Genetic Limitation and Conservation Implications in Tetracentron sinense: SNP-Based Analysis of Spatial Genetic Structure and Gene Flow
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population Selection
2.2. Field Investigation and Sample Collection
2.3. DNA Extraction and ddRAD Library Construction
2.4. Obtaining Single Nucleotide Polymorphisms (SNPs)
2.5. Analysis of Population Genetic Diversity
2.6. Fine-Scale Spatial Genetic Structure Analysis
2.7. Gene Flow Analysis
2.7.1. Direct Estimation of Gene Flow
2.7.2. Indirect Estimation of Gene Flow
3. Results
3.1. SNP Analysis
3.2. Analysis of Population Genetic Diversity
3.3. FSGS Analysis at the Population Level
3.4. FSGS Analysis at the Age-Class Level
3.5. FSGS Analysis at the Patch Level
3.6. Gene Flow Analysis
3.6.1. Direct Estimation of Gene Flow
3.6.2. Indirect Estimation of Gene Flow
4. Discussion
4.1. Genetic Diversity of Natural Populations of T. sinense
4.2. Fine-Scale SGS of T. sinense
4.3. Gene Flow of Natural Population of T. sinense
4.4. The Factors Influencing the Formation of FSGS
4.5. Implication for Conservation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sandurska, E.; Ulaszewski, B.; Meyza, K.; Sztupecka, E.; Burczyk, J. Factors determining fine-scale spatial genetic structure within coexisting populations of common beech (Fagus sylvatica L.), pedunculate oak (Quercus robur L.), and sessile oak (Q. petraea (Matt.) Liebl.). Ann. For. Sci. 2024, 81, 3. [Google Scholar] [CrossRef]
- Born, C.; Hardy, O.J.; Chevallier, M.H.; Ossari, S.; Téké, C.A.; Wickings, E.J.; Hossaert-McKey, M. Small-scale spatial genetic structure in the Central Africanrainforest tree species Aucoumea klaineana: A stepwise approach to infer the impact of limitedgene dispersal, population history and habitat fragmentation. Mol. Ecol. 2008, 17, 2041–2050. [Google Scholar] [CrossRef] [PubMed]
- Castilla Antonio, R.; Garrote Pedro, J.; Magdalena, Z.; Gemma, C.; Alberto, S.E.; Miguel, D.; Godoy José, A.; Xavier, P.F.; Fedriani Jose, M. Genetic rescue by distant trees mitigates qualitative pollen limitation imposed by fine-scale spatial genetic structure. Mol. Ecol. 2019, 9, 4363–4374. [Google Scholar] [CrossRef]
- Wang, X.; Duan, F.; Zhang, H.; Han, H.Y.; Gan, X.H. Fine-scale spatial genetic structure of the endangered plant Tetracentron sinense Oliv. (Trochodendraceae) in Leigong Mountain. Glob. Ecol. Conserv. 2023, 41, e02382. [Google Scholar] [CrossRef]
- Pigg, K.B.; Wehr, W.C.; Ickert-Bond, S.M. Trochodendron and Nordenskioldia (Trochodendraceae) from the middle eocene of Washington State, U.S.A. Int. J. Plant Sci. 2001, 162, 1187–1198. [Google Scholar] [CrossRef]
- Li, S.; Gan, X.; Han, H.; Zhang, X.; Tian, Z. Low within-population genetic diversity and high genetic differentiation among populations of the endangered plant Tetracentron sinense Oliver revealed by inter-simple sequence repeat analysis. Ann. Sci. 2018, 75, 74. [Google Scholar] [CrossRef]
