analysis in Freshwater Prawns of the Genus Macrobrachium (Crustacea: Decapoda: Palaemonidae). Int. J. Mol. Sci. 2020, 21, 2599. [Google Scholar] [CrossRef]
- Evans, J.; Sheneman, L.; Foster, J. Relaxed Neighbor Joining: A Fast Distance-Based Phylogenetic Tree Construction Method. J. Mol. Evol. 2006, 62, 785–792. [Google Scholar] [CrossRef]
- Dudley, W.N.; Benuzillo, J.G.; Carrico, M.S. SPSS and SAS programming for the testing of mediation models. Nurs. Res. 2004, 53, 59–62. [Google Scholar] [CrossRef]
- Meier, U. A note on the power of Fisher’s least significant difference procedure. Pharm. Stat. 2006, 5, 253–263. [Google Scholar] [CrossRef]
- Xiang, B.; Liu, S.; Zhang, C. The analysis of nutritional component and amino acid composition of muscle in a new type of triploid Crucian carp (Carassius auratus). J. Nat. Sci. Hunan Norm. Univ. 2006, 29, 85. [Google Scholar]
- Cao, W.; Zhang, C.; Chen, S.; Hong, P. Analysis and evaluation of nutrients of Acetes chinensis. J. Fish. Res. 2001, 1, 8–14. [Google Scholar]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Kambhampati, S.; Kjer, K.M.; Thorne, B.L. Phylogenetic relationship among termite families based on DNA sequence of mitochondrial 16S ribosomal RNA gene. Insect Mol. Biol. 1996, 5, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, O.S.; Razumova, O.V.; Karlov, G.I. A Comparative Study of 5S rDNA Non-Transcribed Spacers in Elaeagnaceae Species. Plants 2021, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, O.S.; Romanov, D.V. Study of Structural Features of 5S rDNA Non-Transcribed Spacers of Citrus sinensis and C. reticulata. Mosc. Univ. Biol. Sci. Bull. 2024, 79, 217–224. [Google Scholar] [CrossRef]
Gene | Start | End | Start Code | Stop Code | Length | Strand |
---|---|---|---|---|---|---|
COX1 | <1 | 1536 | / | TAA | 1536 | + |
trnl-TTA | 1539 | 1602 | 64 | + | ||
COX2 | 1603 | 2287 | ATG | T- | 685 | + |
trnk-AAA | 2288 | 2351 | 64 | + | ||
trnd-GAC | 2353 | 2416 | 64 | + | ||
ATP8 | 2417 | 2575 | ATG | TAA | 159 | + |
ATP6 | 2569 | 3243 | ATG | TAA | 675 | + |
COX3 | 3243 | 4031 | ATG | TAA | 789 | + |
trnG-GGA | 4030 | 4091 | 62 | + | ||
ND3 | 4092 | 4445 | ATT | TAA | 354 | + |
trnA-GCA | 4447 | 4508 | 62 | + | ||
trnR-CGA | 4508 | 4570 | 63 | + | ||
trnE-GAA | 4571 | 4639 | 69 | + | ||
putative control region | 4640 | 6063 | 1424 | + | ||
trnQ-CAA | 6064 | 6132 | 69 | − | ||
trnS-AGA | 6149 | 6215 | 67 | − | ||
trnN-AAC | 6216 | 6279 | 64 | − | ||
rrnS | 6356 | 7147 | 792 | + | ||
trnV-GTA | 7170 | 7237 | 68 | + | ||
rrnL | 7439 | 8492 | 1054 | + | ||
trnL-CTA | 8506 | 8570 | 65 | + | ||
ND1 | 8595 | 9536 | ATA | TAG | 942 | + |
trnP-CCA | 9544 | 9607 | 64 | + | ||
trnS-TCA | 9611 | 9674 | 64 | − | ||
CYTB | 9675 | 10,809 | ATG | T- | 1135 | − |
ND6 | 10,809 | 11,327 | ATT | TAA | 519 | − |
trnT-ACA | 11,345 | 11,407 | 63 | − | ||
ND4L | 11,410 | 11,703 | ATG | TAA | 294 | + |
ND4 | 11,703 | 13,403 | ATG | TAA | 1341 | + |
trnH-CAC | 13,043 | 13,106 | 64 | + | ||
ND5 | 13,107 | 14,837 | GTG | TAA | 1731 | + |
trnF-TTC | 14,837 | 14,897 | 61 | + | ||
trnI-ATC | 14,901 | 14,964 | 64 | + | ||
trnM-ATG | 14,968 | 15,030 | 63 | + | ||
ND2 | 15,031 | 16,023 | ATG | TAA | 993 | + |
trnW-TGA | 16,023 | 16,088 | 66 | + | ||
trnC-TGC | 16,088 | 16,152 | 65 | − | ||
trnY-TAC | 16,152 | 16,215 | 64 | − |
Amino Acids | Content | Amino Acids | Content |
---|---|---|---|
aspartic acid | 10.31 | lysine | 7.40% |
glutamic acid | 15.61 | isoleucine | 2.88% |
glycine | 4.44 | leucine | 6.94% |
alanine | 5.91 | threonine | 3.34% |
serine | 3.96 | phenylalanine | 3.63% |
proline | 3.94 | total amino acids (TAA) | 152,144.28 mg/kg |
tyrosine | 3.29 | total essential amino acids (EAA) | 41,881.16 mg/kg |
arginine | 10.18 | total umami amino acids | 55,178.64 mg/kg |
histidine | 2.05 | EAA/TAA × 100 | 41.59% |
valine | 3.33 | EAA/NEAA × 100 | 60.77% |
Species Name | Moisture Content (mg/100 mg) | Crude Fat Content (mg/100 mg) | Crude Protein Content (mg/100 mg) | Crude Ash Content (mg/100 mg) |
---|---|---|---|---|
Cambaroides dauricus | 79.8 ± 0.72 | 0.83 ± 0.12 | 18.47 ± 0.87 | 0.63 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Dong, X.; Wang, Y.; Luo, S. Research on 5S rDNA, Mitochondria and Nutritional Components of Cambaroides dauricus. Biology 2025, 14, 1215. https://doi.org/10.3390/biology14091215
Liu H, Dong X, Wang Y, Luo S. Research on 5S rDNA, Mitochondria and Nutritional Components of Cambaroides dauricus. Biology. 2025; 14(9):1215. https://doi.org/10.3390/biology14091215
Chicago/Turabian StyleLiu, Hanbo, Xiaoyi Dong, Yude Wang, and Shengwei Luo. 2025. "Research on 5S rDNA, Mitochondria and Nutritional Components of Cambaroides dauricus" Biology 14, no. 9: 1215. https://doi.org/10.3390/biology14091215
APA StyleLiu, H., Dong, X., Wang, Y., & Luo, S. (2025). Research on 5S rDNA, Mitochondria and Nutritional Components of Cambaroides dauricus. Biology, 14(9), 1215. https://doi.org/10.3390/biology14091215