Research Progress on PCR (Plant Cadmium Resistance) Genes in Plants
Simple Summary
Abstract
1. Introduction
2. The Role of PCR Genes in Plant Defense Mechanisms Against Cadmium Stress
2.1. Extracellular Exclusion Barrier
2.2. Intracellular Compartmentalization
2.3. Chelation
2.4. Metabolic Transport
2.5. Antioxidant Defense
2.6. Transcriptional Regulation Mechanism
3. The Structure, Function, and Evolutionary Progression of PCR
4. Evolutionary Analysis of PCR Gene Family in Plants
5. Functional Differentiation of PCR Genes in Different Plant Types
5.1. Basic Functional Research in Model Plants
5.2. Cadmium Accumulation and Tolerance Mechanisms in Hyperaccumulator Plants
5.3. Cadmium Transport in Woody Plants and Potential for Ecological Remediation
5.4. Functional Expansion and Evolutionary Significance
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PCR | Plant Cadmium Resistance |
FWL | Fruit Weight 2.2-Like |
PLAC8 | Placenta Associated 8 |
CAX | Cation Exchanger |
TM | Transmembrane |
ROS | Reactive Oxygen Species |
O2− | Superoxide Anion Radical |
H2O2 | Hydrogen Peroxide |
·OH | Hydroxyl Radical |
MRE | Metal Response Element |
GSH | Glutathione |
PCs | Phytochelatins |
MT1C | Metallothionein-1C |
CorA | Cobalt resistance A |
CNR | Cell Number Regulator |
MCA | Mid1-Complementing Activity |
Cys | Cysteine |
Glu | Glutamic acid |
Asp | Aspartic acid |
SKP | Sphase Kinase-Associated Protein |
References
- Kotnala, S.; Tiwari, S.; Nayak, A.; Bhushan, B.; Chandra, S.; Medeiros, C.R.; Coutinho, H.D.M. Impact of heavy metal toxicity on the human health and environment. Sci. Total Environ. 2025, 987, 179785. [Google Scholar] [CrossRef] [PubMed]
- Suhani, I.; Sahab, S.; Srivastava, V.; Singh, R.P. Impact of cadmium pollution on food safety and human health. Curr. Opin. Toxicol. 2021, 27, 1–7. [Google Scholar] [CrossRef]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.Z.; Ma, W.J.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Wang, P.; Chen, H.P.; Kopittke, P.M.; Zhao, F.J. Cadmium contamination in agricultural soils of China and the impact on food safety. Environ. Pollut. 2019, 249, 1038–1048. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.H.; Wu, L.W.; Wang, Q.; Wang, Y.; Luo, H.M.; Song, J.Y.; Yang, M.H.; Yao, H.; Chen, S.L. Physiological and molecular mechanisms of medicinal plants in response to cadmium stress: Current status and future perspective. J. Hazard. Mater. 2023, 450, 131008. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, C.B.; Zhao, Y.L.; Sun, S.J.; Liu, Z.Q. Effects of growing seasons and genotypes on the accumulation of cadmium and mineral nutrients in rice grown in cadmium contaminated soil. Sci. Total Environ. 2017, 579, 1282–1288. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Shi, R.K.; Xie, M.Y.; Huang, Y.F.; Chen, L.Q.; Song, Y.Q.; Zhang, W.; Chen, X. Plant cadmium resistance 2.7 from Brassica napus (BnPCR2.7) improves copper and cadmium tolerance. Environ. Exp. Bot. 2024, 226, 105919. [Google Scholar] [CrossRef]
- Huang, Y.F.; Chen, J.H.; Zhang, D.R.; Fang, B.; Jin, T.Y.; Zou, J.W.; Chen, Y.H.; Su, N.; Cui, J. Enhanced vacuole compartmentalization of cadmium in root cells contributes to glutathione-induced reduction of cadmium translocation from roots to shoots in pakchoi (Brassica chinensis L.). Ecotoxicol. Environ. Saf. 2021, 208, 111616. [Google Scholar] [CrossRef]
- Yu, J.H.; Wu, L.Y.; Fu, L.B.; Shen, Q.F.; Kuang, L.H.; Wu, D.Z.; Zhang, G.P. Genotypic difference of cadmium tolerance and the associated microRNAs in wild and cultivated barley. Plant Growth Regul. 2019, 87, 389–401. [Google Scholar] [CrossRef]
- Ma, P.; Zang, J.; Shao, T.; Jiang, Q.R.; Li, Y.Q.; Zhang, W.; Liu, M.D. Cadmium distribution and transformation in leaf cells involved in detoxification and tolerance in barley. Ecotoxicol. Environ. Saf. 2023, 249, 114391. [Google Scholar] [CrossRef]