- Rix, M.; Crane, P. TETRACENTRON SINENSE: Tetracentraceae. Curtis’s Bot. Mag. 2007, 24, 168–173. [Google Scholar] [CrossRef]
- Gan, X.H.; Cao, L.L.; Zhang, X.; Li, H.C. Floral biology, breeding system and pollination ecology of an endangered tree Tetracentron sinense Oliv. (Trochodendraceae). Bot. Stud. 2013, 54, 50. [Google Scholar] [CrossRef] [PubMed]
- Li, H.C.; Gan, X.H.; Zhang, Z.P.; Zhang, C.X.; Song, L. Effects of different altitudes and mother tree sizes on the biological characteristics of Tetracentron sinense seeds. J. Plant Classif. Resour. 2015, 37, 177–183. [Google Scholar]
- Tian, Z.Q.; Li, H.C.; Li, W.Y.; Gan, X.H.; Zhang, X.M.; Fan, Z.L. Structural characteristics and niches of dominant tree populations in Tetracentron sinense communities: Implications for conservation. Bot. Sci. 2018, 96, 157–167. [Google Scholar] [CrossRef]
- Gan, X.H.; Deng, H.P.; Li, W.Y.; Zhang, X. Phenotypic diversity in natural populations of an endangered plant Tetracentron sinense. Biochem. Syst. Ecol. 2017, 74, 123–132. [Google Scholar]
- Li, Y.; Li, S.; Lu, X.H.; Wang, Q.Q.; Han, H.Y.; Zhang, X.M.; Ma, Y.H.; Gan, X.H. Leaf phenotypic variation of endangered plant Tetracentron sinense Oliv. and influence of geographical and climatic factors. J. For. Res. 2021, 32, 623–636. [Google Scholar] [CrossRef]
- Ljungqvist, M.; Akesson, M.; Hansson, B. Do microsatellites reflect genome-wide genetic diversity in natural populations? A comment on. Mol. Ecol. 2010, 19, 851–855. [Google Scholar] [CrossRef]
- Fischer, M.C.; Rellstab, C.; Leuzinger, M.; Roumet, M.; Gugerli, F.; Shimizu, K.K. Estimating genomic diversity and population differentiation—An empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genom. 2017, 18, 69. [Google Scholar] [CrossRef] [PubMed]
- Helyar, S.J.; Hemmer-Hansen, J.; Bekkevold, D.; Taylor, M.I.; Ogden, R.; Limborg, M.T.; Cariani, A.; Maes, G.E.; Diopere, E.; Carvalho, G.R.; et al. Application of SNPs for population genetics of nonmodel organisms: New opportunities and challenges. Mol. Ecol. Resour. 2011, 11, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, S.; Llaca, V.; May, G.D. Genotyping-by-sequencing in plants. Biology 2012, 1, 460–483. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.R.; Ma, Y.P.; Zhang, X.J.; Liu, X.F.; Liu, D.T.; Zhang, Y.; Li, Z.H.; Ma, H. Genetic characteristics of Rhododendron hemsleyanum based on SNP molecular markers. J. Yunnan Univ. 2022, 44, 859–869. [Google Scholar]
- Sun, Y.X.; Moore, M.J.; Yue, L.L.; Feng, T.; Chu, H.J.; Chen, S.T.; Ji, Y.H.; Wang, H.C.; Li, J.Q. Chloroplast phylogeography of the East Asian Arcto-Tertiary relict Tetracentron sinense (Trochodendraceae). J. Biogeogr. 2014, 41, 1721–1732. [Google Scholar] [CrossRef]
- Rebertus, A.J.; Veblen, T.T. Structure and tree-fall gap dynamics of old-growth Nothofagus forestsin Tierra del Fuego, Argentina. J. Veg. Sci. 1993, 4, 641–654. [Google Scholar] [CrossRef]
