Nucleotide Metabolism and Immune Genes Can Predict the Prognostic Risk of Hepatocellular Carcinoma and the Immune Microenvironment
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Processing
2.2. DEG Subset Extraction and Non-Negative Matrix Factorization (NMF) Clustering
2.3. Analysis of the Tumor Microenvironment and the Immune Infiltration
2.4. Prognostic Model Construction and Validation
2.5. Evaluation and Comparison of the Prognostic Models
2.6. Detection of the Expression of NMRIG Signature
3. Results
3.1. NMIRGs Clustered HCC Patients into Two Subtypes, and They Showed Significant Differences in Tumor Microenvironment and Immune Infiltration
3.2. Prognosis Prediction Model Based on Nucleotide Metabolism and Immune-Related Genes
3.3. Characterizing the Clinical Relevance of the Prediction Model
3.4. Nomogram Derived from the Prediction Model Predicts Survival Partly Independent of the Tumor Stage
3.5. Links Between Prognostic Model Results and Immunotherapy Efficacy
3.6. Tumor Immunity-Related Biological Features Are Associated with the Prediction Results
3.7. Comparison with Previous HCC Prognostic Models
3.8. Experimental Validation of Signature Genes via qPCR and HPA Database
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HCC | hepatocellular carcinoma |
LIHC | liver hepatocellular carcinoma |
NMIRGs | nucleotide metabolism and immune-related genes |
C1 | cluster 1 |
DEGs | differentially expressed genes |
TMB | tumor mutation burden |
MSI | microsatellite instability |
TCGA | The Cancer Genome Atlas |
GEO | Gene Expression Omnibus |
DAVID | Database for Annotation, Visualization, and Integrated Discovery |
LASSO | Least Absolute Shrinkage and Selection Operator |
MCPcounter | Microenvironment Cell Populations counter |
ESTIMATE | Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data |
GSEA | Gene Set Enrichment Analysis |
NMF | Non-Negative Matrix Factorization |
PFS | progression-free survival |
DCA | Decision Curve Analysis |
ROC | Receiver Operating Characteristic |
RAC3 | receptor-associated coactivator 3 |
HSP90AA1 | heat shock protein 90 alpha family class A member 1 |
BTC | betacellulin |
MAPT | microtubule-associated protein tau |
HDAC1 | histone deacetylase 1 |
STC1 | stanniocalcin-1 |
CHGA | chromogranin A |
GAL | galanin and GMAP prepropeptide |
GHR | growth hormone receptor |
PD-1 | programmed cell death protein 1 |
CTLA-4 | cytotoxic T-lymphocyte-associated protein-4 |
ADORA2A | adenosine receptor A2a |
References
- Vogel, A.; Meyer, T.; Sapisochin, G.; Salem, R.; Saborowski, A. Hepatocellular carcinoma. Lancet 2022, 400, 1345–1362. [Google Scholar] [CrossRef]
- Anwanwan, D.; Singh, S.K.; Singh, S.; Saikam, V.; Singh, R. Challenges in liver cancer and possible treatment approaches. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2020, 1873, 188314. [Google Scholar] [CrossRef]
- Childs, A.; Zakeri, N.; Ma, Y.T.; O’rOurke, J.; Ross, P.; Hashem, E.; Hubner, R.A.; Hockenhull, K.; Iwuji, C.; Khan, S.; et al. Biopsy for advanced hepatocellular carcinoma: Results of a multicentre UK audit. Br. J. Cancer 2021, 125, 1350–1355. [Google Scholar] [CrossRef]
- Ma, J.; Zhong, M.; Xiong, Y.; Gao, Z.; Wu, Z.; Liu, Y.; Hong, X. Emerging roles of nucleotide metabolism in cancer development: Progress and prospect. Aging 2021, 13, 13349–13358. [Google Scholar] [CrossRef]
