An Assessment of the Effective Pollination Period and Its Main Limiting Factor in Wurfbainia villosa var. villosa (Lour.) Škorničk. & A. D. Poulsen (Zingiberaceae)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Material
2.2. Determination of Effective Pollination Period Using Stigma Receptivity, Style Suitability, Pollen Tube Growth Rate, and Ovule Longevity
2.2.1. Methods for Assessing Stigma Receptivity and Style Suitability
2.2.2. Methods for Assessing Pollen Tube Growth Rate
2.2.3. Methods for Assessing Ovule Longevity
2.3. Determination of Effective Pollination Period Assessed Using Initial Fruit Set
2.4. Statistical Analysis
3. Results
3.1. Effective Pollination Period Assessed by Stigma Receptivity, Style Suitability, Pollen Tube Growth Rate, and Ovule Longevity
3.1.1. Stigma Receptivity and Style Suitability
3.1.2. Pollen Tube Growth Rate
3.1.3. Ovule Longevity
3.1.4. Estimated Effective Pollination Period
3.2. Effective Pollination Period Assessed by Initial Fruit Set
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | anther |
AF | Amomi Fructus |
AP | axile placentation |
BF | bright fluorescence |
D or DAA | days after anthesis |
EO | entering ovules |
EPP | a generalized linear model |
GLM | effective pollination period |
GP | germinated pollen |
HAP | hours after pollination |
I | integument |
IFS | initial fruit set |
L | Lip |
LP | lower part of the style |
N | Nucellus |
O | ovary |
OL | ovule longevity |
Ov | ovule |
P | pollen |
PT | pollen tubes |
SR | stigma receptivity |
PA | pollen adhesion |
PG | pollen germination |
PTG | pollen tube growth rate |
S | stigma |
SS | style suitability |
St | style |
W. villosa var. villosa | Wurfbainia villosa var. villosa (Lour.) Skornick. & A. D. Poulsen |
References
- Selak, G.V.; Cuevas, J.; Pinillos, V.; Ban, S.G.; Poljak, M.; Perica, S. Assessment of effective pollination period in olive (Olea europaea) by means of fluorescence microscopy and plant response to sequential pollinations: Limitations and drawbacks of current methodologies. Trees 2014, 28, 1497–1505. [Google Scholar] [CrossRef]
- Ortega, E.; Egea, J.; Dicenta, F. Effective pollination period in almond cultivars. HortScience 2004, 39, 19–22. [Google Scholar] [CrossRef]
- Williams, R.R. The effect of summer nitrogen applications on the quality of apple blossom. J. Hortic. Sci. Biotechnol. 1965, 40, 31–41. [Google Scholar] [CrossRef]
- Egea, J.; Burgos, L. Effective pollination period as related to stigma receptivity in apricot. Sci. Hortic. 1992, 52, 77–83. [Google Scholar] [CrossRef]
- Sanzol, J.; Herrero, M. The “effective pollination period” in fruit trees. Sci. Hortic. 2001, 90, 1–17. [Google Scholar] [CrossRef]
- Guerrero-Prieto, V.M.; Rascón-Chu, A.; Romo-Chacón, A.; Berlanga-Reyes, D.I.; Orozco-Avitia, J.A.; Gardea-Béjar, A.A.; Parra-Quezada, R. Sánchez-Chávez, E. Effective pollination period in ‘RedChief’ and ‘Golden Delicious’ apples (Malus domestica Borkh). Span. J. Agric. Res. 2009, 4, 928–932. [Google Scholar] [CrossRef]
- Tromp, J.; Borsboom, O. The effect of autumn and spring temperature on fruit set and on the effective pollination period in apple and pear. Sci. Hortic. 1994, 60, 23–30. [Google Scholar] [CrossRef]
