Assessment of Potential Toxic Effects of RNAi-Based Transgenic Cotton on the Non-Target Predator Harmonia axyridis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. General Procedures
2.1.1. Insect Rearing
2.1.2. Cotton Cultivation
2.2. Experimental Procedures
2.2.1. Trophic Transfer Assay
2.2.2. Artificial Diet Exposure Assay
2.3. Synthesis of dsRNAs
2.4. Quantitative Real-Time PCR (qRT-PCR)
2.5. Off-Target Effects and Transcriptome Analysis
2.6. Statistical Analysis
3. Results
3.1. Uptake Efficiency of dsRNA in H. axyridis
3.2. Effect of Uptake dsRNA on the Life-Table Parameters of H. axyridis
3.3. The Vital Activities of H. axyridis Were Not Affected by the Trophic Transfer Assay
3.4. Off-Target Effects on Non-Homologous Genes Were Induced by dsAsFAR in H. axyridi
3.5. The Evaluation of Off-Target Effects and Transcriptome Homeostasis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Itsathitphaisarn, O.; Thitamadee, S.; Weerachatyanukul, W.; Sritunyalucksana, K. Potential of RNAi applications to control viral diseases of farmed shrimp. J. Invertebr. Pathol. 2016, 147, 76–85. [Google Scholar] [CrossRef]
- Zhao, J.H.; Guo, H.S. RNA silencing: From discovery and elucidation to application and perspectives. J. Integr. Plant Biol. 2022, 64, 476–498. [Google Scholar] [CrossRef]
- Matzke, M.; Primig, M.; Trnovsky, J.; Matzke, A. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 1989, 8, 643–649. [Google Scholar] [CrossRef]
- Niu, D.; Hamby, R.; Sanchez, J.N.; Cai, Q.; Yan, Q.; Jin, H. RNAs—A new frontier in crop protection. Curr. Opin. Biotech. 2021, 70, 204–212. [Google Scholar] [CrossRef]
- Stoutjesdijk, P.A.; Singh, S.P.; Liu, Q.; Hurlstone, C.J.; Waterhouse, P.A.; Green, A.G. hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol. 2002, 129, 1723–1731. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Wang, Z.; Li, H.; Xia, K.F.; Cai, Y.; Xu, Z.F. Overexpression of a weed (Solanum americanum) proteinase inhibitor in transgenic tobacco results in increased glandular trichome density and enhanced resistance to Helicoverpa armigera and Spodoptera litura. Int. J. Mol. Sci. 2009, 10, 1896–1910. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, J.A. Should dsRNA treatments applied in outdoor environments be regulated? Environ. Int. 2019, 132, 104856. [Google Scholar] [CrossRef]
- Heinemann, J.A.; Agapito-Tenfen, S.Z.; Carman, J.A. A comparative evaluation of the regulation of GM crops or products containing dsRNA and suggested improvements to risk assessments. Environ. Int. 2013, 55, 43–55. [Google Scholar] [CrossRef]
- National Academies of Sciences; Medicine; Division on Earth; Committee on Genetically Engineered Crops; Past Experience; Future Prospects. Genetically Engineered Crops: Experiences and Prospects; National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef]
- Wu, K.; Guo, Y. The evolution of cotton pest management practices in China. Annu. Rev. Entomol. 2005, 50, 31–52. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Jiao, Z.; Wu, K. Early season host plants of Apolygus lucorum (Heteroptera: Miridae) in northern China. J. Econ. Entomol. 2012, 105, 1603–1611. [Google Scholar] [CrossRef]
- Roberts, A.F.; Devos, Y.; Lemgo, G.N.; Zhou, X. Biosafety research for non-target organism risk assessment of RNAi-based GE plants. Front. Plant Sci. 2015, 6, 958. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Liang, S.; Li, J.; Xu, Z.; Li, L.; Zhu, B.; Li, Z.; Lei, C.; Lindsey, K.; Chen, L. A transgenic strategy for controlling plant bugs (Adelphocoris suturalis) through expression of double-stranded RNA homologous to fatty acyl-coenzyme A reductase in cotton. New Phytol. 2017, 215, 1173–1185. [Google Scholar] [CrossRef]
