Tissue-Specific Differences in Fatty Acid Content and Desaturase Activity Between the Liver and Spinal Cord of Diabetic ZDF Rats
Simple Summary
Abstract
1. Introduction
1.1. Lipotoxicity and Desaturases in Metabolic Regulation
1.2. PUFA Metabolism and Insulin Regulation
2. Materials and Methods
2.1. Ethics
2.2. Experimental Model
2.3. Determination of Fatty Acids by Gas Chromatography
2.3.1. Methylation and Transesterification of the Samples
2.3.2. Fatty Acid Measurement
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marrano, N.; Biondi, G.; Borrelli, A.; Rella, M.; Zambetta, T.; Di Gioia, L.; Caporusso, M.; Logroscino, G.; Perrini, S.; Giorgino, F.; et al. Type 2 diabetes and Alzheimer’s disease: The emerging role of cellular lipotoxicity. Biomolecules 2023, 13, 183. [Google Scholar] [CrossRef]
- Biondi, G.; Marrano, N.; Borrelli, A.; Rella, M.; Palma, G.; Calderoni, I.; Siciliano, E.; Lops, P.; Giorgino, F.; Natalicchio, A. Adipose Tissue Secretion Pattern Influences β-Cell Wellness in the Transition from Obesity to Type 2 Diabetes. Int. J. Mol. Sci. 2022, 23, 5522. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.C.; Shulman, G.I. Roles of diacylglycerols and ceramides in hepatic insulin resistance. Trends Pharmacol. Sci. 2017, 38, 649–665. [Google Scholar] [CrossRef]
- Sun, Q.; Xing, X.; Wang, H.; Wan, K.; Fan, R.; Liu, C.; Wang, Y.; Wu, W.; Wang, Y.; Wang, R. SCD1 is the critical signaling hub to mediate metabolic diseases: Mechanism and the development of its inhibitors. Biomed. Pharmacother. 2024, 170, 115586. [Google Scholar] [CrossRef]
- Liu, X.; Strable, M.S.; Ntambi, J.M. Stearoyl CoA desaturase 1: Role in cellular inflammation and stress. Adv. Nutr. 2011, 2, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, J. Monounsaturated Fatty Acids in Cardiovascular Disease. Nutrients 2025, 17, 2509. [Google Scholar] [CrossRef] [PubMed]
- Heeren, J.; Scheja, L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol. Metab. 2021, 50, 101238. [Google Scholar] [CrossRef]
- Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther. 2021, 6, 94. [Google Scholar] [CrossRef]
- Huang, C.C.; Chang, M.T.; Leu, H.B.; Yin, W.H.; Tseng, W.K.; Wu, Y.W.; Lin, T.-H.; Yeh, H.-I.; Chang, K.-C.; Wang, J.H.; et al. Association of arachidonic acid-derived lipid mediators with subsequent onset of acute myocardial infarction in patients with coronary artery disease. Sci. Rep. 2020, 10, 8105. [Google Scholar] [CrossRef]
- Aradhyula, V.; Reddy, V.S.; Manne, M.; Siva, A.B.; Reddy, P.P. Transcriptomic analysis of arachidonic acid pathway across comorbid diseases. Genes 2024, 15, 954. [Google Scholar] [CrossRef]
- Rezende, B.; Alencar, A.K.N.; de Bem, G.F.D.; Fontes-Dantas, F.L.; Montes, G.C. Endocannabinoid System: Chemical Characteristics and Biological Activity. Pharmaceuticals 2023, 16, 148. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.; Kim, S.H. Arachidonic acid. In Essential Fatty Acids: Sources, Processing Effects, and Health Benefits; Preedy, V.R., Ed.; Academic Press: London, UK, 2023; pp. 317–328. [Google Scholar] [CrossRef]
- Lowe, H.; Toyang, N.; Steele, B.; Bryant, J.; Ngwa, W. The endocannabinoid system: A potential target for the treatment of various diseases. Int. J. Mol. Sci. 2021, 22, 9472. [Google Scholar] [CrossRef]
- Jarullah, H.H.; Saleh, E.S. Influence of Fatty Acid Desaturase Enzyme-1 Gene (FADS1) Gene (rs174547) polymorphism on serum polyunsaturated fatty acids and desaturase activity in type 2 diabetes patients. Int. J. Mol. Sci. 2025, 26, 4015. [Google Scholar] [CrossRef]