- Di, X.R.; Jing, R.; Qin, X.; Liang, X.F.; Wang, L.; Xu, Y.M.; Sun, Y.B.; Huang, Q.Q. The role and transcriptomic mechanism of cell wall in the mutual antagonized effects between selenium nanoparticles and cadmium in wheat. J. Hazard. Mater. 2024, 472, 134549. [Google Scholar] [CrossRef]
- Vitelli, V.; Giamborino, A.; Bertolini, A.; Saba, A.; Andreucci, A. Cadmium stress signaling pathways in plants: Molecular responses and mechanisms. Curr. Issues Mol. Biol. 2024, 46, 6052–6068. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, H.; Jiang, H.L.; Wang, H.S.; Chen, K.; Duan, J.J.; Feng, S.J.; Wu, G. Regulation of cadmium tolerance and accumulation by miR156 in Arabidopsis. Chemosphere 2020, 242, 125168. [Google Scholar] [CrossRef]
- Guan, J.; Yang, Y.H.; Shan, Q.H.; Zhang, H.Z.; Zhou, A.M.; Gong, S.F.; Chai, T.Y.; Qiao, K. Plant cadmium resistance 10 enhances tolerance to toxic heavy metals in poplar. Plant Physiol. Biochem. 2023, 203, 108043. [Google Scholar] [CrossRef]
- Galaviz-Hernandez, C.; Stagg, C.; De Ridder, G.; Tanaka, T.; Ko, M.S.H.; Schlessinger, D.; Nagaraja, R. Plac8 and Plac9, novel placental-enriched genes identified through microarray analysis. Gene 2003, 309, 81–89. [Google Scholar] [CrossRef]
- Song, W.Y.; Martinoia, E.; Lee, J.; Kim, D.; Vogt, E.; Shim, D.; Choi, K.S.; Hwang, I.; Lee, Y. A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiol. 2004, 135, 1027–1039. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Rupe, M.A.; Dieter, J.A.; Zou, J.J.; Spielbauer, D.; Duncan, K.E.; Howard, R.J.; Hou, Z.L.; Simmons, C.R. Cell Number Regulator1 affects plant and organ size in maize: Implications for crop yield enhancement and heterosis. Plant Cell 2010, 22, 1057–1073. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.J.; Tan, H.F.; Han, J.H.; Zhang, Y.T.; He, X.; Ding, Y.F.; Chen, Z.X.; Zhu, C. A novel family of PLAC8 motif-containing/PCR genes mediates Cd tolerance and Cd accumulation in rice. Environ. Sci. Eur. 2019, 31, 1–13. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Kong, L.H.; Gong, C.Y.; Yang, G.; Xu, E.; Chen, W.Z.; Zhang, W.; Chen, X. Identification of plant cadmium resistance gene family in Brassica napus and functional analysis of BnPCR10.1 involved in cadmium and copper tolerance. Plant Physiol. Biochem. 2023, 202, 107989. [Google Scholar] [CrossRef] [PubMed]
- Ran, C.X.; Zhang, Y.Y.; Chang, F.F.; Yang, X.D.; Liu, Y.H.; Wang, Q.H.; Zhu, W.M. Genome-wide analyses of SlFWL family genes and their expression profiles under cold, heat, salt and drought stress in tomato. Int. J. Mol. Sci. 2023, 24, 11783. [Google Scholar] [CrossRef]
- Li, Z.S.; Guan, W.J.; Yang, L.; Yang, Y.; Yu, H.Y.; Zou, L.Y.; Teng, Y. Insight into the Vacuolar Compartmentalization Process and the Effect Glutathione Regulation to This Process in the Hyperaccumulator Plant Solanum nigrum L. BioMed. Res. Int. 2022, 2022, 4359645. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.F.; Wang, Z.W.; Chen, F.L.; Chen, M.L.; Zhang, X.Y.; Zhang, J.R.; Ji, W.Y.; Xiao, X.; Yang, L.J.; Lei, T.; et al. The mitigation of citric acid on cadmium toxicity in Iris tectorum and its effects on the composition of cell walls. Int. Biodeterior. Biodegrad. 2024, 193, 105857. [Google Scholar] [CrossRef]
- Hu, X.F.; Wang, S.N.; Zhang, H.F.; Zhang, H.Z.; Feng, S.; Qiao, K.; Lv, F.L.; Gong, S.F.; Zhou, A.M. Plant cadmium resistance 6 from Salix linearistipularis (SlPCR6) affects cadmium and copper uptake in roots of transgenic Populus. Ecotoxicol. Environ. Saf. 2022, 245, 114116. [Google Scholar] [CrossRef]
- Lin, J.Y.; Gao, X.Y.; Zhao, J.Q.; Zhang, J.; Chen, S.N.; Liu, L.L. Plant cadmium resistance 2 (SaPCR2) facilitates cadmium efflux in the roots of hyperaccumulator Sedum alfredii Hance. Front. Plant Sci. 2020, 11, 568887. [Google Scholar] [CrossRef]
