Rumen Microbiota in Cattle and Buffaloes: Insights into Host-Specific Bacterial Diversity
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Sequence Datasets
2.2. Diversity Estimate
3. Results
3.1. Data Summary
3.2. Taxonomic Classification of Cattle Sequences
3.2.1. Major Phyla
Firmicutes
Bacteroidetes
Proteobacteria
3.2.2. Minor Phyla
3.3. Taxonomic Classification of Buffalo Sequences
3.3.1. Major Phyla
Firmicutes
Bacteroidetes
Proteobacteria
3.3.2. Minor Phyla
3.4. Diversity Estimates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kazemi, M. An investigation on chemical/mineral compositions, ruminal microbial fermentation, and feeding value of some leaves as alternative forages for finishing goats during the dry season. AMB Exp. 2021, 11, 76. [Google Scholar] [CrossRef]
- Kazemi, M. Recycling agricultural waste: Sustainable solutions for enhancing livestock nutrition. Vet. Med. Sci. 2025, 11, e70321. [Google Scholar] [CrossRef]
- Kocherginskaya, S.A.; Aminov, R.I.; White, B.A. Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis, random sequencing, and statistical ecology approaches. Anaerobe 2001, 7, 119–134. [Google Scholar] [CrossRef]
- Shi, P.J.; Meng, K.; Zhou, Z.G.; Wang, Y.R.; Diao, Q.Y.; Yao, B. The host species affects the microbial community in the goat rumen. Lett. Appl. Microbiol. 2008, 46, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.Z.; Peng, K.L.; Xue, M.Y.; Liu, J.X. Metagenomics analysis revealed the distinctive ruminal microbiome and resistive profiles in dairy buffaloes. Anim. Microbiome 2021, 3, 44. [Google Scholar] [CrossRef]
- McSweeney, C.S.; Denman, S.E.; Mackie, R.I. Rumen bacteria. In Methods in Gut Microbial Ecology for Ruminants; Makkar, H.P., McSweeney, C.S., Eds.; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Gharechahi, J.; Vahidi, M.F.; Sharifi, G.; Ariaeenejad, S.; Ding, X.Z.; Han, J.L.; Salekdeh, G.H. Lignocellulose degradation by rumen bacterial communities: New insights from metagenome analyses. Environ. Res. 2023, 229, 115925. [Google Scholar] [CrossRef] [PubMed]
- Creevey, C.J.; Kelly, W.J.; Henderson, G.; Leahy, S.C. Determining the culturability of the rumen bacterial microbiome. Microb. biotechnol. 2014, 7, 467–479. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, Y.; Guan, L.L. Rumen bacteria. In Rumen Microbiology: From Evolution to Revolution; Puniya, A., Singh, R., Kamra, D., Eds.; Springer: New Delhi, India, 2015. [Google Scholar] [CrossRef]
- Paul, S.S.; Kamra, D.N.; Sastry, V.R.; Sahu, N.P.; Kumar, A. Effect of phenolic monomers on biomass and hydrolytic enzyme activities of an anaerobic fungus isolated from wild nil gai (Baselophus tragocamelus). Lett. Appl. Microbiol. 2003, 36, 377–381. [Google Scholar] [CrossRef]
- Edwards, J.E.; McEwan, N.R.; Travis, A.J.; Wallace, R.J. 16SrDNA library-based analysis of ruminal bacterial diversity. Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2004, 86, 263–281. [Google Scholar] [CrossRef]
- Denman, S.E.; Morgavi, D.P.; McSweeney, C.S. The application of omics to rumen microbiota function. Animal 2018, 12, s233–s245. [Google Scholar] [CrossRef]
- Gruninger, R.J.; Ribeiro, G.O.; Cameron, A.; McAllister, T.A. Invited review: Application of meta-omics to understand the dynamic nature of the rumen microbiome and how it responds to diet in ruminants. Animal 2019, 13, 1843–1854. [Google Scholar] [CrossRef]
