Herbicide-Induced Fragmentation: Regenerative Ability of Cabomba Fragments After Exposure to Flumioxazin
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Plant Material
2.3. Herbicide Treatment
2.4. Experimental Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bickel, T.O. Ecology of the submersed aquatic weed Cabomba caroliniana in Australia. In Proceedings of the Eighteenth Australasian Weeds Conference, Melbourne, Australia, 8–11 October 2012; pp. 8–11. [Google Scholar]
- Mackey, A.; Swarbrick, J. The biology of Australian weeds. 32. Cabomba caroliniana A. Gray. Plant Prot. Q. 1997, 12, 154–165. [Google Scholar]
- Orgaard, M. The genus Cabomba (Cabombaceae)—A taxonomic study. Nord. J. Bot. 1991, 11, 179–203. [Google Scholar] [CrossRef]
- Wilson, C.E.; Darbyshire, S.J.; Jones, R. The biology of invasive alien plants in Canada. 7. Cabomba caroliniana A. Gray. Can. J. Plant Sci. 2007, 87, 615–638. [Google Scholar]
- Matthews, J.; Koopman, K.; Beringen, R.; Odé, B.; Pot, R.; Velde, G.; Van Valkenburg, J.; Leuven, R. Knowledge Document for Risk Analysis of the Non-Native Brazilian Waterweed (Egeria densa) in the Netherlands; Department of Environmental Science, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen: Nijmegen, The Netherlands, 2014. [Google Scholar]
- Bickel, T.O. A boat hitchhiker’s guide to survival: Cabomba caroliniana desiccation resistance and survival ability. Hydrobiologia 2015, 746, 123–134. [Google Scholar] [CrossRef]
- Roberts, J.; Florentine, S. A global review of the invasive aquatic weed Cabomba caroliniana [A. Gray] (Carolina fanwort): Current and future management challenges, and research gaps. Weed Res. 2022, 62, 75–84. [Google Scholar] [CrossRef]
- Schooler, S.; Julien, M. Effects of depth and season on the population dynamics of Cabomba caroliniana in south-east Queensland. In Proceedings of the 15th Australian Weed Conference Weed Management Society of South Australia, Adelaide, Australia, 24–28 September 2006; pp. 768–771. [Google Scholar]
- Matthews, J.; Beringen, R.; Lamers, L.; Odé, B.; Pot, R.; Velde, G.; Van Valkenburg, J.; Verbrugge, L.; Leuven, R. Risk Analysis of the Non-Native Fanwort (Cabomba caroliniana) in the Netherlands; Department of Environmental Science, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen: Nijmegen, The Netherlands, 2013; p. 46. [Google Scholar]
- Schooler, S.; Cabrera-Walsh, W.; Julien, M. Cabomba caroliniana gray (Cabombaceae). In Biological Control of Tropical Weeds Using Arthropods; Cambridge University Press: Cambridge, UK, 2009; pp. 88–107. [Google Scholar]
- Bickel, T.O. Aquatic Plant Management. In Recent Advances in Weed Science; Springer: Berlin/Heidelberg, Germany, 2025; pp. 189–215. [Google Scholar]
- Tony, M.D.; Trevor, D.H.; Daniel, C. Aquatic weeds in Victoria: Where and why are they a problem, and how are they being controlled? Plant Prot. Q. 2013, 28, 35–41. [Google Scholar]
- Kumaran, N.; Vance, T.; Comben, D.; Dell, Q.; Oleiro, M.I.; Goñalons, C.M.; Walsh, G.C.; Raghu, S. Hydrotimetes natans as a suitable biological control agent for the invasive weed Cabomba caroliniana. Biol. Control. 2022, 169, 104894. [Google Scholar] [CrossRef]
- Mackey, A. Cabomba in Queensland: A Pest Status Review Series—Land Protection Branch; Department of Natural Resources: Queensland, Australia, 1996; p. 36.
- Madsen, J.D. Advantages and Disadvantages of Aquatic Plant Management Techniques; US Army Corps of Engineers: New Orleans, LA, USA, 2000.
