Revisiting Male Fertility in Livestock: The Case of Bull Sperm RNA
Simple Summary
Abstract
1. Introduction
2. Importance of Reproductive Efficiency
3. Male Contribution to Embryonic Loss
4. Reported Sperm-Borne RNA Types
5. Sperm Transcriptomic Profiling and Its Potential to Diagnose Male Fertility
Species | Phenotype | Technology | Findings | Reference |
---|---|---|---|---|
Bovine | High vs. Low Fertility | Microarrays | 415 of 24,000 transcripts were differentially detected in both groups | [65] |
Bovine | High vs. Low Fertility | miRNA sequencing | 15 miRNAs were differentially expressed (9 known miRNAs and 6 new ones) | [67] |
Bovine | High vs. Low Fertility | miRNA sequencing | 85 miRNAs, 2 of them differentially expressed and 9 significantly correlated with the rate of non-return to estrus | [48] |
Bovine | High vs. Low sperm motility | Coding and non-coding RNA sequencing | 20,875 protein-coding RNAs (19 were differentially expressed); 11,561 were lncRNAs (2517 were differentially expressed) | [68] |
Bovine | High vs. Low Fertility | mRNA sequencing | A total of 776 transcripts were found (84 specific to the high-fertility group and 168 specific to the low-fertility group); 176 were at higher levels and 209 at lower levels in the low-fertility group | [69] |
Bovine | High vs. Low Fertility | mRNA sequencing | 3227 transcripts were found (805 and 5366 unique in the highest- and lowest-fertility group, respectively, and 2944 in common); 41 transcripts had differential levels between groups | [44] |
Buffalo | High vs. Low Fertility | Microarrays | 51,282 transcripts were found, 113 with higher levels and 596 with lower levels in the low-fertility group | [36] |
ovine | Three breeds and high vs. low ejaculate quality | mRNA sequencing | There were different transcripts with differentiated levels between the three breeds and 39 differentiated between ejaculate quality, most of them (33) with lower levels in high-quality ejaculates | [35] |
Ovine | High vs. Low Fertility | Small non-coding RNAs sequencing | A total of 1673 known and 627 novel miRNAs were identified, with 227 differentially expressed miRNAs between the HF and LF groups | [37] |
Porcine | Fresh vs. Frozen Semen | mRNA and miRNA sequencing | 567 mRNAs and 135 miRNAs were differentially expressed | [33] |
Porcine | Summer vs. winter ejaculates | mRNA sequencing | 14 transcripts with higher levels and 20 with lower levels in the summer group; in addition, 5 miRNAs were down-regulated and 2 were up-regulated in the winter group | [63] |
Horse | Fertile vs. Subfertile | Microarrays | 437 differentially expressed genes between groups; OAS1, OAS2, IL13, and IL22RA1 were validated by qPCR, with higher levels in the fertile group | [46] |
6. Characteristics of the LYRM4 Gene
7. Practical Applications of Sperm RNA Biomarkers in Livestock
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Viana, J. Statistics of embryo production and transfer in domestic farm animals: The main trends for the world embryo industry still stand. Embryo Technol. Newsl. 2023, 41, 20–38. [Google Scholar]
- Ealy, A.D.; Wooldridge, L.K.; McCoski, S.R. BOARD INVITED REVIEW: Post-transfer consequences of in vitro-produced embryos in cattle. J. Anim. Sci. 2019, 97, 2555–2568. [Google Scholar] [CrossRef] [PubMed]
- Vishwanath, R. Artificial insemination: The state of the art. Theriogenology 2003, 59, 571–584. [Google Scholar] [CrossRef]