- Tajima, K.; Nonaka, I.; Higuchi, K.; Takusari, N.; Kurihara, M.; Takenaka, A.; Mitsumori, M.; Kailkawa, H.; Aminov, R.I. Influence of high temperature and humidity on rumen bacterial diversity in Holstein heifers. Anaerobe 2007, 13, 57–64. [Google Scholar] [CrossRef]
- Chen, Z.; Trivedi, H.M.; Chhun, N.; Barnes, V.M.; Saxena, D.; Xu, T.; Li, Y. Using DGGE and 16S rRNA gene sequence analysis to evaluate changes in oral bacterial composition. Chin. J. Dent. Res. 2011, 14, 95–103. [Google Scholar] [PubMed]
- Fernando, S.C.; Purvis, H.T.; Najar, F.Z.; Sukharnikov, L.O.; Krehbiel, C.R.; Nagaraja, T.G.; Roe, B.A.; Desilva, U. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol. 2010, 76, 7482–7490. [Google Scholar] [CrossRef]
- Michelland, R.J.; Onteils, V.; Combes, S.; Cauquil, L.; Gidenne, T.; Fortun-Lamothe, L. Changes over time in the bacterial communities associated with fluid and food particles and the ruminal parameters in the bovine rumen before and after a dietary change. Can. J. Microbiol. 2011, 57, 629–637. [Google Scholar] [CrossRef]
- Galbraith, E.A.; Antonopoulos, D.A.; White, B.A. Suppressive subtractive hybridization as a tool for identifying genetic diversity in an environmental metagenome: The rumen as a model. Environ. Microbiol. 2004, 6, 928–937. [Google Scholar] [CrossRef] [PubMed]
- Skillman, L.C.; Evans, P.N.; Strömpl, C.; Joblin, K.N. 16S rDNA directed PCR primers and detection of methanogens in the bovine rumen. Lett. Appl. Microbiol. 2006, 42, 222–228. [Google Scholar] [CrossRef]
- Gupta, P.; Samanta, K.; Sahu, A. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int. J. Microbiol. 2012, 1, 578925. [Google Scholar] [CrossRef] [PubMed]
- Hess, M.; Sczyrba, A.; Egan, R.; Kim, T.-W.; Chokhawala, H.; Schroth, G.; Luo, S.; Clark, D.S.; Chen, F.; Zhang, T.; et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 2011, 331, 463–467. [Google Scholar] [CrossRef]
- Jami, E.; Mizrahi, I.; López-García, P. Composition and similarity of bovine rumen microbiota across individual animals. PLoS ONE 2012, 7, e33306. [Google Scholar] [CrossRef]
- Li, M.; Zhou, M.; Adamowicz, E.; Basarab, J.A.; Guan, L.L. Characterization of bovine ruminal epithelial bacterial communities using 16S rRNA sequencing, PCRDGGE, and qRT-PCR analysis. Vet. Microbiol. 2012, 155, 72–80. [Google Scholar] [CrossRef] [PubMed]
- ICAR. Nutrient Requirement of Animals-Buffalo; Indian Council of Agricultural Research: New Delhi, India, 2024; pp. 1–40. ISBN 978-81-954201-9-3. [Google Scholar]
- Huws, S.A.; Creevey, C.J.; Oyama, L.B.; Mizrahi, I.; Denman, S.E.; Popova, M.; Muñoz-Tamayo, R.; Forano, E.; Waters, S.M.; Hess, M.; et al. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: Past, present, and future. Front. Microbiol. 2018, 9, 2161. [Google Scholar] [CrossRef] [PubMed]
- Parmar, N.R.; Ji, N.K.; Joshi, C.G. Advancements in bovine rumen microbial ecology: A review. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 105–121. [Google Scholar]
- Malik, P.K.; Trivedi, S.; Kolte, A.P.; Mohapatra, A.; Biswas, S.; Bhattar, A.V.K.; Bhatta, R.; Rahman, H. Comparative rumen metagenome and CAZyme profiles in cattle and buffaloes: Implications for methane yield and rumen fermentation on a common diet. Microorganisms 2024, 12, 47. [Google Scholar] [CrossRef]
- Iqbal, M.W.; Zhang, Q.; Yang, Y.; Li, L.; Zou, C.; Huang, C.; Lin, B. Comparative study of rumen fermentation and microbial community differences between water buffalo and Jersey cows under similar feeding conditions. J. Appl. Anim. Res. 2018, 46, 740–748. [Google Scholar] [CrossRef]