- Wu, H.L.; Gong, Y.; Ji, P.; Xie, Y.F.; Jiang, Y.Z.; Liu, G.Y. Targeting nucleotide metabolism: A promising approach to enhance cancer immunotherapy. J. Hematol. Oncol. 2022, 15, 45. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Jacobson, K.A. Purinergic Signaling in Liver Pathophysiology. Front. Endocrinol. 2021, 12, 718429. [Google Scholar] [CrossRef] [PubMed]
- Mullen, N.J.; Singh, P.K. Nucleotide metabolism: A pan-cancer metabolic dependency. Nat. Rev. Cancer 2023, 23, 275–294. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Tian, Y.; Xia, Q.; Ke, B. The cGAS-STING Pathway: Novel Perspectives in Liver Diseases. Front. Immunol. 2021, 12, 682736. [Google Scholar] [CrossRef]
- Donne, R.; Lujambio, A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology 2023, 77, 1773–1796. [Google Scholar] [CrossRef]
- Han, T.; Kang, D.; Ji, D.; Wang, X.; Zhan, W.; Fu, M.; Xin, H.-B.; Wang, J.-B. How does cancer cell metabolism affect tumor migration and invasion? Cell Adhes. Migr. 2013, 7, 395–403. [Google Scholar] [CrossRef]
- Shen, B.; Zhang, G.; Liu, Y.; Wang, J.; Jiang, J. Identification and Analysis of Immune-Related Gene Signature in Hepatocellular Carcinoma. Genes 2022, 13, 1834. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, C.; Wu, J.; Yan, X.; Huang, Q. Role of immune related genes in predicting prognosis and immune response in patients with hepatocellular carcinoma. J. Biochem. Mol. Toxicol. 2023, 38, e23519. [Google Scholar] [CrossRef]
- Xu, Y.J.; He, M.K.; Liu, S.; Huang, L.C.; Bu, X.Y.; Kan, A.; Shi, M. Construction of a single nucleotide variant score-related gene-based prognostic model in hepatocellular carcinoma: Analysis of multi-independent databases and validation in vitro. Cancer Cell Int. 2021, 21, 610. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Liu, J.; Ma, S.; Wang, M.; Yuan, Q.; Huang, A.; Wu, Z.; Shang, D.; Yin, P. A Nucleotide Metabolism-Related Gene Signature for Risk Stratification and Prognosis Prediction in Hepatocellular Carcinoma Based on an Integrated Transcriptomics and Metabolomics Approach. Metabolites 2023, 13, 1116. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Dunn, P.; Thomas, C.G.; Smith, B.; Schaefer, H.; Chen, J.; Hu, Z.; Zalocusky, K.A.; Shankar, R.D.; Shen-Orr, S.S.; et al. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci. Data 2018, 5, 180015. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 2013, 4, 2612. [Google Scholar] [CrossRef] [PubMed]
- Becht, E.; Giraldo, N.A.; Lacroix, L.; Buttard, B.; Elarouci, N.; Petitprez, F.; Selves, J.; Laurent-Puig, P.; Sautes-Fridman, C.; Fridman, W.H.; et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016, 17, 218. [Google Scholar] [CrossRef]
- Moons, K.G.M.; Altman, D.G.; Reitsma, J.B.; Ioannidis, J.P.A.; Macaskill, P.; Steyerberg, E.W.; Vickers, A.J.; Ransohoff, D.F.; Collins, G.S. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration. Ann. Intern. Med. 2015, 162, W1–W73. [Google Scholar] [CrossRef]
- Hu, F.F.; Liu, C.J.; Liu, L.L.; Zhang, Q.; Guo, A.Y. Expression profile of immune checkpoint genes and their roles in predicting immunotherapy response. Brief. Bioinform. 2021, 22, bbaa176. [Google Scholar] [CrossRef]