- Pang, W.K.; Amjad, S.; Ryu, D.Y.; Adegoke, E.O.; Rahman, M.S.; Park, Y.J.; Pang, M.G. Establishment of a male fertility prediction model with sperm RNA markers in pigs as a translational animal model. J. Anim. Sci. Biotechnol. 2022, 13, 84. [Google Scholar] [CrossRef]
- Lockhart, K.N.; Drum, J.N.; Balboula, A.Z.; Spinka, C.M.; Spencer, T.E.; Ortega, M.S. Sire modulates developmental kinetics and transcriptome of the bovine embryo. Reproduction 2023, 166, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Fallon, L.; Diaz-Miranda, E.; Hamilton, L.; Sutovsky, P.; Zigo, M.; Spencer, T.E.; Ortega, M.S. The development of new biomarkers of spermatozoa quality in cattle. Front. Veter. Sci. 2023, 10, 1258295. [Google Scholar] [CrossRef] [PubMed]
- Talluri, T.R.; Kumaresan, A.; Sinha, M.K.; Paul, N.; King, J.P.E.S.; Datta, T.K. Integrated multi-omics analyses reveals molecules governing sperm metabolism potentially influence bull fertility. Sci. Rep. 2022, 12, 10692. [Google Scholar] [CrossRef] [PubMed]
- Selvaraju, S.; Parthipan, S.; Somashekar, L.; Kolte, A.P.; Krishnan Binsila, B.; Arangasamy, A.; Ravindra, J.P. Occurrence and functional significance of the transcriptome in bovine (Bos taurus) spermatozoa. Sci. Rep. 2017, 7, 42392. [Google Scholar] [CrossRef]
- Fernandez-Novo, A.; Perez-Garnelo, S.S.; Villagra, A.; Perez-Villalobos, N.; Astiz, S. The Effect of Stress on Reproduction and Reproductive Technologies in Beef Cattle—A Review. Animals 2020, 10, 2096. [Google Scholar] [CrossRef]
- Tolosa, F.; Netsere, M.; Habtamu, Y. Assessment of Major Reproductive Disorders in Dairy Cattle in and around Bale Robe, Oromia Regional State, Ethiopia. Vet. Med. Int. 2021, 2021, 8855718. [Google Scholar] [CrossRef]
- Brandão, A.P.; Cooke, R.F. Effects of Temperament on the Reproduction of Beef Cattle. Animals 2021, 11, 3325. [Google Scholar] [CrossRef]
- Lamb, G.C.; Dahlen, C.; Maddox, M. What is the Economic Impact of Infertility in Beef Cattle? AN208/AN208, 8/2008; EDIS: Gainesville, FL, USA, 2008. [Google Scholar]
- Armengol, R.; Fraile, L.; Bach, A. Key performance indicators used by dairy consultants during the evaluation of reproductive performance during routine visits. Front. Veter. Sci. 2023, 10, 1165184. [Google Scholar] [CrossRef]
- Starbuck, M.J. Factors Affecting Reproductive Efficiency of Cattle. Ph.D. Thesis, West Virginia University, Morgantown, WV, USA, 2005. [Google Scholar]
- Reese, S.T.; Franco, G.A.; Poole, R.K.; Hood, R.; Fernadez Montero, L.; Oliveira Filho, R.V.; Cooke, R.F.; Pohler, K.G. Pregnancy loss in beef cattle: A meta-analysis. Anim. Reprod. Sci. 2020, 212, 106251. [Google Scholar] [CrossRef]
- Albuja, C.; Ortiz, O.; López, C.; Hernández-Cerón, J. Economic impact of pregnancy loss in an intensive dairy farming system. Veter. Mex. 2019, 6, 1–8. [Google Scholar] [CrossRef]
- Diskin, M.G.; Morris, D.G. Embryonic and early foetal losses in cattle and other ruminants. Reprod. Domest. Anim. 2008, 43 (Suppl. S2), 260–267. [Google Scholar] [CrossRef]
- Pohler, K.G.; Reese, S.T.; Franco, G.A.; Oliveira Filho, R.V.; Paiva, R.; Fernandez, L.; de Melo, G.; Vasconcelos, J.L.M.; Cooke, R.; Poole, R.K. New approaches to diagnose and target reproductive failure in cattle. Anim. Reprod. 2020, 17, e20200057. [Google Scholar] [CrossRef]