- Fedorov, Y.; Anderson, E.M.; Birmingham, A.; Reynolds, A.; Karpilow, J.; Robinson, K.; Leake, D.; Marshall, W.S.; Khvorova, A. Off-target effects by siRNA can induce toxic phenotype. Rna 2006, 12, 1188–1196. [Google Scholar] [CrossRef]
- Jackson, A.L.; Bartz, S.R.; Schelter, J.; Kobayashi, S.V.; Burchard, J.; Mao, M.; Li, B.; Cavet, G.; Linsley, P.S. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotech. 2003, 21, 635–637. [Google Scholar] [CrossRef]
- Qiu, S.; Adema, C.M.; Lane, T. A computational study of off-target effects of RNA interference. Nucleic Acids Res. 2005, 33, 1834–1847. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Sun, W. Survey on multi-omics, and multi-omics data analysis, integration and application. Curr. Pharm. Anal. 2023, 19, 267–281. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Yao, Z.T.; Abouzaid, M.; Hull, J.J.; Ma, W.H.; Hua, H.X.; Lin, Y.J. Co-expression network analysis: A future approach for pest control target discovery. J. Agric. Food Chem. 2023, 71, 7201–7209. [Google Scholar] [CrossRef]
- Martínez, O.; Reyes-Valdés, M.H. Defining diversity, specialization, and gene specificity in transcriptomes through information theory. Proc. Natl. Acad. Sci. USA 2008, 105, 9709–9714. [Google Scholar] [CrossRef]
- Ma, W.; Wu, T.; Zhang, Z.; Hang, L.; Situ, G.; Yin, C.; Ye, X.; Chen, M.; Zhao, X.; He, K.; et al. Using transcriptome Shannon entropy to evaluate the off-target effects and safety of insecticidal siRNAs. J. Integr. Agric. 2022, 21, 170–177. [Google Scholar] [CrossRef]
- Chen, Y.; De Schutter, K. Biosafety aspects of RNAi-based pests control. Pest Manag. Sci. 2024, 80, 3697–3706. [Google Scholar] [CrossRef] [PubMed]
- Mamta, B.; Rajam, M. RNAi technology: A new platform for crop pest control. Physiol. Mol. Biol. Plants 2017, 23, 487–501. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N.; Upadhyay, S.K.; Verma, P.C.; Chandrashekar, K.; Tuli, R.; Singh, P.K. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene. PLoS ONE 2014, 9, e87235. [Google Scholar] [CrossRef]
- Jin, S.; Singh, N.D.; Li, L.; Zhang, X.; Daniell, H. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation. Plant Biotechnol. J. 2015, 13, 435–446. [Google Scholar] [CrossRef]
- Tian, G.; Cheng, L.; Qi, X.; Ge, Z.; Niu, C.; Zhang, X.; Jin, S. Transgenic cotton plants expressing double-stranded RNAs target HMG-CoA reductase (HMGR) gene inhibits the growth, development and survival of cotton bollworms. Int. J. Biol. Sci. 2015, 11, 1296. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; Ma, W.; Wang, X.; Gao, M.; Dai, Y.; Wei, X.; Zhang, L.; Peng, Y.; Chen, S.; Ding, L. Next-generation transgenic cotton: Pyramiding RNAi and Bt counters insect resistance. Plant Biotechnol. J. 2017, 15, 1204–1213. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Aksoy, E.; Çalışkan, M.E.; Bakhsh, A. Transgenic potato lines expressing hairpin RNAi construct of molting-associated EcR gene exhibit enhanced resistance against Colorado potato beetle (Leptinotarsa decemlineata, Say). Transgenic Res. 2019, 28, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Mat Jalaluddin, N.S.; Othman, R.Y.; Harikrishna, J.A. Global trends in research and commercialization of exogenous and endogenous RNAi technologies for crops. Crit. Rev. Biotechnol. 2019, 39, 67–78. [Google Scholar] [CrossRef]