- Long, M.; Zhou, Z.; Wei, X.; Lin, Q.; Qiu, M.; Zhou, Y.; Chen, P.; Jiang, Y.; Wen, Q.; Liu, Y.; et al. A novel risk score based on immune-related genes for hepatocellular carcinoma as a reliable prognostic biomarker and correlated with immune infiltration. Front. Immunol. 2022, 13, 1023349. [Google Scholar] [CrossRef]
- Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep. 2017, 18, 248–262. [Google Scholar] [CrossRef]
- Choucair, K.; Morand, S.; Stanbery, L.; Edelman, G.; Dworkin, L.; Nemunaitis, J. TMB: A promising immune-response biomarker, and potential spearhead in advancing targeted therapy trials. Cancer Gene Ther. 2020, 27, 841–853. [Google Scholar] [CrossRef]
- Gabbia, D.; De Martin, S. Tumor Mutational Burden for Predicting Prognosis and Therapy Outcome of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2023, 24, 3441. [Google Scholar] [CrossRef]
- Zhang, Z.; Mao, M.; Wang, F.; Zhang, Y.; Shi, J.; Chang, L.; Wu, X.; Zhang, Z.; Xu, P.; Lu, S. Comprehensive analysis and immune landscape of chemokines- and chemokine receptors-based signature in hepatocellular carcinoma. Front. Immunol. 2023, 14, 1164669. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Han, L.; Cui, L.; Fu, G.; Liu, E.; Wang, D.; Song, B.; Zhang, Y.; Zhou, W.; Wang, H.; et al. Immune index: A gene and cell prognostic signature for immunotherapy response prediction in hepatocellular carcinoma. Pharmacol. Res. 2022, 187, 106583. [Google Scholar] [CrossRef]
- Su, D.; Zhang, Z.; Xia, F.; Liang, Q.; Liu, Y.; Liu, W.; Xu, Z. ICD-related risk model predicts the prognosis and immunotherapy response of patients with liver cancer. Front. Pharmacol. 2023, 14, 1202823. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Du, R.; Feng, B.; Wang, J.; Zhang, F.; Pei, J.; Wang, Y.; Shang, Y. A Novel Gene Signature Associated with Inflammatory Responses and Immune Status Assists in Prognosis and Intervention for Patients with HCC. J. Inflamm. Res. 2022, 15, 6729–6743. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.Y.; Qin, Z.; Gao, J.M.; Yang, Y.; Lu, Y.; Yu, F.; Lv, Y.; Sun, Z.; Zhang, J.; Tang, J. Combination of Neutrophil Count and Gensini Score as a Prognostic Marker in Patients with ACS and Uncontrolled T2DM Undergoing PCI. Cardiovasc. Innov. Appl. 2023, 8, 962. [Google Scholar] [CrossRef]
- De Curtis, I. The Rac3 GTPase in Neuronal Development, Neurodevelopmental Disorders, and Cancer. Cells 2019, 8, 1063. [Google Scholar] [CrossRef]
- Wu, D.; Liu, Z.; Sun, Y.; Gou, C.; Shang, R.; Lu, M.; Zhang, R.; Wei, H.; Li, C.; Shi, Y.; et al. Integrated Analysis of the Anoikis-Related Signature Identifies Rac Family Small GTPase 3 as a Novel Tumor-Promoter Gene in Hepatocellular Carcinoma. Medcomm 2025, 6, e70125. [Google Scholar] [CrossRef]
- Dahlhoff, M.; Wolf, E.; Schneider, M.R. The ABC of BTC: Structural properties and biological roles of betacellulin. Semin. Cell Dev. Biol. 2014, 28, 42–48. [Google Scholar] [CrossRef]
- Chava, S.; Bugide, S.; Zhang, X.; Gupta, R.; Wajapeyee, N. Betacellulin promotes tumor development and EGFR mutant lung cancer growth by stimulating the EGFR pathway and suppressing apoptosis. iScience 2022, 25, 104211. [Google Scholar] [CrossRef]
- Mahata, S.K.; Corti, A. Chromogranin A and its fragments in cardiovascular, immunometabolic, and cancer regulation. Ann. N. Y. Acad. Sci. 2019, 1455, 34–58. [Google Scholar] [CrossRef]