- Wiltbank, M.C.; Baez, G.M.; Garcia-Guerra, A.; Toledo, M.Z.; Monteiro, P.L.; Melo, L.F.; Ochoa, J.C.; Santos, J.E.; Sartori, R. Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology 2016, 86, 239–253. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, E.; Sanchez, J.M.; McDonald, M.; Kelly, A.K.; Hamdi, M.; Maicas, C.; Fair, S.; Kenny, D.A.; Lonergan, P. Sire contribution to fertilization failure and early embryo survival in cattle. J. Dairy Sci. 2021, 104, 7262–7271. [Google Scholar] [CrossRef] [PubMed]
- Diskin, M.G.; Lonergan, P.; Kenny, D.A.; Fair, S. International Bull Fertility Conference–Theory to Practice, Westport, Ireland, 2018. Animal 2018, 12, s1–s3. [Google Scholar] [CrossRef] [PubMed]
- Le Blévec, E.; Muroňová, J.; Ray, P.F.; Arnoult, C. Paternal epigenetics: Mammalian sperm provide much more than DNA at fertilization. Mol. Cell. Endocrinol. 2020, 518, 110964. [Google Scholar] [CrossRef]
- Morgan, H.L.; Eid, N.; Khoshkerdar, A.; Watkins, A.J. Defining the male contribution to embryo quality and offspring health in assisted reproduction in farm animals. Anim. Reprod. 2020, 17, e20200018. [Google Scholar] [CrossRef]
- Conflitti, A.C.; Cicolani, G.; Buonacquisto, A.; Pallotti, F.; Faja, F.; Bianchini, S.; Blacona, G.; Bruno, S.M.; Linari, A.; Lucarelli, M.; et al. Sperm DNA Fragmentation and Sperm-Borne miRNAs: Molecular Biomarkers of Embryo Development? Int. J. Mol. Sci. 2023, 24, 1007. [Google Scholar] [CrossRef]
- Jodar, M. Sperm and seminal plasma RNAs: What roles do they play beyond fertilization? Reproduction 2019, 158, R113–R123. [Google Scholar] [CrossRef]
- Franco, G.; Reese, S.; Poole, R.; Rhinehart, J.; Thompson, K.; Cooke, R.; Pohler, K. Sire contribution to pregnancy loss in different periods of embryonic and fetal development of beef cows. Theriogenology 2020, 154, 84–91. [Google Scholar] [CrossRef]
- Indriastuti, R.; Pardede, B.P.; Gunawan, A.; Ulum, M.F.; Arifiantini, R.I.; Purwantara, B. Sperm Transcriptome Analysis Accurately Reveals Male Fertility Potential in Livestock. Animals 2022, 12, 2955. [Google Scholar] [CrossRef]
- Selvaraju, S.; Ramya, L.; Parthipan, S.; Swathi, D.; Binsila, B.K.; Kolte, A.P. Deciphering the complexity of sperm transcriptome reveals genes governing functional membrane and acrosome integrities potentially influence fertility. Cell Tissue Res. 2021, 385, 207–222. [Google Scholar] [CrossRef]
- Sellem, E.; Marthey, S.; Rau, A.; Jouneau, L.; Bonnet, A.; Perrier, J.P.; Fritz, S.; Le Danvic, C.; Boussaha, M.; Kiefer, H.; et al. A comprehensive overview of bull sperm-borne small non-coding RNAs and their diversity across breeds. Epigenet. Chromatin 2020, 13, 19. [Google Scholar] [CrossRef]
- Kasimanickam, V.; Kastelic, J. MicroRNA in sperm from Duroc, Landrace and Yorkshire boars. Sci. Rep. 2016, 6, 32954. [Google Scholar] [CrossRef] [PubMed]
- Capra, E.; Turri, F.; Lazzari, B.; Cremonesi, P.; Gliozzi, T.; Fojadelli, I.; Stella, A.; Pizzi, F. Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between High-and Low-motile sperm populations. BMC Genom. 2017, 18, 14. [Google Scholar] [CrossRef] [PubMed]
- Das, P.J.; McCarthy, F.; Vishnoi, M.; Paria, N.; Gresham, C.; Li, G.; Kachroo, P.; Sudderth, A.K.; Teague, S.; Love, C.C.; et al. Stallion sperm transcriptome comprises functionally coherent coding and regulatory RNAs as revealed by microarray analysis and RNA-seq. PLoS ONE 2013, 8, e56535. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.H.; Qazi, I.H.; Ran, M.X.; Liang, K.; Zhang, Y.; Zhang, M.; Zhou, G.B.; Angel, C.; Zeng, C.J. Exploration of miRNA and mRNA Profiles in Fresh and Frozen-Thawed Boar Sperm by Transcriptome and Small RNA Sequencing. Int. J. Mol. Sci. 2019, 20, 802. [Google Scholar] [CrossRef] [PubMed]