- Bertoni, A.; Napolitano, F.; Mota-Rojas, D.; Sabia, E.; Álvarez-Macías, A.; Mora-Medina, P.; Morales-Canela, A.; Berdugo-Gutiérrez, J.; Guerrero-Legarreta, I. Similarities and differences between river buffaloes and cattle: Health, physiological, behavioral and productivity aspects. J. Buffalo Sci. 2020, 9, 92–109. [Google Scholar] [CrossRef]
- Tomar, D.A.S.; Navadiya, D.D.; Singh, D.D.; Swami, M.K.; Agravat, D.P.H.; Islam, D.M.M. Behavioral differences between sheep, goat, cattle and buffalo. Vigyan Varta 2024, 5, 10–17. [Google Scholar]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- DeSantis, T.Z., Jr.; Hugenholtz, P.; Keller, K.; Brodie, E.; Larsen, N.; Piceno, Y.; Phan, R.; Andersen, G.L. NAST: A multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res. 2006, 34 (Suppl. 2), W394–W399. [Google Scholar] [CrossRef]
- Ludwig, W.O.L.F.G.A.N.G.; Schleifer, K.H. Molecular phylogeny of bacteria based on comparative sequence analysis of conserved genes. Microb. Phylogeny Evol. Concepts Controv. 2005, 70–98. [Google Scholar]
- Katoh, K.; Kuma, K.I.; Toh, H.; Miyata, T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005, 33, 511–518. [Google Scholar] [CrossRef]
- Paul, S.S.; Bu, D.; Xu, J.; Hyde, K.D.; Yu, Z. A phylogenetic census of global diversity of gut anaerobic fungi and a new taxonomic framework. Fungal Divers. 2018, 89, 253–266. [Google Scholar] [CrossRef]
- Larue, R.; Yu, Z.; Parisi, V.A.; Egan, A.R.; Morrison, M. Novel microbial diversity adherent to plant biomass in the herbivore gastrointestinal tract, as revealed by ribosomal intergenic spacer analysis and rrs gene sequencing. Environ. Microbiol. 2005, 7, 530–543. [Google Scholar] [CrossRef]
- Chanthakhoun, V.; Wanapat, M.; Kongmun, P.; Cherdthong, A. A Comparison of ruminal fermentation characteristics and microbial population in swamp buffalo and cattle. Livest. Sci. 2012, 143, 172–176. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, G.; Han, Z.; Yao, W.; Zhu, W. Metabolism of flaxseed lignans in the rumen and its impact on ruminal metabolism and flora. Anim. Feed Sci. Technol. 2009, 150, 18–26. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, H.; Yan, H.; Azarfar, A.; Shi, H.; Alugongo, G.; Li, S.; Cao, Z.; Wang, Y. Comparison of rumen bacteria distribution in original rumen digesta, rumen liquid and solid fractions in lactating Holstein cows. J. Anim. Sci. Biotechnol. 2017, 8, 16. [Google Scholar] [CrossRef]
- Cheng, C.; Xiao, P. Evaluation of the correctable decoding sequencing as a new powerful strategy for DNA sequencing. Life Sci. Alliance 2022, 5, e202101294. [Google Scholar] [CrossRef] [PubMed]
- Liggenstoffer, A.S.; Youssef, N.H.; Couger, M.B.; Elshahed, M.S. Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME J. 2010, 4, 1225–1235. [Google Scholar] [CrossRef] [PubMed]
- Roesch, L.F.; Casella, G.; Simell, O.; Krischer, J.; Wasserfall, C.H.; Schatz, D.; Atkinson, M.A.; Neu, J.; Triplett, E.W. Influence of fecal sample storage on bacterial community diversity. Open Microbiol. J. 2009, 3, 40. [Google Scholar] [CrossRef]
- Petri, R. Impact of Diet Composition on Rumen Bacterial Phylogenetics. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2013. Available online: https://hdl.handle.net/10388/ETD-2013-02-931 (accessed on 27 August 2025).
