Identification and Evaluation of Thermotolerance in Broccoli Seedlings Based on a Multi-Trait Phenotyping System
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Pretreatment
2.2.2. Phenotypic Investigation
2.2.3. Measurement of Electrical Conductivity
2.2.4. Measurement of Malondialdehyde Content
2.2.5. Measurement of Proline Content
2.2.6. Measurement of Chlorophyll Content
2.2.7. Statistical Analysis
3. Results
3.1. Performance of Different Broccoli Cultivars After Treatment
3.2. Changes in Electrical Conductivity After Treatment of Different Broccoli Cultivars
3.3. Changes in Malondialdehyde Content After Treatment of Different Broccoli Cultivars
3.4. Changes in Proline Content of Different Broccoli Cultivars After Treatment
3.5. Changes in Chlorophyll Content After Treatment of Different Broccoli Cultivars
3.6. The Correlation Analysis Among Different Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montoya, D.; Fernández, J.A.; Franco, J.A.; del Carmen Martínez Ballesta, M. Enriched-biochar application increases broccoli nutritional and phytochemical content without detrimental effect on yield. J. Sci. Food Agric. 2022, 102, 7353–7362. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, T.; Korkaya, H.; Liu, S.; Lee, H.-F.; Newman, B.; Yu, Y.; Clouthier, S.G.; Schwartz, S.J.; Wicha, M.S.; et al. Sulforaphane, a Dietary Component of Broccoli/Broccoli Sprouts, Inhibits Breast Cancer Stem Cells. Clin. Cancer Res. 2010, 16, 2580–2590. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.P.; Kerry, J.T.; Álvarez-Noriega, M.; Álvarez-Romero, J.G.; Anderson, K.D.; Baird, A.H.; Babcock, R.C.; Beger, M.; Bellwood, D.R.; Berkelmans, R.; et al. Global warming and recurrent mass bleaching of corals. Nature 2017, 543, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Samach, A.; Wigge, P.A. Ambient temperature perception in plants. Curr. Opin. Plant Biol. 2005, 8, 483–486. [Google Scholar] [CrossRef]
- Benešová, M.; Holá, D.; Fischer, L.; Jedelský, P.L.; Hnilička, F.; Wilhelmová, N.; Rothová, O.; Kočová, M.; Procházková, D.; Honnerová, J.; et al. The Physiology and Proteomics of Drought Tolerance in Maize: Early Stomatal Closure as a Cause of Lower Tolerance to Short-Term Dehydration? PLoS ONE 2012, 7, e38017. [Google Scholar] [CrossRef]
- Bheemanahalli, R.; Sathishraj, R.; Manoharan, M.; Sumanth, H.N.; Muthurajan, R.; Ishimaru, T.; Krishna, J.S.V. Is early morning flowering an effective trait to minimize heat stress damage during flowering in rice? Field Crops Res. 2017, 203, 238–242. [Google Scholar] [CrossRef]
- Bheemanahalli, R.; Sunoj, V.S.J.; Saripalli, G.; Prasad, P.V.V.; Balyan, H.S.; Gupta, P.K.; Grant, N.; Gill, K.S.; Jagadish, S.V.K. Quantifying the Impact of Heat Stress on Pollen Germination, Seed Set, and Grain Filling in Spring Wheat. Crop Sci. 2019, 59, 684–696. [Google Scholar] [CrossRef]
- Brunel-Muguet, S.; D’Hooghe, P.; Bataillé, M.-P.; Larré, C.; Kim, T.-H.; Trouverie, J.; Avice, J.-C.; Etienne, P.; Dürr, C. Heat stress during seed filling interferes with sulfur restriction on grain composition and seed germination in oilseed rape (Brassica napus L.). Front. Plant Sci. 2015, 6, 213. [Google Scholar] [CrossRef]
- Pareek, A.; Singla, S.L.; Grover, A. Immunological evidence for accumulation of two high-molecular-weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera. Plant Mol. Biol. 1995, 29, 293–301. [Google Scholar] [CrossRef]
- Teo, J.; Mohan, R.; Zhang, S.; Gui, Y.; Sng, B.J.R.; Jang, I.-C.; Yin, Z. Optimization of light and temperature in indoor farming to boost anthocyanin biosynthesis and accumulation in Indigo Rose tomato. Veg. Res. 2022, 2, 18. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, Y.; Zhao, X.; Li, J. Systemic effects of the vapor pressure deficit on the physiology and productivity of protected vegetables. Veg. Res. 2023, 3, 20. [Google Scholar] [CrossRef]