- Gòdia, M.; Castelló, A.; Rocco, M.; Cabrera, B.; Rodríguez-Gil, J.E.; Balasch, S.; Lewis, C.; Sánchez, A.; Clop, A. Identification of circular RNAs in porcine sperm and evaluation of their relation to sperm motility. Sci. Rep. 2020, 10, 7985. [Google Scholar] [CrossRef]
- Hodge, M.J.; de Las Heras-Saldana, S.; Rindfleish, S.J.; Stephen, C.P.; Pant, S.D. Characterization of Breed Specific Differences in Spermatozoal Transcriptomes of Sheep in Australia. Genes. 2021, 12, 203. [Google Scholar] [CrossRef]
- Paul, N.; Kumaresan, A.; Das Gupta, M.; Nag, P.; Guvvala, P.R.; Kuntareddi, C.; Sharma, A.; Selvaraju, S.; Datta, T.K. Transcriptomic Profiling of Buffalo Spermatozoa Reveals Dysregulation of Functionally Relevant mRNAs in Low-Fertile Bulls. Front. Veter. Sci. 2020, 7, 609518. [Google Scholar] [CrossRef] [PubMed]
- Bodu, M.; Hitit, M.; Donmez, H.; Kaya, A.; Ugur, M.R.; Memili, E. Exploration of Small Non-Coding RNAs as Molecular Markers of Ram Sperm Fertility. Int. J. Mol. Sci. 2025, 26, 2690. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.; Gupta, M.K. Transcriptome analysis reveals spermatogenesis-related CircRNAs and LncRNAs in goat spermatozoa. Biochem. Genet. 2024, 62, 2010–2032. [Google Scholar] [CrossRef]
- Hombach, S.; Kretz, M. Non-coding RNAs: Classification, biology and functioning. In Non-Coding RNAs in Colorectal Cancer; Springer: Cham, Switzerland, 2016; Volume 937, pp. 3–17. [Google Scholar] [CrossRef]
- Selvaraju, S.; Parthipan, S.; Somashekar, L.; Binsila, B.K.; Kolte, A.P.; Arangasamy, A.; Ravindra, J.P.; Krawetz, S.A. Current status of sperm functional genomics and its diagnostic potential of fertility in bovine (Bos taurus). Syst. Biol. Reprod. Med. 2018, 64, 484–501. [Google Scholar] [CrossRef]
- Prakash, M.A.; Kumaresan, A.; Sinha, M.K.; Kamaraj, E.; Mohanty, T.K.; Datta, T.K.; Morrell, J.M. RNA-Seq analysis reveals functionally relevant coding and non-coding RNAs in crossbred bull spermatozoa. Anim. Reprod. Sci. 2020, 222, 106621. [Google Scholar] [CrossRef]
- Gilbert, I.; Bissonnette, N.; Boissonneault, G.; Vallée, M.; Robert, C. A molecular analysis of the population of mRNA in bovine spermatozoa. Reproduction 2007, 133, 1073–1086. [Google Scholar] [CrossRef]
- Fagerlind, M.; Stålhammar, H.; Olsson, B.; Klinga-Levan, K. Expression of mi RNA s in bull spermatozoa correlates with fertility rates. Reprod. Domest. Anim. 2015, 50, 587–594. [Google Scholar] [CrossRef]
- Card, C.; Krieger, K.; Kaproth, M.; Sartini, B. Oligo-dT selected spermatozoal transcript profiles differ among higher and lower fertility dairy sires. Anim. Reprod. Sci. 2017, 177, 105–123. [Google Scholar] [CrossRef]
- Li, W.; Mi, S.; Zhang, J.; Liu, X.; Chen, S.; Liu, S.; Feng, X.; Tang, Y.; Li, Y.; Liu, L.; et al. Integrating sperm cell transcriptome and seminal plasma metabolome to analyze the molecular regulatory mechanism of sperm motility in Holstein stud bulls. J. Anim. Sci. 2023, 101, skad214. [Google Scholar] [CrossRef]
- Suliman, Y.; Becker, F.; Wimmers, K. Implication of transcriptome profiling of spermatozoa for stallion fertility. Reprod. Fertil. Dev. 2018, 30, 1087–1098. [Google Scholar] [CrossRef]