- Chen, Z.J.; Huang, J.; Li, S.; Shao, J.F.; Shen, R.F.; Zhu, X.F. Salylic acid minimize cadmium accumulation in rice through regulating the fixation capacity of the cell wall to cadmium. Plant Sci. 2023, 336, 111839. [Google Scholar] [CrossRef]
- Bali, A.S.; Sidhu, G.P.S.; Kumar, V. Root exudates ameliorate cadmium tolerance in plants: A review. Environ. Chem. Lett. 2020, 18, 1243–1275. [Google Scholar] [CrossRef]
- Teng, Y.; Yu, A.; Tang, Y.M.; Jiang, Z.Y.; Guan, W.J.; Li, Z.S.; Yu, H.Y.; Zou, L.Y. Visualization and quantification of cadmium accumulation, chelation and antioxidation during the process of vacuolar compartmentalization in the hyperaccumulator plant Solanum nigrum L. Plant Sci. 2021, 310, 110961. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, Z.B.; Yang, X.Q.; Sheng, L.Y.; Huan, M.; Zhu, S.X. Integrated transcriptomics and metabolomics reveal key metabolic pathway responses in Pistia stratiotes under Cd stress. J. Hazard. Mater. 2023, 452, 131214. [Google Scholar] [CrossRef]
- Parrotta, L.; Guerriero, G.; Sergeant, K.; Cai, G.; Hausman, J.F. Target or barrier? The cell wall of early-and later-diverging plants vs cadmium toxicity: Differences in the response mechanisms. Front. Plant Sci. 2015, 6, 133. [Google Scholar] [CrossRef]
- Chen, C.Z.; Sun, J.Y.; Yan, J.; Tu, C.; Huang, J.; Chen, J.; Guan, X.J.; Zheng, L.; Ma, J.W.; Luo, Y.M.; et al. Cell wall polysaccharides contributed significantly to the difference of cadmium accumulation in two rice varieties. Pedosphere 2025. [Google Scholar] [CrossRef]
- Janicka-Russak, M.; Kabałam, K.; Burzyński, M. Different effect of cadmium and copper on H+-ATPase activity in plasma membrane vesicles from Cucumis sativu s roots. J. Exp. Bot. 2012, 63, 4133–4142. [Google Scholar] [CrossRef]
- Song, W.Y.; Lee, H.S.; Jin, S.R.; Ko, D.H.; Martinoia, E.; Lee, Y.; An, G.; Ahn, S.N. Rice PCR1 influences grain weight and Zn accumulation in grains. Plant Cell Environ. 2015, 38, 2327–2339. [Google Scholar] [CrossRef]
- Cubero-Font, P.; De, A.A. Connecting vacuolar and plasma membrane transport networks. New Phytol. 2021, 229, 755–762. [Google Scholar] [CrossRef]
- Hashimoto, K.; Panchenko, A.R. Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states. Proc. Natl. Acad. Sci. USA 2010, 107, 20352–20357. [Google Scholar] [CrossRef]
- Barbier-Brygoo, H.; Vinauger, M.; Colcombet, J.; Ephritikhine, J.; Frachisse, J.; Maurel, C. Anion channels in higher plants: Functional characterization, molecular structure and physiological role. Biochim. Biophys. Acta 2000, 1465, 199–218. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Shigaki, T.; Mei, H.; Guo, Y.Q.; Cheng, N.H.; Hirschi, K.D. Interaction between Arabidopsis Ca2+/H+ exchangers CAX1 and CAX3. J. Biol. Chem. 2009, 284, 4605–4615. [Google Scholar] [CrossRef]
- Panchal, P.; Miller, A.J.; Giri, J. Organic acids: Versatile stress-response roles in plants. J. Exp. Bot. 2021, 72, 4038–4052. [Google Scholar] [CrossRef]
- Yu, X.F.; Zeng, X.X.; Fan, C.Y.; Ming, X.Y.; Liu, Y.J.; Xue, H.Y.; Huang, Y.W.; Zhang, X.Y.; Ji, W.Y.; Chen, M.L.; et al. Effects of Exogenous Organic Acids On Cadmium Accumulation and Cell Wall Components of Cosmos bipinnatus Under Cadmium Stress. Ecotoxicol. Environ. Saf. 2025, 302, 118556. [Google Scholar] [CrossRef] [PubMed]
- Agnello, A.C.; Huguenot, D.; Hullebusch, E.D.V.; Esposito, G. Enhanced phytoremediation: A review of low molecular weight organic acids and surfactants used as amendments. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2531–2576. [Google Scholar] [CrossRef]
- Zhang, X.T.; Yang, M.; Yang, H.; Pian, R.Q.; Wang, J.X.; Wu, A.M. The uptake, transfer, and detoxification of cadmium in plants and its exogenous effects. Cells 2024, 13, 907. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.W.; Song, H.X.; Guan, C.Y.; Zhang, Z.H. Boron alleviates cadmium toxicity in Brassica napus by promoting the chelation of cadmium onto the root cell wall components. Sci. Total Environ. 2020, 728, 138833. [Google Scholar] [CrossRef]