- Šola, I.; Gmižić, D.; Pinterić, M.; Tot, A.; Ludwig-Müller, J. Adjustments of the Phytochemical Profile of Broccoli to Low and High Growing Temperatures: Implications for the Bioactivity of Its Extracts. Int. J. Mol. Sci. 2024, 25, 3677. [Google Scholar] [CrossRef]
- Sookjitsumran, W.; Devahastin, S.; Mujumdar, A.S.; Chiewchan, N. Comparative evaluation of microwave-assisted extraction and preheated solvent extraction of bioactive compounds from a plant material: A case study with cabbages. Int. J. Food Sci. Technol. 2016, 51, 2440–2449. [Google Scholar]
- Gmižić, D.; Šola, I. Developmental and Temperature-Driven Variations in Metabolic Profile and Antioxidant Capacity of Broccoli (Brassica oleracea var. cymosa). Plants 2025, 14, 1825. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.M.; Pereira, J.S.; Maroco, J.; Rodrigues, M.L.; Ricardo, C.P.P.; OsÓRio, M.L.; Carvalho, I.; Faria, T.; Pinheiro, C. How Plants Cope with Water Stress in the Field? Photosynthesis and Growth. Ann. Bot. 2002, 89, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Malek, M.; Ghaderi-Far, F.; Torabi, B.; Sadeghipour, H.R. Dynamics of seed dormancy and germination at high temperature stress is affected by priming and phytohormones in rapeseed (Brassica napus L.). J. Plant Physiol. 2022, 269, 153614. [Google Scholar] [CrossRef] [PubMed]
- Siomos, A.S.; Koularmanis, K.; Tsouvaltzis, P. The Impacts of the Emerging Climate Change on Broccoli (Brassica oleracea L. var. italica Plenck.) Crop. Horticulturae 2022, 8, 1032. [Google Scholar] [CrossRef]
- Worth, J.R.P.; Holland, B.R.; Beeton, N.J.; Schönfeld, B.; Rossetto, M.; Vaillancourt, R.E.; Jordan, G.J. Habitat type and dispersal mode underlie the capacity for plant migration across an intermittent seaway. Ann. Bot. 2017, 120, 539–549. [Google Scholar] [CrossRef]
- Quan, J.; Zheng, W.; Wu, M.; Shen, Z.; Tan, J.; Li, Z.; Zhu, B.; Hong, S.-B.; Zhao, Y.; Zhu, Z.; et al. Glycine Betaine and β-Aminobutyric Acid Mitigate the Detrimental Effects of Heat Stress on Chinese Cabbage (Brassica rapa L. ssp. pekinensis) Seedlings with Improved Photosynthetic Performance and Antioxidant System. Plants 2022, 11, 1213. [Google Scholar] [CrossRef]
- HongBo, S.; ZongSuo, L.; MingAn, S. Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage. Colloids Surf. B Biointerfaces 2005, 45, 7–13. [Google Scholar] [CrossRef]
- Špoljarević, M.; Agić, D.; Lisjak, M.; Gumze, A.; Wilson, I.D.; Hancock, J.T.; Teklić, T. The relationship of proline content and metabolism on the productivity of maize plants. Plant Signal. Behav. 2011, 6, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Guihur, A.; Rebeaud, M.E.; Goloubinoff, P. How do plants feel the heat and survive? Trends Biochem. Sci. 2022, 47, 824–838. [Google Scholar] [CrossRef]
- Mittler, R.; Finka, A.; Goloubinoff, P. How do plants feel the heat? Trends Biochem. Sci. 2012, 37, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Moradpour, M.; Abdullah, S.; Namasivayam, P. The Impact of Heat Stress on Morpho-Physiological Response and Expression of Specific Genes in the Heat Stress-Responsive Transcriptional Regulatory Network in Brassica oleracea. Plants 2021, 10, 1064. [Google Scholar] [CrossRef]
- Wen, D.; Han, F.; Zhao, Y.; Liu, Y.; Liu, Y.; Huang, J.; Li, Z. Construction and Identification of Cold Tolerance in Different Broccoli Cultivars at the Seedling Stage. Agronomy 2024, 14, 237. [Google Scholar] [CrossRef]
- Tonhati, R.; Mello, S.C.; Momesso, P.; Pedroso, R.M. L-proline alleviates heat stress of tomato plants grown under protected environment. Sci. Hortic. 2020, 268, 109370. [Google Scholar] [CrossRef]