- Burgos, L.; Egea, J.; Dicenta, F. Effective pollination period in apricot (Prunus armeniaca L.) varieties. Ann. Appl. Biol. 1991, 119, 533–539. [Google Scholar] [CrossRef]
- Brantley, A.K.; Spiers, J.D.; Thompson, A.B.; Pitts, J.A.; Kessler, J.R.; Wright, A.N.; Coneva, E.D. Effective pollination period of Actinidia chinensis ‘AU Golden Sunshine’ and A. deliciosa ‘AU Fitzgerald’ kiwifruit. HortScience 2019, 54, 656–660. [Google Scholar] [CrossRef]
- Hedhly, A.; Hormaza, J.I.; Herrero, M. The effect of temperature on stigmatic receptivity in sweet cherry (Prunus avium L.). Plant Cell Environ. 2003, 26, 1673–1680. [Google Scholar] [CrossRef]
- Hedhly, A.; Hormaza, J.I.; Herrero, M. The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach. Plant Biol. 2005, 7, 476–483. [Google Scholar] [CrossRef]
- Yue, J.; Yan, Z.; Liu, W.; Liu, J.; Yang, D. A visual pollination mechanism of a new specialized pollinating weevil-plant reciprocity system. Front. Plant Sci. 2024, 15, 1432263. [Google Scholar] [CrossRef]
- Zuo, X.; Wang, Y.; Zhao, H.; Li, G.; Wang, Y.; Li, G.; Zhang, L.; Gao, W. Allelopathic effects of Amomum villosum Lour. volatiles from different organs on selected plant species and soil microbiota. Plants 2022, 11, 3550. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-F.; Chen, L.-X.; Chen, Y.-N.; Zhao, J.; Leong, F.; Li, X.-W.; Yang, Q.; Li, P.; Hu, H. Sustainable development of Amomum villosum: A systematic investigation on three different production modes. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.H.; Yuan, C.; Tang, L.; Peng, J.M.; Zhang, K.L.; Li, G.; Ma, X.J. Responses of clonal growth and photosynthesis in Amomum villosum to different light environments. Photosynthetica 2015, 54, 396–404. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2020; Volume 1, p. 264.
- Zhou, S. Cultivation of Amomum villosum in tropical forests. For. Ecol. Manag. 1993, 60, 157–162. [Google Scholar] [CrossRef]
- Feng, Y.-L.; Li, X. The combined effects of soil moisture and irradiance on growth, biomass allocation, morphology and photosynthesis in Amomum villosum. Agrofor. Syst. 2007, 71, 89–98. [Google Scholar] [CrossRef]
- Zhang, T.; Lu, S.H.; Bi, Q.; Liang, L.; Wang, Y.F.; Yang, X.X.; Gu, W.; Yu, J. Volatile oil from Amomi fructus attenuates 5-fluorouracil-induced intestinal mucositis. Front. Pharmacol. 2017, 8, 786. [Google Scholar] [CrossRef]
- Ao, H.; Wang, J.; Chen, L.; Li, S.; Dai, C. Comparison of volatile oil between the fruits of Amomum villosum Lour. and Amomum villosum Lour. var. xanthioides T. L. Wu et Senjen based on GC-MS and chemometric techniques. Molecules 2019, 24, 1663. [Google Scholar] [CrossRef]
- Yang, R.; Wang, J.; Gao, W.; Jiang, Y.; Su, J.; Sun, D.; He, G.; Pellegrino, G. Research on the reproductive biological characteristics of Amomum villosum Lour. and Amomum longiligulare T. L. Wu. PLoS ONE 2021, 16, e0250335. [Google Scholar] [CrossRef]
- DB53/T 957.5-2019; Technical Regulations for Amomum Villosum Production—Part 5: Cultivation Management. Yunnan Provincial Administration for Market Regulation: Kunming, China, 2019. Available online: https://dbba.sacinfo.org.cn/ (accessed on 15 July 2025).