- Song, W.Y.; Hörtensteiner, S.; Tomioka, R.; Lee, Y.; Martinoia, E. Common functions or only phylogenetically related? The large family of PLAC8 motif-containing PCR genes. Mol. Cells 2011, 31, 1–7. [Google Scholar] [CrossRef]
- Song, W.Y.; Choi, K.S.; Kim, D.Y.; Geisler, M.; Park, J.; Vincenzetti, V.; Schellenberg, M.; Kim, S.H.; Lim, Y.P.; Noh, E.W.; et al. Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell 2010, 22, 2237–2252. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yu, H.Y.; Wang, S.W.; Bayouli, I.T.; Huang, H.G.; Ye, D.H.; Zhang, X.Z.; Liu, T.; Wang, Y.D.; Zheng, Z.C.; et al. Root radial apoplastic transport contributes to shoot cadmium accumulation in a high cadmium-accumulating rice line. J. Hazard. Mater. 2023, 460, 132276. [Google Scholar] [CrossRef]
- Qiao, K.; Wang, F.H.; Liang, S.; Wang, H.; Hu, Z.L.; Chai, T.Y. Improved Cd, Zn and Mn tolerance and reduced Cd accumulation in grains with wheat-based cell number regulator TaCNR2. Sci. Rep. 2019, 9, 870. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Luo, J.S.; Zhang, Z.H. Mechanisms of cadmium accumulation in plants. Crop J. 2021, 9, 521–529. [Google Scholar] [CrossRef]
- Grobelak, A.; Świątek, J.; Murtaś, A.; Jaskulak, M. Cadmium-induced oxidative stress in plants, cadmium toxicity, and tolerance in plants: From physiology to remediation. In Cadmium Toxicity and Tolerance in Plants; Academic Press: Waltham, MA, USA, 2019; pp. 213–231. [Google Scholar] [CrossRef]
- Zhang, R.R.; Zhang, P.; Du, S.T. Oxidative stress-related signals and their regulation under Cd stress: A review. J. Appl. Ecol. 2016, 27, 981–992. [Google Scholar] [CrossRef]
- Snezhkina, A.V.; Kudryavtseva, A.V.; Kardymon, O.L.; Savvateeva, M.V.; Melnikova, N.V.; Krasnov, G.S.; Dmitriev, A.A. ROS generation and antioxidant defense systems in normal and malignant cells. Oxidative Med. Cell. Longev. 2019, 2019, 6175804. [Google Scholar] [CrossRef] [PubMed]
- Mitra, M.; Agarwal, P.; Roy, S. Plant response to heavy metal stress: An insight into the molecular mechanism of transcriptional regulation. In Plant Transcription Factors; Academic Press: Waltham, MA, USA, 2023; pp. 337–367. [Google Scholar] [CrossRef]
- Kumar, V.; Srivastava, A.K.; AbdElgawad, H. Transcriptional and Post-Transcriptional Regulation of Plant Growth, Development, and Stress Responses. J. Plant Growth Regul. 2025, 44, 1317–1322. [Google Scholar] [CrossRef]
- Giedroc, D.P.; Chen, X.; Apuy, J.L. Metal response element (MRE)-binding transcription factor-1 (MTF-1): Structure, function, and regulation. Antioxid. Redox Signal 2001, 3, 577–596. [Google Scholar] [CrossRef]
- Berendzen, K.W.; Weiste, C.; Wanke, D.; Kilian, J.; Harter, K.; Dröge-Laser, W. Bioinformatic cis-element analyses performed in Arabidopsis and rice disclose bZIP-and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription. BMC Plant Biol. 2012, 12, 125. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.Q.; Zong, X.M.; Ren, P.; Qian, Y.Q.; Fu, A.G. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. Int. J. Mol. Sci. 2021, 22, 7152. [Google Scholar] [CrossRef]
- Chen, X.X.; Wu, X.L.; Han, C.Y.; Jia, Y.H.; Wan, X.Q.; Liu, Q.L.; He, F.; Zhang, F. A WRKY transcription factor, PyWRKY71, increased the activities of antioxidant enzymes and promoted the accumulation of cadmium in poplar. Plant Physiol. Biochem. 2023, 205, 108163. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Mitra, M.; Banerjee, S.; Roy, S. MYB4 transcription factor, a member of R2R3-subfamily of MYB domain protein, regulates cadmium tolerance via enhanced protection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis. Plant Sci. 2020, 297, 110501. [Google Scholar] [CrossRef]
- Yao, X.N.; Cai, Y.R.; Yu, D.Q.; Liang, G. bHLH104 confers tolerance to cadmium stress in Arabidopsis thaliana. J. Integr. Plant Biol. 2018, 60, 691–702. [Google Scholar] [CrossRef]