- Al, A.; Kupai, K.; Veszelka, M.; Szűcs, G.; Attieh, Z.K.; Murlasits, Z.; Török, S.; Pósa, A.; Varga, C. Experimental diabetes mellitus in different animal models. J. Diabetes Res. 2016, 2016, 9051426. [Google Scholar] [CrossRef]
- Pandey, S.; Dvorakova, M.C. Future perspective of diabetic animal models. Endocr. Metab. Immune Disord.-Drug Targets 2020, 20, 25–38. [Google Scholar] [CrossRef]
- Kollarova, M.; Chomova, M.; Radosinska, D.; Tothova, L.; Shawkatova, I.; Radosinska, J. ZDF (fa/fa) rats show increasing heterogeneity in main parameters during ageing, as confirmed by biometrics, oxidative stress markers and MMP activity. Exp. Physiol. 2022, 107, 1326–1338. [Google Scholar] [CrossRef] [PubMed]
- Hamano, F. Quantification of Fatty Acids in Mammalian Tissues by Gas Chromatographic Methods. J. Lipid Res. 2020, 61, 1234–1245. [Google Scholar]
- Vessby, B.; Gustafsson, I.-B.; Tengblad, S.; Boberg, M.; Andersson, A. Desaturation and elongation of fatty acids and insulin action. Ann. N. Y. Acad. Sci. 2002, 967, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Ntambi, J.M.; Buhrow, S.A.; Kaestner, K.H.; Christy, R.J.; Sibley, E.; Kelly, T.J., Jr.; Lane, M.D. Differentiation-induced gene expression in 3T3-L1 preadipocytes: Characterization of a differentially expressed gene encoding stearoyl-CoA desaturase. J. Biol. Chem. 1988, 263, 17291–17300. [Google Scholar] [CrossRef] [PubMed]
- McMillan, D.W.; Bigford, G.E.; Farkas, G.J. The physiology of neurogenic obesity: Lessons from spinal cord injury research. Obes. Facts 2023, 16, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Miyake, T.; Furukawa, S.; Matsuura, B.; Yoshida, O.; Miyazaki, M.; Shiomi, A.; Kanzaki, S.; Nakaguchi, H.; Sunago, K.; Nakamura, Y.; et al. Plasma Fatty Acid Composition Is Associated with Histological Findings of Nonalcoholic Steatohepatitis. Biomedicines 2022, 10, 2540. [Google Scholar] [CrossRef]
- Paton, C.M.; Ntambi, J.M. Biochemical and physiological function of stearoyl-CoA desaturase. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E28–E37. [Google Scholar] [CrossRef]
- Luiken, J.J.F.P.; Arumugam, Y.; Dyck, D.J.; Bell, R.C.; Pelsers, M.M.; Turcotte, L.P.; Tandon, N.N.; Glatz, J.F.C.; Bonen, A. Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. J. Biol. Chem. 2001, 276, 40567–40573. [Google Scholar] [CrossRef]
- Ricchi, M.; Odoardi, M.R.; Carulli, L.; Anzivino, C.; Ballestri, S.; Pinetti, A.; Fantoni, L.I.; Marra, F.; Bertolotti, M.; Banni, S.; et al. Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J. Gastroenterol. Hepatol. 2009, 24, 830–840. [Google Scholar] [CrossRef]
- Hulver, M.W.; Berggren, J.R.; Carper, M.J.; Miyazaki, M.; Ntambi, J.M. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab. 2005, 2, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Loix, M.; Vanherle, S.; Turri, M.; Kemp, S.; Fernandes, K.J.; Hendriks, J.J.; Bogie, J.F. Stearoyl-CoA desaturase-1: A potential therapeutic target for neurological disorders. Mol. Neurodegener. 2024, 19, 85. [Google Scholar] [CrossRef] [PubMed]
- Jeyakumar, S.M.; Vajreswari, A. Stearoyl-CoA desaturase 1: A potential target for non-alcoholic fatty liver disease?—perspective on emerging experimental evidence. World J. Hepatol. 2022, 14, 168–179. [Google Scholar] [CrossRef]
- van Woudenbergh, G.J.; Kuijsten, A.; van der Kallen, C.J.; van Greevenbroek, M.M.; Stehouwer, C.D.; Blaak, E.E.; Feskens, E.J.M. Comparison of fatty acid proportions in serum cholesteryl esters among people with different glucose tolerance status: The CoDAM study. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 133–140. [Google Scholar] [CrossRef]