- Zhang, H.; Duan, F.; Li, Y.; Wang, Q.Q.; Lu, X.H.; Gan, X.H.; Xie, Z.G.; Tang, J.F. Population structure and quantitative characteristics of Tetracentron sinense (Trochodendraceae) in Leigong Mountain Nature Reserve, China. Bot. Sci. 2020, 98, 86–100. [Google Scholar] [CrossRef]
- Chen, K.S.; Li, F.; Xu, C.J.; Zhang, S.L.; Fu, C.X. An Efficient Macro-method of Genomic DNA Isolation from Actinidia chinensis Leaves. Hereditas 2004, 48, 72–78. [Google Scholar]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Zhu, P.Y.; He, L.Y.; Li, Y.Q.; Huang, W.P.; Xi, F.; Lin, L.; Zhi, Q.H.; Zhang, W.W.; Tang, Y.T.; Geng, C.Y.; et al. Correction: OTG-snpcaller: An Optimized Pipeline Based on TMAP and GATK for SNP Calling from Ion Torrent Data. PLoS ONE 2015, 10, e0138824. [Google Scholar] [CrossRef]
- Catchen, J.; Hohenlohe, P.A.; Bassham, S.; Amores, A.; Cresko, W.A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 2013, 22, 3124–3140. [Google Scholar] [CrossRef]
- Hardy, O.J.; Vekemans, X. SPAGeDi: A versatile computer program to analyse spatial genetic structureat the individual or population levels. Mol. Ecol. 2002, 2, 618–620. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed]
- Loiselle, B.A.; Sork, V.L.; Nason, J.D.; Graham, C.H. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am. J. Bot. 1995, 82, 1420–1425. [Google Scholar] [CrossRef]
- Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 1997, 145, 1219–1228. [Google Scholar] [CrossRef]
- Sato, T.; Isagi, Y.; Sakio, H.; Osumi, K.; Goto, S. Effect of gene flow on spatial genetic structure in the riparian canopy tree Cercidiphyllum japonicum revealed by microsatellite analysis. Heredity 2006, 96, 79–84. [Google Scholar] [CrossRef]
- Qi, C.H.; Jing, Z.X.; Li, J.M. Small-scale spatial patterns of genetic structure in Castanopsis eyrei populations based on autocorrelation analysis in the Tiantai Mountain of Zhejiang Province. Acta Ecol. Sin. 2011, 31, 5130–5137. [Google Scholar]
- Vekemans, X.; Hardy, O.J. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol. Ecol. 2004, 13, 921–935. [Google Scholar] [CrossRef]
- Major, E.I.; Höhn, M.; Avanzi, C.; Fady, B.; Heer, K.; Opgenoorth, L.; Piotti, A.; Popescu, F.; Postolache, D.; Vendramin, G.G.; et al. Fine-scale spatial genetic structure across the species range reflects recent colonization of high elevation habitats in silver fir (Abies alba Mill.). Mol. Ecol. 2021, 30, 5247–5265. [Google Scholar] [CrossRef]
- Wang, T.R.; Meng, H.H.; Wang, N.; Zheng, S.S.; Jiang, Y.; Lin, D.Q.; Song, Y.G.; Kozlowski, G. Adaptive divergence and genetic vulnerability of relict species under climate change: A case study of Pterocarya macroptera. Ann. Bot. 2023, 132, 241–253. [Google Scholar] [CrossRef]
- Yang, J. Development of EST-SSR Molecular Markers and Study on Its Small-Scale Spatial Genetic Structure of Endemic and Endangered Plant Pteroceltis tatarinowii. Master’s Dissertation, Nanjing University, Nanjing, China, 2016. [Google Scholar]