- Wang, G.; Zeng, F.; Song, P.; Sun, B.; Wang, Q.; Wang, J. Effects of reduced chlorophyll content on photosystem functions and photosynthetic electron transport rate in rice leaves. J. Plant Physiol. 2022, 272, 153669. [Google Scholar] [CrossRef]
Accessions | Varieties | Generations | Origins | Maturity |
---|---|---|---|---|
B1 | Naihanyouxiu | F1 Hybrid | SAKATA, Japan | Mid–early maturity |
B2 | Yanxiu | F1 Hybrid | SAKATA, Japan | Mid–late maturity |
B3 | Qianghan | F1 Hybrid | SEMINIS, America | Mid–late maturity |
B4 | Feicui 5 | F1 Hybrid | SYNGENTA, China | Middle maturity |
B5 | Lvxiong 90 | F1 Hybrid | TOKITA, Japan | Late maturity |
B6 | Guowang11 | F1 Hybrid | ZHAOFENG, China | Surplus late maturity |
B7 | Zheqing80 | F1 Hybrid | MITSUO, China | Surplus late maturity |
B8 | Zhongqing11 | F1 Hybrid | IVF-CAAS, China | Surplus early maturity |
B9 | Zhongqing 15 | F1 Hybrid | IVF-CAAS, China | Mid–late maturity |
B10 | Zhongqing 16 | F1 Hybrid | IVF-CAAS, China | Early maturity |
B11 | Zhongqing 318 | F1 Hybrid | IVF-CAAS, China | Surplus late maturity |
B12 | Zhongqing 319 | F1 Hybrid | IVF-CAAS, China | Late maturity |
B13 | Meiqing | F1 Hybrid | MITSUO, China | Mid–late maturity |
B14 | Meiao7172 | F1 Hybrid | MITSUO, China | Mid–late maturity |
Species | Day/Night Temperature (°C) | Light Duration | Night Duration (h) | Study |
---|---|---|---|---|
Broccoli | 40/36 | 16 | 8 | [17] |
Oilseed rape (Brassica napus L.) | 36/20 | 16 | 8 | [8] |
Arabidopsis thaliana | 38/28 | 12 | 12 | [18] |
Chinese Cabbage (Brassica rapa L. ssp. pekinensis) | 45/35 | 16 | 8 | [19] |
Broccoli | 40/36 | 16 | 8 | This study |
Accessions | Varieties | Wilting | Drying | Regreening | Collapse | Green Loss | Heart Leaf Change | Apical Damage | Final Score |
---|---|---|---|---|---|---|---|---|---|
B1 | Naihanyouxiu | 3 | 3 | 2 | 2 | 3 | 3 | 2 | 2.57 |
B2 | Yanxiu | 3 | 2 | 2 | 3 | 2 | 3 | 2 | 2.43 |
B3 | Qianghan | 4 | 4 | 4 | 4 | 4 | 5 | 4 | 4.14 |
B4 | Feicui 5 | 3 | 3 | 3 | 3 | 3 | 4 | 3 | 3.14 |
B5 | Lvxiong 90 | 4 | 4 | 4 | 4 | 4 | 5 | 4 | 4.14 |
B6 | Guowang 11 | 3 | 3 | 3 | 3 | 3 | 4 | 3 | 3.14 |
B7 | Zheqing 80 | 3 | 3 | 3 | 3 | 3 | 4 | 2 | 3.00 |
B8 | Zhongqing 11 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 4.71 |
B9 | Zhongqing 15 | 3 | 3 | 3 | 3 | 3 | 4 | 3 | 3.14 |
B10 | Zhongqing 16 | 5 | 4 | 5 | 5 | 5 | 5 | 5 | 4.86 |
B11 | Zhongqing 318 | 3 | 3 | 3 | 3 | 3 | 4 | 3 | 3.14 |
B12 | Zhongqing 319 | 3 | 3 | 3 | 3 | 3 | 4 | 3 | 3.14 |
B13 | Meiqing | 3 | 3 | 2 | 3 | 2 | 3 | 2 | 2.57 |
B14 | Meiao 7172 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhao, Y.; Xu, T.; Feng, X.; Han, F.; Wen, D.; Liu, Y.; Gao, W.; Zhao, Z.; Li, Z. Identification and Evaluation of Thermotolerance in Broccoli Seedlings Based on a Multi-Trait Phenotyping System. Biology 2025, 14, 1093. https://doi.org/10.3390/biology14081093
Li X, Zhao Y, Xu T, Feng X, Han F, Wen D, Liu Y, Gao W, Zhao Z, Li Z. Identification and Evaluation of Thermotolerance in Broccoli Seedlings Based on a Multi-Trait Phenotyping System. Biology. 2025; 14(8):1093. https://doi.org/10.3390/biology14081093
Chicago/Turabian StyleLi, Xuaner, Yongyu Zhao, Tiemin Xu, Xigang Feng, Fengqing Han, Dongna Wen, Yumei Liu, Wenzheng Gao, Zhiwei Zhao, and Zhansheng Li. 2025. "Identification and Evaluation of Thermotolerance in Broccoli Seedlings Based on a Multi-Trait Phenotyping System" Biology 14, no. 8: 1093. https://doi.org/10.3390/biology14081093
APA StyleLi, X., Zhao, Y., Xu, T., Feng, X., Han, F., Wen, D., Liu, Y., Gao, W., Zhao, Z., & Li, Z. (2025). Identification and Evaluation of Thermotolerance in Broccoli Seedlings Based on a Multi-Trait Phenotyping System. Biology, 14(8), 1093. https://doi.org/10.3390/biology14081093