- Schooler, S.S. Shade as a management tool for the invasive submerged macrophyte, Cabomba caroliniana. J. Aquat. Plant Manag. 2008, 46, 168–171. [Google Scholar]
- Hussner, A.; Stiers, I.; Verhofstad, M.; Bakker, E.; Grutters, B.; Haury, J.; Van Valkenburg, J.; Brundu, G.; Newman, J.; Clayton, J. Management and control methods of invasive alien freshwater aquatic plants: A review. Aquat. Bot. 2017, 136, 112–137. [Google Scholar] [CrossRef]
- Richardson, R.J. Aquatic plant management and the impact of emerging herbicide resistance issues. Weed Technol. 2008, 22, 8–15. [Google Scholar] [CrossRef]
- Newman, J.R. Management of aquatic weeds. In Weed Management Handbook; Blackwell: Malden, MA, USA, 2002; pp. 399–414. [Google Scholar]
- Lau, C.; Hanson, M.L. Recovery of Freshwater Aquatic Macrophytes After Exposure to Herbicides and the Implications for Ecological Risk Assessment. In Ecotoxicology of Aquatic Macrophytes; Springer Nature: Cham, Switzerland, 2023; pp. 137–170. [Google Scholar]
- Burns, M.; Hanson, M.L.; Prosser, R.S.; Crossan, A.N.; Kennedy, I.R. Growth recovery of Lemna gibba and Lemna minor following a 7-day exposure to the herbicide diuron. Bull. Environ. Contam. Toxicol. 2015, 95, 150–156. [Google Scholar] [CrossRef]
- Clements, D.; Dugdale, T.M.; Butler, K.L. Using plant growth regulators to limit herbicide-induced stem fragmentation of aquatic alligatorweed (Alternanthera philoxeroides). Weed Technol. 2012, 26, 89–94. [Google Scholar] [CrossRef]
- Mudge, C.R. Characterization of Flumioxazin as an Aquatic Herbicide. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2007. [Google Scholar]
- Richardson, R.J.; Roten, R.; West, A.; True, S.; Gardner, A. Response of selected aquatic invasive weeds to flumioxazin and carfentrazone-ethyl. J. Aquat. Plant Manag. 2008, 46, 154–158. [Google Scholar]
- Mudge, C.R.; Haller, W.; Netherland, M.; Kowalsky, J. Evaluating the influence of pH-dependent hydrolysis on the efficacy of flumioxazin for hydrilla control. J. Aquat. Plant Manag. 2010, 48, 25. [Google Scholar]
- Bickel, T.; Perrett, C.; Vitelli, J.; Xu, J.; Atkins, S. Control of Cabomba caroliniana with flumioxazin: Control efficacy and the effect of environmental factors. In Proceedings of the 15th International Symposium of Aquatic Plants, Queenstown, New Zealand, 18–23 February 2018. [Google Scholar]
- Kwon, J.W.; Armbrust, K.L.; Grey, T.L. Hydrolysis and photolysis of flumioxazin in aqueous buffer solutions. Pest. Manag. Sci. 2004, 60, 939–943. [Google Scholar] [CrossRef]
- Mudge, C.R.; Haller, W. Effect of pH on submersed aquatic plant response to flumioxazin. Plant Physiol. 2010, 97, 280–287. [Google Scholar]
- Mudge, C.R.; Sartain, B.T. Influence of winter on herbicide efficacy for control of giant salvinia (Salvinia molesta). J. Aquat. Plant Manag. 2018, 56, 68–71. [Google Scholar]
- Bultemeier, B.W.; Netherland, M.D.; Ferrell, J.A.; Haller, W.T. Differential herbicide response among three phenotypes of Cabomba caroliniana. Invasive Plant Sci. Manag. 2009, 2, 352–359. [Google Scholar] [CrossRef]
- Katagi, T. Hydrolysis of n-phenylimide herbicide flumioxazin and its anilic acid derivative in aqueous solutions. J. Pestic. Sci. 2003, 28, 44–50. [Google Scholar] [CrossRef]
- Mudge, C.R.; Bultemeier, B.W.; Haller, W.T. The influence of pH and light on hydrilla (Hydrilla verticillata) photosynthesis and chlorophyll after exposure to flumioxazin. Weed Sci. 2012, 60, 4–9. [Google Scholar] [CrossRef]
- Sumitomo Chemical Australia Pty Ltd. Clipper Herbicide. Available online: https://clipperaquatic.com.au/wp-content/uploads/2021/09/CLIPPER-Herbicide-new-Group-v.11Dec2020.pdf (accessed on 15 June 2023).