- Roeder, S.; Serra, S.; Musacchi, S. Effective pollination period and parentage effect on pollen tube growth in apple. Plants 2021, 10, 1618. [Google Scholar] [CrossRef]
- Cuevas, J.; Pinillos, V.; Polito, V. Effective pollination period for ‘Manzanillo’ and ‘Picual’ olive trees. J. Hortic. Sci. Biotechnol. 2009, 84, 370–374. [Google Scholar] [CrossRef]
- Sanzol, J.; Rallo, P.; Herrero, M. Asynchronous development of stigmatic receptivity in the pear (Pyrus communis; Rosaceae) flower. Am. J. Bot. 2003, 90, 78–84. [Google Scholar] [CrossRef]
- Zhang, L.; Ferguson, L.; Whiting, M.D. Temperature effects on pistil viability and fruit set in sweet cherry. Sci. Hortic. 2018, 241, 8–17. [Google Scholar] [CrossRef]
- Yi, W.; Law, S.E.; Mccoy, D.; Wetzstein, H.Y. Stigma development and receptivity in almond (Prunus dulcis). Ann. Bot. 2005, 97, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Buszard, D.; Schwabe, W. Effect of previous crop load on stigmatic morphology of apple flowers. J. Am. Soc. Hortic. Sci. 1995, 120, 566–570. [Google Scholar] [CrossRef]
- Losada, J.M.; Herrero, M. Arabinogalactan-protein secretion is associated with the acquisition of stigmatic receptivity in the apple flower. Ann. Bot. 2012, 110, 573–584. [Google Scholar] [CrossRef]
- Vuletin Selak, G.; Cuevas, J.; Goreta Ban, S.; Pinillos, V.; Dumicic, G.; Perica, S. The effect of temperature on the duration of the effective pollination period in ‘Oblica’ olive (Olea europaea) cultivar. Ann. Appl. Biol. 2013, 164, 85–94. [Google Scholar] [CrossRef]
- Sanzol, J.; Rallo, P.; Herrero, M. Stigmatic receptivity limits the effective pollination period in ‘Agua de Aranjuez’ pear. J. Am. Soc. Hortic. Sci. 2003, 128, 458–462. [Google Scholar] [CrossRef]
- DeLong, C.N.; Yoder, K.S.; Combs, L.; Veilleux, R.E.; Peck, G.M. apple pollen tube growth rates are regulated by parentage and environment. J. Am. Soc. Hortic. Sci. 2016, 141, 548–554. [Google Scholar] [CrossRef]
- Cerović, R.; Ružić, Ð.; Mićić, N. Viability of plum ovules at different temperatures. Ann. Appl. Biol. 2000, 137, 53–59. [Google Scholar] [CrossRef]
- Cuevas, J.; Rallo, L.; Rapoport, H. Procedure to study ovule senescence in olive. Acta Hortic. 1994, 356, 252–255. [Google Scholar] [CrossRef]
- Tonutti, P.; Bargioni, G.; Cossio, F.; Ramina, A. Effective pollination period and ovule longevity in Prunus avium L. Adv. Hortic. Sci. 1991, 5, 157–162. [Google Scholar]
Year 1 | Cultivar | DAA (days) | PA | PG | LP | EO |
---|---|---|---|---|---|---|
2022 | Yunsha 1 Hao | 0 | 100.0 ± 0 a 2 | 100.0 ± 0 a | 100.0 ± 0 a | 95.2 ± 4.8 a |
1 | 100.0 ± 0 a | 100.0 ± 0 a | 100.0 ± 0 a | 61.5 ± 9.7 b | ||
2 | 89.5 ± 7.2 a | 63.2 ± 11.4 b | 0.0 ± 0 b | 0.0 ± 0 c | ||
Yunsha 2 Hao | 0 | 100.0 ± 0 a | 100.0 ± 0 a | 90.3 ± 5.4 a | 87.1 ± 6.1 a | |
1 | 82.6 ± 8.1 a | 78.3 ± 8.8 b | 56.5 ± 10.6 b | 50.0 ± 10.0 b | ||
2 | 100.0 ± 0 a | 88.9 ± 11.1 ab | 0.0 ± 0 c | 0.0 ± 0 c | ||
2023 | Yunsha 1 Hao | 0 | 100.0 ± 0 a | 100.0 ± 0 a | 100.0 ± 0 a | 93.3 ± 4.6 a |
1 | 100.0 ± 0 a | 100.0 ± 0 a | 96.7 ± 3.3 a | 36.7 ± 8.9 b | ||