- Cabreira-Cagliari, C.; Dias, N.C.; Bohn, B.; Fagundes, D.G.D.S.; Margis-Pinheiro, M.; Bodanese-Zanettini, M.H.; Cagliari, A. Revising the PLAC8 gene family: From a central role in differentiation, proliferation, and apoptosis in mammals to a multifunctional role in plants. Genome 2018, 61, 857–865. [Google Scholar] [CrossRef]
- Daghino, S.; Vietro, L.D.; Petiti, L.; Martino, E.; Dallabona, C.; Lodi, T.; Perotto, S. Yeast expression of mammalian Onzin and fungal FCR1 suggests ancestral functions of PLAC8 proteins in mitochondrial metabolism and DNA repair. Sci. Rep. 2019, 9, 6629. [Google Scholar] [CrossRef] [PubMed]
- Abbà, S.; Vallino, M.; Daghino, S.; Vietro, L.D.; Borriello, R.; Perotto, S. A PLAC8-containing protein from an endomycorrhizal fungus confers cadmium resistance to yeast cells by interacting with Mlh3p. Nucleic Acids Res. 2011, 39, 7548–7563. [Google Scholar] [CrossRef]
- Zeng, L.H.; Zhu, T.; Gao, Y.; Wang, Y.T.; Björn, L.O.; Chen, D.; Li, S.S. Effects of Ca addition on the uptake, translocation, and distribution of Cd in Arabidopsis thaliana. Ecotoxicol. Environ. Saf. 2017, 139, 228–237. [Google Scholar] [CrossRef]
- Song, W.Y.; Choi, K.-S.; Alexis, D.A.; Martinoia, E.; Lee, Y. Brassica juncea plant cadmium resistance 1 protein (BjPCR1) facilitates the radial transport of calcium in the root. Proc. Natl. Acad. Sci. USA 2011, 108, 19808–19813. [Google Scholar] [CrossRef]
- Yu, D.Q.; Ren, Y.D.; Uesaka, M.; Beavan, A.S.; Muffato, M.; Shen, J.Y.; Li, Y.X.; Sato, I.; Wan, W.T.; Clark, J.W.; et al. Hagfish genome elucidates vertebrate whole-genome duplication events and their evolutionary consequences. Nat. Ecol. Evol. 2024, 8, 519–535. [Google Scholar] [CrossRef]
- Baduel, P.; Bray, S.; Vallejo-Marin, M.; Kolář, F.; Yant, L. The “Polyploid Hop”: Shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Front. Ecol. Evol. 2018, 6, 117. [Google Scholar] [CrossRef]
- Su, W.B.; Zhang, L.; Jiang, Y.Y.; Huang, T.Q.; Chen, T.Q.; Liu, Y.X.; Wu, J.C.; Yang, X.H.; Lin, S.Q. EjFWLs are repressors of cell division during early fruit morphogenesis of loquat. Sci. Hortic. 2021, 287, 110261. [Google Scholar] [CrossRef]
- Frary, A.; Nesbitt, T.C.; Grandillo, S.; Knaap, E.; Cong, B.; Liu, J.; Meller, J.; Elber, R.; Alpert, K.B.; Tanksley, S.D. fw2. 2: A quantitative trait locus key to the evolution of tomato fruit size. Science 2000, 289, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Libault, M.; Zhang, X.C.; Govindarajulu, M.; Qiu, J.; Ong, Y.T.; Brechenmacher, L.; Berg, R.H.; Hurley-Sommer, A.; Taylor, C.G.; Stacey, G. A member of the highly conserved FWL (tomato FW2. 2-like) gene family is essential for soybean nodule organogenesis. Plant J. 2010, 62, 852–864. [Google Scholar] [CrossRef] [PubMed]
- Beauchet, A.; Gévaudant, F.; Gonzalez, N.; Chevalier, C. In search of the still unknown function of FW2. 2/CELL NUMBER REGULATOR, a major regulator of fruit size in tomato. J. Exp. Bot. 2021, 72, 5300–5311. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Mahanta, P.; Ramakumar, S.; Ghosh, A.; Leelavathi, S.; Reddy, V.S. Emerging role OF N-and C-terminal interactions IN stabilizing (β;/α) 8 fold with special emphasis ON family 10 xylanases. Comput. Struct. Biotechnol. J. 2012, 2, e201209014. [Google Scholar] [CrossRef]
- Sadowski, P.G.; Groen, A.J.; Dupree, P.; Lilley, K.S. Sub-cellular localization of membrane proteins. Proteomics 2008, 8, 3991–4011. [Google Scholar] [CrossRef]
- Chen, J.; Marechal, V.; Levine, A.J. Mapping of the p53 and mdm-2 interaction domains. Mol. Cell Biol. 1993, 13, 4107–4114. [Google Scholar] [CrossRef]
- Ito, T.; Nakata, M.; Fukazawa, J.; Ishida, S.; Takahashi, Y. Alteration of substrate specificity: The variable N-terminal domain of tobacco Ca2+-dependent protein kinase is important for substrate recognition. Plant Cell 2010, 22, 1592–1604. [Google Scholar] [CrossRef]