- Jiang, C.Y. A Study on the Small-Scale Spatial Genetic Structure of Micangshan Population in Fagus hayatae. Master’s Dissertation, China West Normal University, Nanchong, China, 2022. [Google Scholar]
- Tsykun, T.; Rellstab, C.; Dutech, C.; Sipos, G.; Prospero, S. Comparative assessment of SSR and SNP markers for inferring the population genetic structure of the common fungus Armillaria cepistipes. Heredity 2017, 119, 371–380. [Google Scholar] [CrossRef]
- Wang, R.; Compton, S.G.; Chen, X.Y. Fragmentation can increase spatial genetic structure without decreasing pollen-mediated gene flow in a wind-pollinated tree. Mol. Ecol. 2011, 20, 4421–4432. [Google Scholar] [CrossRef] [PubMed]
- Martins, K.; Raposo, A.; Klimas, C.A.; Veasey, E.A.; Kainer, K.; Wadt, L.H.O. Pollen and seed flow patterns of Carapa guianensis Aublet. (Meliaceae) in two types of Amazonian forest. Genet. Mol. Biol. 2013, 35, 818–826. [Google Scholar] [CrossRef] [PubMed]
- He, J. Population Dynamics and Small-Scale Spatial Genetic Structure of Ulmus langyaensis and Ulmus inebrians. Master’s Dissertation, Nanjing University, Nanjing, China, 2016. [Google Scholar]
- Gong, Y.M. Small-Scale Spatial Genetic Structure of Chinese Fir. Master’s Dissertation, Central South University of Forestry and Technology, Changsha, China, 2024. [Google Scholar]
- Levin, D.A.; Kerster, H.W. The dependence of bee-mediated pollen and gene dispersal upon plant density. Evolution 1969, 23, 560–571. [Google Scholar] [CrossRef]
- Hardy, O.J.; Maggia, L.; Bandou, E.; Breyne, P.; Carno, H.; Chevallier, M.H.; Doligez, A.; Dutech, C.; Kremer, A.; Troispoux, V.; et al. Fine-scale genetic structure and gene dispersal inferencesin 10 Neotropical tree species. Mol. Ecol. 2006, 15, 559–571. [Google Scholar] [CrossRef] [PubMed]
- Annie, G.; Guillaume, D.; Thomas, K.; Pedro, P.; Katrien, V.; Françoise, D.; Olivier, H.; Déborah, C.K. Spatial genetic structure of two forest plant metapopulations in dynamic agricultural landscapes. Landsc. Urban Plan. 2023, 231, 104648. [Google Scholar]
- He, R.; Wang, J.; Huang, H. Long-distance gene dispersal inferred from spatial genetic structure in Handeliodendron bodinieri, an endangered tree from karst forest in southwest China. Biochem. Syst. Ecol. 2012, 44, 295–302. [Google Scholar] [CrossRef]
- He, J.; Li, X.Y.; Gao, D.D.; Zhu, P.; Wang, Z.; Wang, Z.; Ye, W.; Cao, H. Topographic effects on fine-scale spatial genetic structure in Castanopsis chinensis Hance (Fagaceae). Plant Species Biol. 2013, 28, 87–93. [Google Scholar] [CrossRef]
- Yang, A.H.; Zhang, J.J.; Tian, H.; Yao, X.H.; Huang, H.W. Microsatellite genetic diversity and spatial genetic structure of Liriodendron chinense populations in Langshan Mountain, Guizhou. Biodiversity 2014, 22, 375–384. [Google Scholar]