- Alvarez-Rodriguez, M.; Martinez, C.; Wright, D.; Barranco, I.; Roca, J.; Rodriguez-Martinez, H. The transcriptome of pig spermatozoa, and its role in fertility. Int. J. Mol. Sci. 2020, 21, 1572. [Google Scholar] [CrossRef]
- Keles, E.; Malama, E.; Bozukova, S.; Siuda, M.; Wyck, S.; Witschi, U.; Bauersachs, S.; Bollwein, H. The micro-RNA content of unsorted cryopreserved bovine sperm and its relation to the fertility of sperm after sex-sorting. BMC Genom. 2021, 22, 30. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Rodriguez, J.M.; Ortega-Ferrusola, C.; Gil, M.C.; Martin-Cano, F.E.; Gaitskell-Phillips, G.; Rodríguez-Martínez, H.; Hinrichs, K.; Alvarez-Barrientos, A.; Román, Á.; Pena, F.J. Transcriptome analysis reveals that fertilization with cryopreserved sperm downregulates genes relevant for early embryo development in the horse. PLoS ONE 2019, 14, e0213420. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Blondin, P.; Vigneault, C.; Labrecque, R.; Sirard, M.-A. Sperm miRNAs—Potential mediators of bull age and early embryo development. BMC Genom. 2020, 21, 798. [Google Scholar] [CrossRef] [PubMed]
- Menezes, E.S.B.; Badial, P.R.; El Debaky, H.; Husna, A.U.; Ugur, M.R.; Kaya, A.; Topper, E.; Bulla, C.; Grant, K.E.; Bolden-Tiller, O.; et al. Sperm miR-15a and miR-29b are associated with bull fertility. Andrologia 2020, 52, e13412. [Google Scholar] [CrossRef]
- Li, Y.; Li, R.H.; Ran, M.X.; Zhang, Y.; Liang, K.; Ren, Y.N.; He, W.C.; Zhang, M.; Zhou, G.B.; Qazi, I.H.; et al. High throughput small RNA and transcriptome sequencing reveal capacitation-related microRNAs and mRNA in boar sperm. BMC Genom. 2018, 19, 736. [Google Scholar] [CrossRef]
- Donnellan, E.M.; Perrier, J.P.; Keogh, K.; Stiavnicka, M.; Collins, C.M.; Dunleavy, E.M.; Sellem, E.; Bernecic, N.C.; Lonergan, P.; Kenny, D.A.; et al. Identification of differentially expressed mRNAs and miRNAs in spermatozoa of bulls of varying fertility. Front. Veter. Sci. 2022, 9, 993561. [Google Scholar] [CrossRef]
- Fraser, L.; Paukszto, Ł.; Mańkowska, A.; Brym, P.; Gilun, P.; Jastrzębski, J.P.; Pareek, C.S.; Kumar, D.; Pierzchała, M. Regulatory potential of long non-coding rnas (LncRNAs) in boar spermatozoa with good and poor freezability. Life 2020, 10, 300. [Google Scholar] [CrossRef]
- Lowe, R.; Shirley, N.; Bleackley, M.; Dolan, S.; Shafee, T. Transcriptomics technologies. PLoS Comput. Biol. 2017, 13, e1005457. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Sanan-Mishra, N. Functional Characterization Methods for Non-coding RNAs. In Non-Coding RNAs for Crop Improvement: Concepts and Applications; Goswami, K., Gelaw, T.A., Sanan-Mishra, N., Eds.; Springer Nature: Singapore, 2025; pp. 95–117. [Google Scholar]
- Chen, L.L.; Kim, V.N. Small and long non-coding RNAs: Past, present, and future. Cell 2024, 187, 6451–6485. [Google Scholar] [CrossRef]
- Yang, L.X.; Li, H.; Cheng, Z.H.; Sun, H.Y.; Huang, J.P.; Li, Z.P.; Li, X.X.; Hu, Z.G.; Wang, J. The application of Non-Coding RNAs as biomarkers, therapies, and novel vaccines in diseases. Int. J. Mol. Sci. 2025, 26, 3055. [Google Scholar] [CrossRef]
- Wang, D.; Jin, X.; Li, S. Advancing Disease Diagnosis and Biomarker Discovery: The Role of Machine Learning in ncRNA Analysis. In Proceedings of the 2024 International Conference on Smart Healthcare and Wearable Intelligent Devices, Beijing, China, 10–12 March 2024; pp. 29–35. [Google Scholar]