- Venancio, T.M.; Aravind, L. CYSTM, a novel cysteine-rich transmembrane module with a role in stress tolerance across eukaryotes. Bioinformatics 2010, 26, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Kuramata, M.; Masuya, S.; Takahashi, Y.; Kitagawa, E.; Inoue, C.; Ishikawa, S.; Youssefian, S.; Kusano, T. Novel cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation. Plant Cell Physiol. 2009, 50, 106–117. [Google Scholar] [CrossRef]
- Rzhetsky, A.; Nei, M. A simple method for estimating and testing minimum-evolution trees. Mol. Biol. Evol. 1992, 9, 945–967. [Google Scholar] [CrossRef]
- Goodstein, D.M.; Shu, S.Q.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef] [PubMed]
- Lamesch, P.; Berardini, T.Z.; Li, D.H.; Swarbreck, D.; Wilks, C.; Sasidharan, R.; Muller, R.; Dreher, K.; Alexander, D.L.; Garcia-Hernandez, M.; et al. The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Res. 2012, 40, D1202–D1210. [Google Scholar] [CrossRef] [PubMed]
- Lang, D.; Ullrich, K.K.; Murat, F.; Fuchs, J.; Jenkins, J.; Haas, F.B.; Piednoel, M.; Gundlach, H.; Bel, M.V.; Meyberg, R.; et al. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant J. 2018, 93, 515–533. [Google Scholar] [CrossRef]
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J.; et al. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef]
- Young, N.D.; Debelle, F.; Oldroyd, G.E.D.; Geurts, R.; Cannon, S.B.; Udvardi, M.K.; Benedito, V.A.; Mayer, K.F.X.; Gouzy, J.; Schoof, H.; et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 2011, 480, 520–524. [Google Scholar] [CrossRef]
- Schmutz, J.; McClean, P.E.; Mamidi, S.; Wu, G.A.; Cannon, S.B.; Grimwood, J.; Jenkins, J.; Shu, S.; Song, Q.; Chavarro, C.; et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet. 2014, 46, 707–713. [Google Scholar] [CrossRef]
- Jaillon, O.; Aury, J.M.; Noel, B.; Policriti, A.; Clepet, C.; Casagrande, A.; Choisne, N.; Aubourg, S.; Vitulo, N.; Jubin, C.; et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 2007, 449, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.Y.; Cao, S.; Wang, X.; Huang, S.Y.; Wang, Y.; Liu, Z.J.; Liu, W.W.; Leng, X.P.; Peng, Y.L.; Wang, N.; et al. The complete reference genome for grapevine (Vitis vinifera L.) genetics and breeding. Hortic. Res. 2023, 10, uhad061. [Google Scholar] [CrossRef]
- Sato, S.; Tabata, S.; Hirakawa, H.; Asamizu, E.; Shirasawa, K.; Isobe, S.; Kaneko, T.; Nakamura, Y.; Shibata, D.; Aoki, K.; et al. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012, 485, 635–641. [Google Scholar] [CrossRef]
- Tuskan, G.A.; Difazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev, I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A.; et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006, 313, 1596–1604. [Google Scholar] [CrossRef]
- Xu, C.Q.; Song, L.Y.; Li, J.; Zhang, L.D.; Guo, Z.J.; Ma, D.N.; Dai, M.J.; Li, Q.H.; Liu, J.Y.; Zheng, H.L. MangroveDB: A Comprehensive Online Database for Mangroves Based on Multi-Omics Data. Plant Cell Environ. 2025, 48, 2950–2962. [Google Scholar] [CrossRef]
- Ouyang, S.; Zhu, W.; Hamilton, J.; Lin, H.; Campbell, M.; Childs, K.; Thibaud-Nissen, F.; Malek, R.L.; Lee, Y.; Zheng, L.; et al. The TIGR Rice Genome Annotation Resource: Improvements and new features. Nucleic Acids Res. 2007, 35, D883–D887. [Google Scholar] [CrossRef]
- Gordon, S.P.; Contreras-Moreira, B.; Woods, D.P.; Marais, D.L.D.; Burgess, D.; Shu, S.Q.; Stritt, C.; Roulin, A.C.; Schackwitz, W.; Tyler, L.; et al. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat. Commun. 2017, 8, 2184. [Google Scholar] [CrossRef] [PubMed]
- Schnable, P.S.; Ware, D.; Fulton, R.S.; Stein, J.C.; Wei, F.; Pasternak, S.; Liang, C.; Zhang, J.; Fulton, L.; Graves, T.A.; et al. The B73 maize genome: Complexity, diversity, and dynamics. Science 2009, 326, 1112–1115. [Google Scholar] [CrossRef]