- Malaguarnera, M.; Vacante, M.; Fichera, R.; Cappellani, A.; Cristaldi, E.; Motta, M. Chromogranin A (CgA) serum level as a marker of progression in hepatocellular carcinoma (HCC) of elderly patients. Arch. Gerontol. Geriatr. 2010, 51, 81–85. [Google Scholar] [CrossRef]
- Zuehlke, A.D.; Beebe, K.; Neckers, L.; Prince, T. Regulation and function of the human HSP90AA1 gene. Gene 2015, 570, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-W.; Shao, E.; Mucke, L. Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science 2021, 371, eabb8255. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Yuan, X.; Cai, D.Q.; Li, A.; Yang, S.; Yang, W.; Duan, J.; Zhou, W.; Min, J.; Peng, L.; et al. Integrative analysis of lactylation-related genes and establishment of a novel prognostic signature for hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2023, 149, 11517–11530. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Ni, Q.; Wu, X.; Cao, T. GHR knockdown enhances the sensitivity of HCC cells to sorafenib. Aging 2020, 12, 18127–18136. [Google Scholar] [CrossRef]
- Giannini, E.G.; Aglitti, A.; Borzio, M.; Gambato, M.; Guarino, M.; Iavarone, M.; Lai, Q.; Levi Sandri, G.B.; Melandro, F.; Morisco, F.; et al. Overview of Immune Checkpoint Inhibitors Therapy for Hepatocellular Carcinoma, and The ITA.LI.CA Cohort Derived Estimate of Amenability Rate to Immune Checkpoint Inhibitors in Clinical Practice. Cancers 2019, 11, 1689. [Google Scholar] [CrossRef]
- He, G.; Zhang, H.; Zhou, J.; Wang, B.; Chen, Y.; Kong, Y.; Xie, X.; Wang, X.; Fei, R.; Wei, L.; et al. Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1 signalling pathway in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2015, 34, 141. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Cao, Z.; Zhang, J.; Chen, Q.; Wang, Y.; Wang, S.; Fang, X.; Xu, X. Identification of two immune-related risk score signatures through integrated analysis of multi-omics data in hepatocellular carcinoma. Gene 2022, 829, 146519. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Shi, L.; Zhang, C.; Zhang, F.; Cai, M. Prognostic significance of pyrimidine metabolism-related genes as risk biomarkers in hepatocellular carcinoma. J. Chemother. 2025, 37, 448–464. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Cui, Q.; Zhou, Y. Nucleotide Metabolism and Immune Genes Can Predict the Prognostic Risk of Hepatocellular Carcinoma and the Immune Microenvironment. Biology 2025, 14, 1079. https://doi.org/10.3390/biology14081079
Wang X, Cui Q, Zhou Y. Nucleotide Metabolism and Immune Genes Can Predict the Prognostic Risk of Hepatocellular Carcinoma and the Immune Microenvironment. Biology. 2025; 14(8):1079. https://doi.org/10.3390/biology14081079
Chicago/Turabian StyleWang, Xiaofang, Qinghua Cui, and Yuan Zhou. 2025. "Nucleotide Metabolism and Immune Genes Can Predict the Prognostic Risk of Hepatocellular Carcinoma and the Immune Microenvironment" Biology 14, no. 8: 1079. https://doi.org/10.3390/biology14081079
APA StyleWang, X., Cui, Q., & Zhou, Y. (2025). Nucleotide Metabolism and Immune Genes Can Predict the Prognostic Risk of Hepatocellular Carcinoma and the Immune Microenvironment. Biology, 14(8), 1079. https://doi.org/10.3390/biology14081079