- Volis, S.; Ormanbekova, D.; Shulgina, I. Fine-scale spatial genetic structure in predominantly selfing plants with limited seed dispersal: A rule or exception? Plant Divers. 2016, 38, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.J. Spatial Genetic Structure and Process Analysis of Betula alnoides Natural Populations in a Heterogeneouslandscape. Master’s Dissertation, Chinese Academy of Forestry Sciences, Beijing, China, 2016. [Google Scholar]
- Rang, L.S.; Yun, K.B.; Dong, K.Y. Genetic diagnosis of a rare myrmecochorous species, Plagiorhegma dubium (Berberidaceae): Historical genetic bottlenecks and strong spatial structures among populations. Ecol. Evol. 2018, 8, 8791–8802. [Google Scholar] [CrossRef] [PubMed]
Pop ID. | Num Indv | Ho | HE | Fis | |
---|---|---|---|---|---|
BMXS | YA | 9.470 | 0.020 | 0.083 | 0.171 |
YB | 8.946 | 0.019 | 0.083 | 0.172 | |
YC | 8.870 | 0.018 | 0.084 | 0.178 | |
means | 9.095 | 0.019 | 0.083 | 0.174 | |
GLGS | GA | 7.796 | 0.017 | 0.111 | 0.252 |
GB | 7.602 | 0.016 | 0.106 | 0.241 | |
GC | 7.328 | 0.024 | 0.112 | 0.237 | |
means | 7.575 | 0.019 | 0.110 | 0.243 | |
MGFD | MA | 10.644 | 0.022 | 0.134 | 0.314 |
MB | 8.861 | 0.022 | 0.125 | 0.285 | |
MC | 10.674 | 0.020 | 0.132 | 0.314 | |
means | 10.060 | 0.021 | 0.130 | 0.304 | |
SXFP | FA | 4.356 | 0.022 | 0.075 | 0.136 |
FB | 4.866 | 0.020 | 0.078 | 0.149 | |
FC | 5.269 | 0.025 | 0.084 | 0.155 | |
means | 4.830 | 0.022 | 0.079 | 0.147 |
Pop ID | Mean Difference (HO−HE) | t-Value | Degrees of Freedom (df) | p-Value | Significance |
---|---|---|---|---|---|
BMXS | −0.064 | −96.5 | 4 | <0.001 | *** |
GLGS | −0.091 | −28.99 | 4 | <0.001 | *** |
MGFD | −0.109 | −38.81 | 4 | <0.001 | *** |
SXFP | −0.057 | −18.77 | 4 | <0.001 | *** |
Populations | bF | F(1) | Sp |
---|---|---|---|
BMXS | −0.0204 | 0.0531 | 0.021 |
MGFD | −0.0075 | 0.0176 | 0.0076 |
SXFP | −0.0133 | 0.0297 | 0.013 |
GLGS | −0.012 | 0.0362 | 0.012 |
Populations | Age-Classes | bF | F(1) | Sp |
---|---|---|---|---|
BMXS | Sapling | −0.0218 | 0.0566 | 0.023 |
Adult tree | −0.0177 | 0.0193 | 0.018 | |
Old tree | −0.0194 | 0.1104 | 0.022 | |
MGFD | Sapling | −0.0101 | 0.0237 | 0.010 |
Adult tree | −0.0041 | −0.0019 | 0.004 | |
Old tree | −0.0100 | 0.0610 | 0.010 | |
SXFP | Sapling | − | − | − |
Adult tree | 0.0134 | −0.0120 | 0.010 | |
Old tree | 0.0052 | −0.0298 | 0.005 | |
GLGS | Sapling | −0.0120 | 0.0487 | 0.010 |
Adult tree | −0.0119 | 0.0768 | 0.010 | |
Old tree | −0.0175 | 0.0800 | 0.020 |
Populations | Patches | bF | F(1) | Sp |
---|---|---|---|---|
BMXS | YA | 0.0031 | −0.0124 | 0.0030 |
YB | −0.0031 | 0.0368 | 0.0032 | |
YC | 0.0107 | 0.0073 | 0.0107 | |
MGFD | MA | 0.0006 | −0.0026 | 0.0006 |
MB | 0.0060 | 0.0385 | 0.0063 | |
MC | 0.0118 | 0.0099 | 0.0119 | |
SXFP | FA | 0.0108 | −0.0516 | 0.0103 |
FB | 0.0184 | −0.0371 | 0.0177 | |
FC | −0.0021 | −0.0211 | 0.0020 | |
GLGS | GA | 0.0008 | −0.0156 | 0.0007 |
GB | 0.0171 | 0.0368 | 0.0177 | |
GC | 0.0066 | 0.0071 | 0.0066 |