- Christiaens, O.; Whyard, S.; Vélez, A.M.; Smagghe, G. Double-stranded RNA technology to control insect pests: Current status and challenges. Front. Plant Sci. 2020, 11, 451. [Google Scholar] [CrossRef]
- Kleijn, D.; Bommarco, R.; Fijen, T.P.; Garibaldi, L.A.; Potts, S.G.; Van Der Putten, W.H. Ecological intensification: Bridging the gap between science and practice. Trends Ecol. Evol. 2019, 34, 154–166. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Yang, X.; Chen, G.; Du, L.; Chen, H.; Li, Y.; Peng, Y.; Han, L. Consumption of miRNA-mediated insect-resistant transgenic rice pollen does not harm Apis mellifera adults. J. Agric. Food Chem. 2021, 69, 4234–4242. [Google Scholar] [CrossRef]
- Kupferschmidt, K. A lethal dose of RNA. Science 2013, 341, 732733. [Google Scholar] [CrossRef]
- Deveux, M.; Christiaens, O.; Smagghe, G.; Taning, N.T.C. Nasonia vitripennis as a parasitoid wasp model for pest-specific dsRNA safety assessment. Entomol. Gen. 2023, 43, 139–146. [Google Scholar]
- Castellanos, N.L.; Smagghe, G.; Taning, C.N.T.; Oliveira, E.E.; Christiaens, O. Risk assessment of RNAi-based pesticides to non-target organisms: Evaluating the effects of sequence similarity in the parasitoid wasp Telenomus podisi. Sci. Total Environ. 2022, 832, 154746. [Google Scholar] [CrossRef]
- Chen, J.; Sheng, C.-W.; Peng, Y.; Wang, K.; Jiao, Y.; Palli, S.R.; Cao, H. Transcript Level and Sequence Matching Are Key Determinants of Off-Target Effects in RNAi. J. Agric. Food Chem. 2023, 72, 577–589. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Nanda, S.; Li, Z.; Li, Y.; Guo, M.; Chen, S.; Yang, C.; Pan, H. Oral delivery of dsHvUSP is a promising method for Henosepilachna vigintioctopunctata control with no adverse effect on the non-target insect Propylea japonica. Entomol. Gen. 2023, 43, 157–165. [Google Scholar] [CrossRef]
- Dang, C.; Zhang, Y.; Sun, C.; Li, R.; Wang, F.; Fang, Q.; Yao, H.; Stanley, D.; Ye, G. dsRNAs Targeted to the Brown Planthopper Nilaparvata lugens: Assessing Risk to a Non-Target, Beneficial Predator, Cyrtorhinus lividipennis. J. Agric. Food Chem. 2022, 70, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Li, H.J.; Zhang, H.H.; Lu, J.B.; Zhang, C.X. Threonyl-tRNA synthetase gene, a potential target for RNAi-based control of three rice planthoppers. Pest Manag. Sci. 2022, 78, 4589–4598. [Google Scholar] [CrossRef]
- Wang, X.; Faucher, J.; Dhandapani, R.K.; Duan, J.J.; Palli, S.R. Potential effects of RNA interference of Asian longhorned beetle on its parasitoid. Pest Manag. Sci. 2023, 79, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Hollowell, H.; Rieske, L.K. Southern pine beetle-specific RNA interference exhibits no effect on model nontarget insects. J. Pest Sci. 2022, 95, 1429–1441. [Google Scholar] [CrossRef]
- Haller, S.; Widmer, F.; Siegfried, B.D.; Zhuo, X.; Romeis, J. Responses of two ladybird beetle species (Coleoptera: Coccinellidae) to dietary RNAi. Pest Manag. Sci. 2019, 75, 2652–2662. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Yang, X.; Romeis, J.; Siegfried, B.D.; Zhou, X. Dietary RNAi toxicity assay exhibits differential responses to ingested dsRNAs among lady beetles. Pest Manag. Sci. 2020, 76, 3606–3614. [Google Scholar] [CrossRef] [PubMed]