- Pang, W.K.; Kang, S.; Ryu, D.Y.; Rahman, M.S.; Park, Y.J.; Pang, M.G. Optimization of sperm RNA processing for developmental research. Sci. Rep. 2020, 10, 11606. [Google Scholar] [CrossRef] [PubMed]
- Sendler, E.; Johnson, G.D.; Mao, S.; Goodrich, R.J.; Diamond, M.P.; Hauser, R.; Krawetz, S.A. Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res. 2013, 41, 4104–4117. [Google Scholar] [CrossRef] [PubMed]
- Rando, O.J. Intergenerational Transfer of Epigenetic Information in Sperm. Cold Spring Harb. Perspect. Med. 2016, 6, a022988. [Google Scholar] [CrossRef]
- Godia, M.; Estill, M.; Castello, A.; Balasch, S.; Rodriguez-Gil, J.E.; Krawetz, S.A.; Sanchez, A.; Clop, A. A RNA-Seq Analysis to Describe the Boar Sperm Transcriptome and Its Seasonal Changes. Front. Genet. 2019, 10, 299. [Google Scholar] [CrossRef]
- Inoue, N.; Ikawa, M.; Isotani, A.; Okabe, M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 2005, 434, 234–238. [Google Scholar] [CrossRef]
- Feugang, J.M.; Rodriguez-Osorio, N.; Kaya, A.; Wang, H.; Page, G.; Ostermeier, G.C.; Topper, E.K.; Memili, E. Transcriptome analysis of bull spermatozoa: Implications for male fertility. Reprod. Biomed. Online 2010, 21, 312–324. [Google Scholar] [CrossRef]
- Fraser, L.; Brym, P.; Pareek, C.; Mogielnicka-Brzozowska, M.; Jastrzębski, J.; Wasilewska-Sakowska, K.; Mańkowska, A.; Sobiech, P.; Żukowski, K. Transcriptome analysis of boar spermatozoa with different freezability using RNA-Seq. Theriogenology 2020, 142, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Turri, F.; Capra, E.; Lazzari, B.; Cremonesi, P.; Stella, A.; Pizzi, F. A combined flow cytometric semen analysis and miRNA profiling as a tool to discriminate between high-and low-fertility bulls. Front. Veter. Sci. 2021, 8, 703101. [Google Scholar] [CrossRef]
- Wang, X.; Yang, C.; Guo, F.; Zhang, Y.; Ju, Z.; Jiang, Q.; Zhao, X.; Liu, Y.; Zhao, H.; Wang, J.; et al. Integrated analysis of mRNAs and long noncoding RNAs in the semen from Holstein bulls with high and low sperm motility. Sci. Rep. 2019, 9, 2092. [Google Scholar] [CrossRef] [PubMed]
- Prakash, M.A.; Kumaresan, A.; Ebenezer Samuel King, J.P.; Nag, P.; Sharma, A.; Sinha, M.K.; Kamaraj, E.; Datta, T.K. Comparative Transcriptomic Analysis of Spermatozoa from High- and Low-Fertile Crossbred Bulls: Implications for Fertility Prediction. Front. Cell Dev. Biol. 2021, 9, 647717. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.K.; Gupta, N.; Sankhwar, S.N.; Rajender, S. Differential genes expression between fertile and infertile spermatozoa revealed by transcriptome analysis. PLoS ONE 2015, 10, e0127007. [Google Scholar] [CrossRef]
- Werry, N.; Russell, S.J.; Gillis, D.J.; Miller, S.; Hickey, K.; Larmer, S.; Lohuis, M.; Librach, C.; LaMarre, J. Characteristics of miRNAs Present in Bovine Sperm and Associations with Differences in Fertility. Front. Endocrinol. 2022, 13, 874371. [Google Scholar] [CrossRef]
- Lim, S.C.; Friemel, M.; Marum, J.E.; Tucker, E.J.; Bruno, D.L.; Riley, L.G.; Christodoulou, J.; Kirk, E.P.; Boneh, A.; DeGennaro, C.M.; et al. Mutations in LYRM4, encoding iron-sulfur cluster biogenesis factor ISD11, cause deficiency of multiple respiratory chain complexes. Hum. Mol. Genet. 2013, 22, 4460–4473. [Google Scholar] [CrossRef]