- Thibivilliers, S.; Farmer, A.; Libault, M. Biological and cellular functions of the microdomain-associated FWL/CNR protein family in plants. Plants 2020, 9, 377. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.Z.; Brechenmacher, L.; Smith, B.; Strout, G.W.; Mangin, W.; Taylor, C.; Russell, S.D.; Stacey, G.; Libault, M. The GmFWL1 (FW2-2-like) nodulation gene encodes a plasma membrane microdomain-associated protein. Plant Cell Environ. 2017, 40, 1442–1455. [Google Scholar] [CrossRef]
- Nesbitt, T.C.; Tanksley, S.D. fw2. 2 directly affects the size of developing tomato fruit, with secondary effects on fruit number and photosynthate distribution. Plant Physiol. 2001, 127, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xiong, W.T.; Cao, B.B.; Yan, T.Z.; Fan, T.T.; Luo, M.Z. Molecular characterization and functional analysis of “fruit-weight2. 2-like” gene family in rice. Planta 2013, 238, 643–655. [Google Scholar] [CrossRef]
- Li, Z.C.; He, C.Y. Physalis floridana Cell Number Regulator1 encodes a cell membrane-anchored modulator of cell cycle and negatively controls fruit size. J. Exp. Bot. 2015, 66, 257–270. [Google Scholar] [CrossRef]
- Xiong, W.T.; Wang, P.; Yan, T.Z.; Cao, B.B.; Xu, J.; Liu, D.F.; Luo, M.Z. The rice “fruit-weight 2.2-like” gene family member OsFWL4 is involved in the translocation of cadmium from roots to shoots. Planta 2018, 247, 1247–1260. [Google Scholar] [CrossRef]
- Liu, Z.W.; Cheng, Q.; Sun, Y.F.; Dai, H.X.; Song, G.Y.; Guo, Z.B.; Qu, X.F.; Jiang, D.M.; Liu, C.; Wang, W.; et al. A SNP in OsMCA1 responding for a plant architecture defect by deactivation of bioactive GA in rice. Plant Mol. Biol. 2015, 87, 17–30. [Google Scholar] [CrossRef]
- Rosa, M.; Abraham-Juárez, M.J.; Lewis, M.W.; Fonseca, J.P.; Tian, W.; Ramirez, V.; Luan, S.; Pauly, M.; Hake, S. The maize mid-complementing activity homolog cell number regulator13/narrow odd dwarf coordinates organ growth and tissue patterning. Plant Cell 2017, 29, 474–490. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef]
- Kratochvil, H.T.; Watkins, L.C.; Mravic, M.; Thomaston, J.L.; Nicoludis, J.M.; Somberg, N.H.; Liu, L.J.; Hong, M.; Voth, G.A.; DeGrado, W.F. Transient water wires mediate selective proton transport in designed channel proteins. Nat. Chem. 2023, 15, 1012–1021. [Google Scholar] [CrossRef]
- Koornneef, M.; Meinke, D. The development of Arabidopsis as a model plant. Plant J. 2010, 61, 909–921. [Google Scholar] [CrossRef]
- Meinke, D.W.; Cherry, J.M.; Dean, C.; Rounsley, S.D.; Koornneef, M. Arabidopsis thaliana: A model plant for genome analysis. Science 1998, 282, 662–682. [Google Scholar] [CrossRef] [PubMed]
- Wegener, K.L.; Campbell, I.D. Transmembrane and cytoplasmic domains in integrin activation and protein-protein interactions. Mol. Membr. Biol. 2008, 25, 376–387. [Google Scholar] [CrossRef] [PubMed]
- MacDiarmid, C.W.; Milanick, M.A.; Eide, D.J. Induction of the ZRC1 metal tolerance gene in zinc-limited yeast confers resistance to zinc shock. J. Biol. Chem. 2003, 278, 15065–15072. [Google Scholar] [CrossRef]
- Ding, J.M.; Huang, X.W.; Zhang, L.M.; Zhao, N.; Yang, D.M.; Zhang, K.Q. Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2009, 85, 253–263. [Google Scholar] [CrossRef]
- Liu, M.Y.; Feng, Y.; Wang, M.; Sun, X.L.; Qi, C.Y.F.; Yang, X.; Zhang, D.Y. Sedum alfredii Hance: A cadmium and zinc hyperaccumulating plant. Ecotoxicol. Environ. Saf. 2025, 290, 117588. [Google Scholar] [CrossRef]
- Ge, J.; Lin, J.Y.; Wu, Z.Y.; Xu, K.; Tao, J.Y.; Lin, H.Z.; Tian, S.K.; Lu, L.I. Role of SaPCR2 in Zn Uptake in the Root Elongation Zone of the Zn/Cd Hyperaccumulator Sedum alfredii. Life 2022, 12, 768. [Google Scholar] [CrossRef]