Populations | Patches | Maximum Distance of Seed Dispersal/m | Mean Distance of Seed Dispersal/m | Maximum Distance of Pollen Dispersal/m | Mean Distance of Pollen Dispersal/m | Efficient Distance of Gene Dispersal/m |
---|---|---|---|---|---|---|
BMXS | YA | 398.57 | 168.87 | 386.20 | 201.89 | 221.13 |
YB | 463.52 | 200.89 | 133.01 | 55.05 | 204.63 | |
YC | 165.44 | 112.10 | 167.54 | 74.11 | 123.74 | |
means | − | 160.62 | − | 110.35 | 183.17 | |
MGFD | MA | 61.76 | 28.97 | 49.16 | 27.00 | 34.70 |
MB | − | − | − | − | − | |
MC | 61.00 | 35.91 | 78.94 | 34.17 | 43.28 | |
means | − | 32.44 | − | 30.59 | 38.99 | |
SXFP | FA | − | − | − | − | − |
FB | 187.69 | 117.78 | 156.67 | 101.90 | 138.07 | |
FC | 82.06 | 39.68 | 74.54 | 39.37 | 48.47 | |
means | − | 78.73 | − | 70.64 | 93.27 | |
GLGS | GA | 63.66 | 28.54 | 39.53 | 25.61 | 33.80 |
GB | 75.62 | 22.27 | 68.78 | 31.87 | 31.68 | |
GC | 67.09 | 37.99 | 84.06 | 42.56 | 48.47 | |
means | − | 29.60 | − | 33.35 | 37.98 |
Populations | Patches | Distance of Seed Dispersal | Distance of Pollen Dispersal | Distance of Gene Dispersal/m | ||
---|---|---|---|---|---|---|
Min/m | Max/m | Min/m | Max/m | |||
BMXS | YA | 10.10 | 16.14 | − | 10.10 | 16.14 |
YB | 13.24 | 18.97 | − | 13.24 | 18.97 | |
YC | 20.71 | 29.42 | − | 20.71 | 29.42 | |
means | 14.68 | 21.51 | − | 14.68 | 21.51 | |
MGFD | MA | 34.83 | 42.66 | − | 34.83 | 42.66 |
MB | 38.20 | 46.81 | − | 38.20 | 46.81 | |
MC | 36.76 | 45.05 | − | 36.76 | 45.05 | |
means | 36.60 | 44.84 | − | 36.60 | 44.84 | |
SXFP | FA | 53.95 | 66.12 | − | 53.95 | 66.12 |
FB | 30.22 | 37.03 | − | 30.22 | 37.03 | |
FC | 43.95 | 53.86 | − | 43.95 | 53.86 | |
means | 42.71 | 52.34 | − | 42.71 | 52.34 | |
GLGS | GA | 25.30 | 31.00 | − | 25.30 | 31.00 |
GB | 23.20 | 28.43 | − | 23.20 | 28.43 | |
GC | 17.63 | 23.00 | − | 17.63 | 23.00 | |
means | 22.04 | 27.48 | − | 22.04 | 27.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, X.; Han, H.; Pan, T.; Jia, M.; Gan, X. Genetic Limitation and Conservation Implications in Tetracentron sinense: SNP-Based Analysis of Spatial Genetic Structure and Gene Flow. Biology 2025, 14, 1214. https://doi.org/10.3390/biology14091214
Liu X, Wang X, Han H, Pan T, Jia M, Gan X. Genetic Limitation and Conservation Implications in Tetracentron sinense: SNP-Based Analysis of Spatial Genetic Structure and Gene Flow. Biology. 2025; 14(9):1214. https://doi.org/10.3390/biology14091214
Chicago/Turabian StyleLiu, Xiaojuan, Xue Wang, Hongyan Han, Ting Pan, Mengxing Jia, and Xiaohong Gan. 2025. "Genetic Limitation and Conservation Implications in Tetracentron sinense: SNP-Based Analysis of Spatial Genetic Structure and Gene Flow" Biology 14, no. 9: 1214. https://doi.org/10.3390/biology14091214
APA StyleLiu, X., Wang, X., Han, H., Pan, T., Jia, M., & Gan, X. (2025). Genetic Limitation and Conservation Implications in Tetracentron sinense: SNP-Based Analysis of Spatial Genetic Structure and Gene Flow. Biology, 14(9), 1214. https://doi.org/10.3390/biology14091214