- Wang, Q.; Xiaomei, G.; Yunyan, Y.; Caixia, Z.; Yingbai, Y.; Bo, L. A comparative study on rumen ecology of water buffalo and cattle calves under similar feeding regime. Vet. Med. Sci. 2020, 6, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Yali, S.; Huiyan, Q. Bacterial community and diversity in the rumen of 11 Mongolian cattle as revealed by 16S rRNA amplicon sequencing. Sci. Rep. 2024, 14, 1546. [Google Scholar] [CrossRef]
- Noronha, G.N.; Hess, M.K.; Dodds, K.G.; Silva, A.G.M.E.; de Souza, S.M.; da Silva, J.A.R.; Gracas, D.A.D.; de Carvalho Rodrigues, T.C.G.; da Silva, W.C.; da Silva, E.B.R.; et al. Characterization of the ruminal microbiome of water buffaloes (Bubalus bubalis) kept in different ecosystems in the eastern Amazon. Animals 2023, 13, 3858. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.-C.; Zhao, W.-J.; Yue, W.-Z.; Cheng, H.; Sun, F.-L.; Wang, Y.-T.; Wu, M.-L.; Engel, A.; Wang, Y.-S. Polymeric carbohydrates utilization separates microbiomes into niches: Insights into the diversity of microbial carbohydrate-active enzymes in the inner shelf of the Pearl River Estuary, China. Front. Microbiol. 2023, 14, 1180321. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.M.; Badhan, A.K.; Reid, I.D.; Ribeiro, G.; Gruninger, R.; Tsang, A.; Guan, L.L.; McAllister, T. Comparative analysis of functional diversity of rumen microbiome in bison and beef heifers. Microbial Ecol. 2023, 89, e01320-23. [Google Scholar] [CrossRef] [PubMed]
Attributes | Species-Level Distance (0.03) | |
---|---|---|
Buffalo | Cattle | |
Total number of sequences | 1481 | 13,432 |
Indices based on all OTUs | ||
Number of observed phylotypes (OTUs) | 1133 | 5616 |
ACE | 16,188 | 31,881 |
Chao1 | 6008 | 16,867 |
Shannon index | 6.74 | 7.78 |
Simpson index | 0.001952 | 0.001462 |
Rarefaction richness | 3962 | 9831 |
% Coverage based on rarefaction | 28.6 | 57.1 |
Indices based on abundant OTUs (OTUs with at least 3 members) | ||
Total number of sequences | 660 | 9273 |
Number of observed phylotypes (OTUs) | 189 | 946 |
ACE | 408 | 949 |
Chao1 | 313 | 949 |
Shannon index | 4.77 | 6.28 |
Simpson index | 0.013979 | 0.003513 |
Rarefaction richness | 239 | 949 |
% coverage based on rarefaction | 78.9 | 99.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul, S.S.; Dey, A.; Baro, D.; Andonissamy, J.; Paul, J.; Punia, B.S. Rumen Microbiota in Cattle and Buffaloes: Insights into Host-Specific Bacterial Diversity. Biology 2025, 14, 1166. https://doi.org/10.3390/biology14091166
Paul SS, Dey A, Baro D, Andonissamy J, Paul J, Punia BS. Rumen Microbiota in Cattle and Buffaloes: Insights into Host-Specific Bacterial Diversity. Biology. 2025; 14(9):1166. https://doi.org/10.3390/biology14091166
Chicago/Turabian StylePaul, Shyam Sundar, Avijit Dey, Daoharu Baro, Jerome Andonissamy, Jyotirmoyee Paul, and Balbir Singh Punia. 2025. "Rumen Microbiota in Cattle and Buffaloes: Insights into Host-Specific Bacterial Diversity" Biology 14, no. 9: 1166. https://doi.org/10.3390/biology14091166
APA StylePaul, S. S., Dey, A., Baro, D., Andonissamy, J., Paul, J., & Punia, B. S. (2025). Rumen Microbiota in Cattle and Buffaloes: Insights into Host-Specific Bacterial Diversity. Biology, 14(9), 1166. https://doi.org/10.3390/biology14091166