2 | 90.0 ± 5.6 a | 73.3 ± 8.2 b | 60.0 ± 9.1 b | 0 ± 0 c | ||
Yunsha 2 Hao | 0 | 100.0 ± 0 a | 100.0 ± 0 a | 100.0 ± 0 a | 96.7 ± 3.3 a | |
1 | 100.0 ± 0 a | 100.0 ± 0 a | 80.0 ± 7.4 b | 70 ± 8.5 b | ||
2 | 40.3 ± 9.2 b | 40.0 ± 9.1 b | 30.0 ± 8.5 c | 6.7 ± 4.6 c |
Sampling Time after Pollination (h) | 2022 | 2023 | ||
---|---|---|---|---|
Yunsha 1 Hao | Yunsha 2 Hao | Yunsha 1 Hao | Yunsha 2 Hao | |
8 | 8.3 ± 5.8 b | 12.0 ± 6.6 c | 3.2 ± 3.2 b | 0 ± 0 c |
24 | 88.9 ± 6.2 a | 75.9 ± 8.1 b | 100 ± 0 a | 64.5 ± 8.7 b |
48 | 90.0 ± 5.6 a | 95.8 ± 4.2 a | 100 ± 0 a | 87.5 ± 5.9 a |
DAA 1 (days) | 2022 | 2023 | ||
---|---|---|---|---|
Yunsha 1 Hao | Yunsha 2 Hao | Yunsha 1 Hao | Yunsha 2 Hao | |
0 | 0 ± 0 c 2 | 0 ± 0 c | 0 ± 0 c | 0 ± 0 c |
1 | 0 ± 0 c | 0 ± 0 c | 0 ± 0 c | 0 ± 0 c |
2 | 0 ± 0 c | 0 ± 0 c | 0 ± 0 c | 0 ± 0 c |
3 | 75.0 ± 13.1 a | 36.4 ± 15.2 ab | 13.3 ± 6.3 c | 0 ± 0 c |
4 | 37.5 ± 18.3 ab | 50.0 ± 15.1 a | 67.8 ± 6.1 b | 92.9 ± 5.0 a |
5 | 57.1 ± 13.7 a | 20 ± 13.3 abc | 96.4 ± 3.6 a | 0 ± 0 c |
6 | 56.3 ± 12.8 a | 11.8 ± 8.1 bc | 93.5 ± 4.5 a | 23.3 ± 7.9 b |
7 | — | 0 ± 0 c | 88.0 ± 6.6 a | 17.2 ± 7.1 b |
8 | 21.4 ± 11.4 bc | — | 58.8 ± 8.6 b | — |
9 | — | — | — | 6.9 ± 4.8 bc |
Year | 2022 | 2023 | ||||||
---|---|---|---|---|---|---|---|---|
Cultivar | Yunsha 1 Hao | Yunsha 2 Hao | Yunsha 1 Hao | Yunsha 2 Hao | ||||
DAA | Days | DAA | Days | DAA | Days | DAA | Days | |
SR | 0, 1, 2 | >3 | 0, 1, 2 | >3 | 0, 1, 2 | >3 | 0, 1, 2 | >3 |
SS | 0, 1 | 2 | 0, 1 | 2 | 0, 1 | 2 | 0, 1 | 2 |
PTG | 1 | 1 | 1 | 1 | ||||
OL | 0, 1, 2 | >3 | 0, 1, 2 | >3 | 0, 1, 2 | >3 | 0, 1, 2 | >4 |
OL minus PTG | >2 | >2 | >2 | >3 | ||||
EPP | 0, 1 | 2 | 0, 1 | 2 | 0, 1 | 2 | 0, 1 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Wang, Y.; Li, G.; Li, S.; Zhao, H.; Yang, C.; Guan, Z.; Zhu, Y.; Xiao, L.; Wang, Y.; et al. An Assessment of the Effective Pollination Period and Its Main Limiting Factor in Wurfbainia villosa var. villosa (Lour.) Škorničk. & A. D. Poulsen (Zingiberaceae). Biology 2025, 14, 1134. https://doi.org/10.3390/biology14091134
Li Q, Wang Y, Li G, Li S, Zhao H, Yang C, Guan Z, Zhu Y, Xiao L, Wang Y, et al. An Assessment of the Effective Pollination Period and Its Main Limiting Factor in Wurfbainia villosa var. villosa (Lour.) Škorničk. & A. D. Poulsen (Zingiberaceae). Biology. 2025; 14(9):1134. https://doi.org/10.3390/biology14091134
Chicago/Turabian StyleLi, Qianxia, Yanqian Wang, Ge Li, Shuang Li, Hongyou Zhao, Chunyong Yang, Zhibing Guan, Yating Zhu, Lin Xiao, Yanfang Wang, and et al. 2025. "An Assessment of the Effective Pollination Period and Its Main Limiting Factor in Wurfbainia villosa var. villosa (Lour.) Škorničk. & A. D. Poulsen (Zingiberaceae)" Biology 14, no. 9: 1134. https://doi.org/10.3390/biology14091134
APA StyleLi, Q., Wang, Y., Li, G., Li, S., Zhao, H., Yang, C., Guan, Z., Zhu, Y., Xiao, L., Wang, Y., & Zhang, L. (2025). An Assessment of the Effective Pollination Period and Its Main Limiting Factor in Wurfbainia villosa var. villosa (Lour.) Škorničk. & A. D. Poulsen (Zingiberaceae). Biology, 14(9), 1134. https://doi.org/10.3390/biology14091134