- Imamura, F.; Micha, R.; Wu, J.H.; de Oliveira Otto, M.C.; Otite, F.O.; Abete, Y.; Ding, I.; Koulman, S.L.; Hu, J.; Sakurai, S. Plasma polyunsaturated fatty acid profile and delta-5 desaturase activity are altered in patients with type 2 diabetes. Metabolism 2014, 63, 1432–1439. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.H.; Pelleïeux, S.; Vitale, N.; Olivier, J.L. Arachidonic acid in Alzheimer’s disease. J. Neurol. Neuromed. 2016, 1, 1–6. [Google Scholar] [CrossRef]
- Peña-Bautista, C.; Vento, M.; Baquero, M.; Cháfer-Pericás, C. Lipid peroxidation in neurodegeneration. Clin Chim Acta. 2019, 497, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.S.; Sharp, S.J.; Jansen, E.; Luben, R.N.; Khaw, K.T.; Wareham, N.J.; Forouhi, N.G. Fatty acids measured in plasma and erythrocyte-membrane phospholipids and derived by food-frequency questionnaire and the risk of new-onset type 2 diabetes: A pilot study in the EPIC-Norfolk cohort. Am. J. Clin. Nutr. 2010, 92, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Kröger, J.; Zietemann, V.; Enzenbach, C.; Weikert, C.; Jansen, E.H.J.; Döring, F.; Joost, H.-G.; Boeing, H.; Schulze, M.B. Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the EPIC-Potsdam Study. Am. J. Clin. Nutr. 2011, 93, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Tosi, F.; Sartori, F.; Guarini, P.; Olivieri, O.; Martinelli, N. Delta-5 and delta-6 desaturases: Crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease. In Oxidative Stress and Inflammation in Non-Communicable Diseases—Molecular Mechanisms and Perspectives in Therapeutics; Camps, J., Ed.; Springer: Cham, Switzerland, 2014; Volume 824, pp. 61–81. [Google Scholar] [CrossRef]
Glucose (mmol/L) | Insulin (ng/mL) | Body Weight (g) | |
---|---|---|---|
CONT (n = 15) | 6.9 ± 0.67 | 3.24 ± 0.37 | 423.5 ± 38 |
T2D (n = 8) | 24.5 ± 2.01 ● | 11.52 ± 2.3 ● | 528 ± 47.1 ● |
MUFAs (%) | PUFAs (%) | SFAs (%) | n-3/n-6 | ||
---|---|---|---|---|---|
Liver (n = 23) | CONT (n = 15) | 19.5 ± 1.1 | 40.7 ± 1.2 | 39.79 ± 1.03 | 0.17 |
T2D (n = 8) | 32.6 ± 6.8 ● | 30.8 ± 4.8 ● | 30.5 ± 1.3 | 0.21 ● | |
Spinal cord (n = 23) | CONT (n = 15) | 38.4 ± 1.46 | 31.42 ± 3.1 | 28.9 ± 4.11 | 0.34 |
T2D (n = 8) | 44.8 ± 3.9 ● | 27.96 ± 4.1 ● | 27.1 ± 2.6 | 0.25 |
Spinal Cord | Liver | |||
---|---|---|---|---|
CONT | T2D | CONT | T2D | |
C16:1/C16:0 (SCD1) | 0.07 | 0.2 | 0.07 | 0.13 |
C18:1/C18:0 (SCD1) | 1.3 | 2.2 | 0.86 | 2.8 |
C20:4/C18:2 (FADS2 + ELOVL + FADS1) | 3.68 | 2.24 | 1.25 | 0.7 |
C18:3/C18:2 (FADS2) | - | - | 0.015 | 0.04 |
C20:4/C20:3 (FADS1) | 15.5 | 20.8 | 26.6 | 8.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orešanská, K.; Chomová, M.; Kubincová, J.; Turecký, L.; Ďurfinová, M. Tissue-Specific Differences in Fatty Acid Content and Desaturase Activity Between the Liver and Spinal Cord of Diabetic ZDF Rats. Biology 2025, 14, 1205. https://doi.org/10.3390/biology14091205
Orešanská K, Chomová M, Kubincová J, Turecký L, Ďurfinová M. Tissue-Specific Differences in Fatty Acid Content and Desaturase Activity Between the Liver and Spinal Cord of Diabetic ZDF Rats. Biology. 2025; 14(9):1205. https://doi.org/10.3390/biology14091205
Chicago/Turabian StyleOrešanská, Katarína, Mária Chomová, Janka Kubincová, Ladislav Turecký, and Monika Ďurfinová. 2025. "Tissue-Specific Differences in Fatty Acid Content and Desaturase Activity Between the Liver and Spinal Cord of Diabetic ZDF Rats" Biology 14, no. 9: 1205. https://doi.org/10.3390/biology14091205
APA StyleOrešanská, K., Chomová, M., Kubincová, J., Turecký, L., & Ďurfinová, M. (2025). Tissue-Specific Differences in Fatty Acid Content and Desaturase Activity Between the Liver and Spinal Cord of Diabetic ZDF Rats. Biology, 14(9), 1205. https://doi.org/10.3390/biology14091205