- Naito, Y.; Yamada, T.; Matsumiya, T.; Ui-Tei, K.; Saigo, K.; Morishita, S. dsCheck: Highly sensitive off-target search software for double-stranded RNA-mediated RNA interference. Nucleic Acids Res. 2005, 33 (Suppl. 2), W589–W591. [Google Scholar] [CrossRef]
- Good, R.T.; Varghese, T.; Golz, J.F.; Russell, D.A.; Papanicolaou, A.; Edwards, O.; Robin, C. OfftargetFinder: A web tool for species-specific RNAi design. Bioinformatics 2016, 32, 1232–1234. [Google Scholar] [CrossRef]
- Allen, M.L. Comparison of RNAi sequences in insect-resistant plants to expressed sequences of a beneficial lady beetle: A closer look at off-target considerations. Insects 2017, 8, 27. [Google Scholar] [CrossRef]
- Kleter, G.A. Food safety assessment of crops engineered with RNA interference and other methods to modulate expression of endogenous and plant pest genes. Pest Manag. Sci. 2020, 76, 3333–3339. [Google Scholar] [CrossRef]
- Taning, C.N.T.; Gui, S.; De Schutter, K.; Jahani, M.; Castellanos, N.L.; Christiaens, O.; Smagghe, G. A sequence complementarity-based approach for evaluating off-target transcript knockdown in Bombus terrestris, following ingestion of pest-specific dsRNA. J. Pest Sci. 2021, 94, 487–503. [Google Scholar] [CrossRef]
- Carels, N. Assessing RNA-Seq workflow methodologies using Shannon entropy. Biology 2024, 13, 482. [Google Scholar] [CrossRef] [PubMed]
No. of Matched Base Pairs (bp) | Total No. of Genes | No. and Percentage of Up-Regulated Genes | No. and Percentage of Down-Regulated Genes | No. and Percentage of Non-Significant-Change Genes |
---|---|---|---|---|
7 | 5462 | 3 (0.05%) | 3 (0.05%) | 5456 (99.90%) |
8 | 3722 | 2 (0.05%) | 1 (0.03%) | 3719 (99.92%) |
9 | 1272 | 0 (0) | 1 (0.08%) | 1271 (99.92%) |
10 | 325 | 0 (0) | 0 (0) | 325 (100%) |
11 | 103 | 0 (0) | 0 (0) | 103 (100%) |
12 | 21 | 0 (0) | 0 (0) | 21 (100%) |
13 | 9 | 0 (0) | 0 (0) | 9 (100%) |
14 | 3 | 0 (0) | 0 (0) | 3 (100%) |
15 | 1 | 0 (0) | 0 (0) | 1 (100%) |
Total | 10,918 | 5 (0.05%) | 5 (0.05%) | 10,908 (99.90%) |
Transcriptome | KEGG Pathway Level | Total No. of Genes | No. and Percentage of Up-Regulated Genes | No. and Percentage of Down-Regulated Genes | No. and Percentage of Non-Significant Change Genes |
---|---|---|---|---|---|
Level 2 | 2595 | 0 (0.00%) | 0 (0.00%) | 2595 (100.00%) | |
Larvae | Level 3 | 23,952 | 7 (0.03%) | 3 (0.01%) | 23,942 (99.96%) |
Total | 26,547 | 7 (0.03%) | 3 (0.01%) | 26,537 (99.96%) | |
Level 2 | 2698 | 190 (7.04%) | 6 (0.22%) | 2502 (92.74%) | |
Adults | Level 3 | 25,545 | 1261 (4.94%) | 39 (0.25%) | 24,245 (94.91%) |
Total | 28,243 | 1451 (5.14%) | 45 (0.16%) | 26,747 (94.70%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, H.; Xu, H.; Yang, J.; Ma, W. Assessment of Potential Toxic Effects of RNAi-Based Transgenic Cotton on the Non-Target Predator Harmonia axyridis. Biology 2025, 14, 1173. https://doi.org/10.3390/biology14091173
Yao H, Xu H, Yang J, Ma W. Assessment of Potential Toxic Effects of RNAi-Based Transgenic Cotton on the Non-Target Predator Harmonia axyridis. Biology. 2025; 14(9):1173. https://doi.org/10.3390/biology14091173
Chicago/Turabian StyleYao, Haiqin, Haonan Xu, Jun Yang, and Weihua Ma. 2025. "Assessment of Potential Toxic Effects of RNAi-Based Transgenic Cotton on the Non-Target Predator Harmonia axyridis" Biology 14, no. 9: 1173. https://doi.org/10.3390/biology14091173
APA StyleYao, H., Xu, H., Yang, J., & Ma, W. (2025). Assessment of Potential Toxic Effects of RNAi-Based Transgenic Cotton on the Non-Target Predator Harmonia axyridis. Biology, 14(9), 1173. https://doi.org/10.3390/biology14091173