- Cory, S.A.; Van Vranken, J.G.; Brignole, E.J.; Patra, S.; Winge, D.R.; Drennan, C.L.; Rutter, J.; Barondeau, D.P. Structure of human Fe-S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP-ISD11 interactions. Proc. Natl. Acad. Sci. USA 2017, 114, E5325–E5334. [Google Scholar] [CrossRef]
- Zhang, Y.; Sirard, M.A. From sperm to offspring: Epigenetic markers for dairy herd fertility. Biol. Reprod. 2025, 1–8. [Google Scholar] [CrossRef]
- Wu, Y.; Wei, Y.; Li, Y.; Dou, Y.; Yang, Y.; Liu, H.; Wang, X.; Wang, Z.; Su, J.; Zhang, Y.; et al. Sperm-Derived CircRNA-1572 Regulates Embryogenesis and Zygotic Genome Activation by Targeting CCNB2 via Bta-miR-2478-L-2. Adv. Sci. 2025, 12, 2414325. [Google Scholar] [CrossRef]
RNA Type 1 | Before Fecundation | References | After Fecundation | References |
---|---|---|---|---|
mRNA | Translation/Ribosomal Activity, Protein Catabolic Process, Generation of Metabolites, Precursors, and Energy, General Metabolic Pathways, Glycolytic Pathway/Glycolysis and Gluconeogenesis, Pyruvate Metabolism, Citric Acid Cycle, Amino Acid Biosynthesis, Phosphatase Pathway/D-myo-Inositol Phosphate Metabolism, Pyrimidine and Purine Metabolism, AMPK Signaling Pathway, Butanoate Metabolism, Methionine and Cysteine Metabolism, Propanoate Metabolism, Ketone Body Synthesis and Degradation, Nitrogen Metabolism, Oxidative Phosphorylation, Response to Oxidative Stress, EGFR and p38 MAPK Signaling Pathway, Notch and Cadherin Signaling Pathway, Vesicle Trafficking, Ubiquitin-like Protein Ligase Binding, Valine, Leucine, and Isoleucine Degradation, Autophagy and Mitophagy, Proton Transport-Coupled ATP Synthesis, Electron Transport Chain and Aerobic Respiration, Lipid and Glucose Metabolism. | [7,40,41,42,43,44,45,46,47,48] | Ribosome/Translation, Oxidative Phosphorylation, Metabolic Pathways (general), Proton Transport-Coupled ATP Synthesis, Respiratory Chain, Cell Cycle, Proteasome, Spliceosome, Oocyte Meiosis. | [7,27,36,41,49,50] |
miRNA | Metabolic Processes (broad category), PI3K/AKT Signaling Pathway, Signaling Pathway Regulating Pluripotency of Embryonic Stem Cells, mTOR Signaling Pathway, Aminoacyl-tRNA Biosynthesis, Vitamin B6 Metabolism. | [45,48,50,51,52,53] | PI3K Signaling Pathway, Blastocyst Metabolism (general), EIF2 Signaling Pathway, Sirtuin Signaling Pathway. | [50] |
lncRNA | JAK-STAT Signaling Pathway, Axon Guidance Pathway. | [54] | ||
circRNA | Epigenetic Functions (Histone Modification, Chromatin Organization), Embryonic Development. | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Sosa, R.A.; Jahuey-Martínez, F.J.; Felix-Portillo, M.; Martínez-Quintana, J.A. Revisiting Male Fertility in Livestock: The Case of Bull Sperm RNA. Biology 2025, 14, 969. https://doi.org/10.3390/biology14080969
Ramírez-Sosa RA, Jahuey-Martínez FJ, Felix-Portillo M, Martínez-Quintana JA. Revisiting Male Fertility in Livestock: The Case of Bull Sperm RNA. Biology. 2025; 14(8):969. https://doi.org/10.3390/biology14080969
Chicago/Turabian StyleRamírez-Sosa, Rene A., Francisco J. Jahuey-Martínez, Monserrath Felix-Portillo, and José A. Martínez-Quintana. 2025. "Revisiting Male Fertility in Livestock: The Case of Bull Sperm RNA" Biology 14, no. 8: 969. https://doi.org/10.3390/biology14080969
APA StyleRamírez-Sosa, R. A., Jahuey-Martínez, F. J., Felix-Portillo, M., & Martínez-Quintana, J. A. (2025). Revisiting Male Fertility in Livestock: The Case of Bull Sperm RNA. Biology, 14(8), 969. https://doi.org/10.3390/biology14080969