- Bickel, T.O.; Schooler, S.S. Effect of water quality and season on the population dynamics of Cabomba caroliniana in subtropical Queensland, Australia. Aquat. Bot. 2015, 123, 64–71. [Google Scholar] [CrossRef]
- Smart, R.M.; Barko, J.W. Laboratory culture of submersed freshwater macrophytes on natural sediments. Aquat. Bot. 1985, 21, 251–263. [Google Scholar] [CrossRef]
- Xu, J. The Management of the Invasive Aquatic Plant—Cabomba caroliniana with the Herbicide Flumioxazin; The University of Queensland, School of Agriculture and Food Sciences: St Lucia, Australia, 2025. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-response analysis using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [PubMed]
- Gallé, Á.; Farkas, M.; Pelsőczi, A.; Czékus, Z.; Kukri, A.; Dorner, Z.; Ördög, A.; Csiszár, J.; Bela, K.; Poór, P. Contribution of Glutathione Transferases in the Selective and Light-Dependent Effect of Flumioxazin on Winter Wheat (Triticum aestivum L.) and Its Typical Weed Common Poppy (Papaver rhoeas L.). Agronomy 2023, 13, 2053. [Google Scholar] [CrossRef]
- Mahoney, K.J.; Shropshire, C.; Sikkema, P.H. Weed management in conventional-and no-till soybean using flumioxazin/pyroxasulfone. Weed Technol. 2014, 28, 298–306. [Google Scholar] [CrossRef]
- Fernández-Aláez, M.; Fernández-Aláez, C.; Rodrıguez, S. Seasonal changes in biomass of charophytes in shallow lakes in the northwest of Spain. Aquat. Bot. 2002, 72, 335–348. [Google Scholar] [CrossRef]
- Liu, C.; Wu, G.; Yu, D.; Wang, D.; Xia, S. Seasonal changes in height, biomass and biomass allocation of two exotic aquatic plants in a shallow eutrophic lake. J. Freshw. Ecol. 2004, 19, 41–45. [Google Scholar] [CrossRef]
- Kati, H.J.; Ayal, A.W.R.; Ayal, A.W.; Abbas, Y.K. Physiological and Ecological Study of some Algae and Aquatic Plants. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023; p. 022018. [Google Scholar]
- Lopez-Pozo, M.; Adams III, W.W.; Polutchko, S.K.; Demmig-Adams, B. Terrestrial and floating aquatic plants differ in acclimation to light environment. Plants 2023, 12, 1928. [Google Scholar] [CrossRef] [PubMed]
- Dembowska, E.A. Seasonal variation in phytoplankton and aquatic plants in floodplain lakes (lower Vistula River, Poland). Wetl. Ecol. Manag. 2015, 23, 535–549. [Google Scholar] [CrossRef]
- Koleszár, G.; Lukács, B.A.; Nagy, P.T.; Szabó, S. Shade tolerance as a key trait in invasion success of submerged macrophyte Cabomba caroliniana over Myriophyllum spicatum. Ecol. Evol. 2022, 12, e9306. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Bickel, T.O.; Perrett, C.; Adkins, S. Alien invasive macrophyte put into the shade: The native floating-leaved macrophyte Nymphoides indica reduces Cabomba caroliniana growth performance through competition for light. Freshw. Biol. 2021, 66, 1123–1135. [Google Scholar] [CrossRef]
- Bultemeier, B.W. The Response of Three Cabomba Populations to Herbicides and Environmental Parameters: Implications for Taxonomy and Management; University of Florida: Gainesville, FL, USA, 2008. [Google Scholar]
- Hofstra, D.E.; Clements, D.; Rendle, D.M.; Champion, P.D. Response of fanwort (Cabomba caroliniana) to selected aquatic herbicides in New Zealand. J. Aquat. Plant Manag. 2021, 59, 35–39. [Google Scholar] [CrossRef]
- Nufarm US. Clipper® Herbicide Valent U.S.A. LLC Professional Products Flumioxazin 59639-161. Available online: https://www.cdms.net/labelsSDS/home/prodidx?key=10642 (accessed on 22 June 2023).
Flumioxazin Dose (ppb a.i.) | Stem Fragment Regeneration Rate (%) | Regenerated Dry Biomass (mg) Plant ± SD | Biomass Reduction Relative to Control (%) |
---|---|---|---|
0 | 100 | 610 ± 430 | |
25 | 73 | 80 ± 130 | 87 |
50 | 17 | 5 ± 8 | 99 |
100 | 3 | 1 ± 5 | 100 |
200 | 0 | 0 ± 0 | 100 |
Flumioxazin Dose (ppb a.i.) | Stem Fragment Regeneration Rate (%) | Regenerated Dry Biomass (mg) Plant ± SD | Biomass Reduction Relative to Control (%) |
---|---|---|---|
0 | 100 | 662 ± 209 | |
25 | 72 | 272 ± 229 | 59 |
50 | 60 | 140 ± 153 | 79 |
100 | 35 | 41 ± 62 | 94 |
200 | 18 | 20 ± 61 | 97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Bickel, T.O.; Adkins, S. Herbicide-Induced Fragmentation: Regenerative Ability of Cabomba Fragments After Exposure to Flumioxazin. Biology 2025, 14, 1023. https://doi.org/10.3390/biology14081023
Xu J, Bickel TO, Adkins S. Herbicide-Induced Fragmentation: Regenerative Ability of Cabomba Fragments After Exposure to Flumioxazin. Biology. 2025; 14(8):1023. https://doi.org/10.3390/biology14081023
Chicago/Turabian StyleXu, Junfeng, Tobias Oliver Bickel, and Steve Adkins. 2025. "Herbicide-Induced Fragmentation: Regenerative Ability of Cabomba Fragments After Exposure to Flumioxazin" Biology 14, no. 8: 1023. https://doi.org/10.3390/biology14081023
APA StyleXu, J., Bickel, T. O., & Adkins, S. (2025). Herbicide-Induced Fragmentation: Regenerative Ability of Cabomba Fragments After Exposure to Flumioxazin. Biology, 14(8), 1023. https://doi.org/10.3390/biology14081023