- Mukherjee, G.; Saha, C.; Naskar, N.; Mukherjee, A.; Mukherjee, A.; Lahiri, S.; Majumder, A.L.; Seal, A. An endophytic bacterial consortium modulates multiple strategies to improve arsenic phytoremediation efficacy in Solanum nigrum. Sci. Rep. 2018, 8, 6979. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.Z.U.; Rizwan, M.; Ali, S.; Ok, Y.S.; Ishaque, W.; Saifullah; Nawaz, M.F.; Akmal, F.; Waqar, M. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review. Ecotoxicol. Environ. Saf. 2017, 143, 236–248. [Google Scholar] [CrossRef]
- Wang, J.C.; Chen, X.F.; Chu, S.H.; You, Y.M.; Chi, Y.W.; Wang, R.Y.; Yang, X.Y.; Hayat, K.; Zhang, D.; Zhou, P. Comparative cytology combined with transcriptomic and metabolomic analyses of Solanum nigrum L. in response to Cd toxicity. J. Hazard. Mater. 2022, 423, 127168. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Jia, J.B.; Wei, S.H.; Zhan, J.; Kong, G.N.; Wang, B.Y.; Robinson, B.H.; Skuza, H.; Xue, J.M.; Dai, H.P. Differences in cadmium accumulation and physiological characteristics of three different ecotypes of the hyperaccumulator Solanum nigrum L. survived in northern, central and southern China. Sci. Total Environ. 2025, 989, 179885. [Google Scholar] [CrossRef]
- Milner, M.J.; Craft, E.; Yamaji, N.; Koyama, E.; Ma, J.F.; Kochian, L.V. Characterization of the high affinity Zn transporter from Noccaea caerulescens, NcZNT1, and dissection of its promoter for its role in Zn uptake and hyperaccumulation. New Phytol. 2012, 195, 113–123. [Google Scholar] [CrossRef]
- He, F.; Shi, Y.J.; Li, J.L.; Lin, T.T.; Zhao, K.J.; Chen, L.H.; Mi, J.X.; Zhang, F.; Zhong, Y.; Lu, M.M.; et al. Genome-wide analysis and expression profiling of Cation/H+ exchanger (CAX) family genes reveal likely functions in cadmium stress responses in poplar. Int. J. Biol. Macromol. 2022, 204, 76–88. [Google Scholar] [CrossRef]
- Sun, H.X.; Ding, Y.W.; Wang, Z.W.; Luo, J.; Wang, N. Identification of a root-specific expression promoter in poplar and its application in genetic engineering for cadmium phytoremediation. Plant Cell Rep. 2025, 44, 89. [Google Scholar] [CrossRef]
- Shi, Y.J.; Niu, M.X.; Feng, C.H.; Li, J.L.; Lin, T.T.; Wang, T.; Zhao, K.J.; Hou, G.R.; Chen, L.H.; He, F. Overexpression of PtrAREB3 improved cadmium enrichment and tolerance in poplar. Environ. Exp. Bot. 2023, 210, 105343. [Google Scholar] [CrossRef]
- Qiao, K.; Shan, Q.H.; Zhang, H.Z.; Lv, F.L.; Zhou, A.M. Populus euphratica plant cadmium tolerance PePCR3 improves cadmium tolerance. Tree Physiol. 2023, 43, 1950–1963. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.L.; Shan, Q.H.; Qiao, K.; Zhang, H.Z.; Zhou, A.M. Populus euphratica plant cadmium resistance 2 mediates Cd tolerance by root efflux of Cd ions in poplar. Plant Cell Rep. 2023, 42, 1777–1789. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Chen, X.; Liu, W.Z.; Yang, L.Y.; Wu, J.T.; Wang, Y.; Yu, W.J.; Zhou, J.; Fayyaz, P.; Luo, Z.B.; et al. Homolog of human placenta-specific gene 8, pcplac8-10, enhances cadmium uptake by Populus roots. J. Hazard. Mater. 2023, 460, 132349. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Liu, S.; Chen, Z.; Qiu, L.; Wang, X.; Kang, X.; Gao, J.; Guo, P.; Lin, W.; Pan, C. Research Progress on PCR (Plant Cadmium Resistance) Genes in Plants. Biology 2025, 14, 1163. https://doi.org/10.3390/biology14091163
Li H, Liu S, Chen Z, Qiu L, Wang X, Kang X, Gao J, Guo P, Lin W, Pan C. Research Progress on PCR (Plant Cadmium Resistance) Genes in Plants. Biology. 2025; 14(9):1163. https://doi.org/10.3390/biology14091163
Chicago/Turabian StyleLi, Hongzheng, Shuyu Liu, Zhiqi Chen, Linyan Qiu, Xianfeng Wang, Xianhui Kang, Jujuan Gao, Pingping Guo, Wenbo Lin, and Chenglang Pan. 2025. "Research Progress on PCR (Plant Cadmium Resistance) Genes in Plants" Biology 14, no. 9: 1163. https://doi.org/10.3390/biology14091163
APA StyleLi, H., Liu, S., Chen, Z., Qiu, L., Wang, X., Kang, X., Gao, J., Guo, P., Lin, W., & Pan, C. (2025). Research Progress on PCR (Plant Cadmium Resistance) Genes in Plants. Biology, 14(9), 1163. https://doi.org/10.3390/biology14091163