Virulence of Metarhizium robertsii Strains Isolated from Forest Ecosystems Against Wax Moths (Galleria mellonella, Achroia grisella) and Pine Processionary (Thaumetopoea pityocampa) Larvae
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Strains
2.2. Insect Rearing in the Lab
2.3. Laboratory Bioassay
2.4. Statistical Methodology
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Battisti, A.; Avcı, M.; Avtzis, D.N.; Ben Jamaa, M.L.; Berardi, L.; Berretima, W.; Branco, M.; Chakali, G.; Fels, M.A.E.A.E.; Frérot, B.; et al. Natural History of the Processionary Moths (Spp.): New Insights in Relation to Climate Change. In Processionary Moths and Climate Change: An Update; Springer: Dordrecht, The Netherlands, 2015; pp. 15–79. [Google Scholar] [CrossRef]
- Ozdemir, I.O.; Kushiyev, R.; Erper, I.; Tuncer, C. Efficacy of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae against Thaumetopoea pityocampa Shiff. (Lepidoptera: Thaumatopoeidae). Arch. Phytopathol. Plant Prot. 2019, 52, 470–480. [Google Scholar] [CrossRef]
- Ferracini, C.; Saitta, V.; Pogolotti, C.; Rollet, I.; Vertui, F.; Dovigo, L. Monitoring and Management of the Pine Processionary Moth in the North-Western Italian Alps. Forests 2020, 11, 1253. [Google Scholar] [CrossRef]
- Hódar, J.A.; Castro, J.; Zamora, R. Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biol. Conserv. 2002, 110, 123–129. [Google Scholar] [CrossRef]
- Semiz, G.; Cetin, H.; Isik, K.; Yanikoglu, A. Effectiveness of a naturally derived insecticide, spinosad, against the pine processionary moth Thaumetopoea wilkinsoni Tams (Lepidoptera: Thaumetopoeidae) under laboratory conditions. Pest Manag. Sci. 2006, 62, 452–455. [Google Scholar] [CrossRef]
- Kanat, M.; Alma, M.H.; Sivrikaya, F. Effect of defoliation by Thaumetopoea pityocampa (Den. & Schiff.) (Lepidoptera: Thaumetopoeidae) on annual diameter increment of Pinus brutia Ten. in Turkey. Ann. For. Sci. 2005, 62, 91–94. [Google Scholar] [CrossRef]
- Devkota, B.; Schmidt, G.H. Larval development of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Thaumetopoeidae) from Greece as influenced by different host plants under laboratory conditions. J. Appl. Èntomol. 1990, 109, 321–330. [Google Scholar] [CrossRef]
- Cepeda-Aponte, O.I.; Imperatriz-Fonseca, V.L.; Velthuis, H.H.W. Lesser Wax MothAchroia Grisella:First Report for Stingless Bees and New Capture Method. J. Apic. Res. 2002, 41, 107–108. [Google Scholar] [CrossRef]
- Ellis, J.D.; Graham, J.R.; Mortensen, A. Standard methods for wax moth research. J. Apic. Res. 2013, 52, 1–17. [Google Scholar] [CrossRef]
- Egelie, A.A.; Mortensen, A.N.; Barber, L.; Sullivan, J.; Ellis, J.D. Lesser Wax Moth Achroia grisella Fabricius (Insecta: Lepidoptera: Pyralidae). EDIS 2015, 2015, 4. [Google Scholar] [CrossRef]
- Chalup, A.; Ayup, M.M.; Garzia, A.C.M.; Malizia, A.; Martin, E.; De Cristóbal, R.; Galindo-Cardona, A. First report of the lesser wax moth Achroia grisella F. (Lepidoptera: Pyralidae) consuming polyethylene (silo-bag) in northwestern Argentina. J. Apic. Res. 2018, 57, 569–571. [Google Scholar] [CrossRef]
- Galindo-Cardona, A.; Achar, J.D.; González-Brizuela, G.; Martín, E.; Salvo, S.A.; Monmany-Garzia, A.C. First report and molecular determination of Apanteles galleriae Wilkinson (Hymenoptera, Braconidae), a parasitoid of the lesser wax moth Achroia grisella F. (Lepidoptera, Pyralidae) in Northwest Argentina. J. Apic. Res. 2019, 58, 550–552. [Google Scholar] [CrossRef]
- Hosni, E.M.; Al-Khalaf, A.A.; Nasser, M.G.; Abou-Shaara, H.F.; Radwan, M.H. Modeling the Potential Global Distribution of Honeybee Pest, Galleria mellonella under Changing Climate. Insects 2022, 13, 484. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.V.; Siddhapara, M.R.; Patel, P.K.; Prajapati, A.P. Biology of Greater Wax Moth, Galleria mellonella L. on Artificial Diet. J. Exp. Zool. India 2019, 22, 1267–1272. [Google Scholar]
- Wojda, I.; Staniec, B.; Sułek, M.; Kordaczuk, J. The greater wax moth Galleria mellonella: Biology and use in immune studies. Pathog. Dis. 2020, 78, ftaa057. [Google Scholar] [CrossRef]
- Jindra, M.; Sehnal, F. Larval growth, food consumption, and utilization of dietary protein and energy in Galleria mellonella. J. Insect Physiol. 1989, 35, 719–724. [Google Scholar] [CrossRef]
- Kwadha, C.A.; Ong’amo, G.O.; Ndegwa, P.N.; Raina, S.K.; Fombong, A.T. The Biology and Control of the Greater Wax Moth, Galleria mellonella. Insects 2017, 8, 61. [Google Scholar] [CrossRef]
- Gulati, R.; Kaushik, H.D. Enemies of Honeybees and Their Management—A Review. Agric. Rev. 2004, 25, 189–200. [Google Scholar]
- Hosamani, V.; Swamy, B.H.; Kattimani, K.; Kalibavi, C. Studies on Biology of Greater Wax Moth (Galleria mellonella L.). Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 3811–3815. [Google Scholar] [CrossRef]
- Serrano, I.; Verdial, C.; Tavares, L.; Oliveira, M. The Virtuous Galleria mellonella Model for Scientific Experimentation. Antibiotics 2023, 12, 505. [Google Scholar] [CrossRef]
- Hood, W.M.; Horton, P.M.; McCreadie, J. Field Evaluation of the Red Imported Fire Ant (Hymenoptera: Formicidae) for the Control of Wax Moths (Lepidoptera: Pyralidae) in Stored Honey Bee Comb. J. Agric. Urban Entomol. 2004, 20, 93–103. [Google Scholar]
- Jactel, H.; Barbaro, L.; Battisti, A.; Bosc, A.; Branco, M.; Brockerhoff, E.; Castagneyrol, B.; Dulaurent, A.-M.; Hódar, J.A.; Jacquet, J.-S.; et al. Insect—Tree Interactions in Thaumetopoea Pityocampa. In Processionary Moths and Climate Change: An Update; Springer: Dordrecht, The Netherlands, 2015; pp. 265–310. [Google Scholar] [CrossRef]
- Biçer, E.Ç.; Sak, O.; Er, A. Constant and variable heat shock effects on Galleria mellonella L. (Lepidoptera: Pyralidae) mortality and biological traits in the context of climate change. Int. J. Trop. Insect Sci. 2025, 45, 759–771. [Google Scholar] [CrossRef]
- Sbay, H.; Zas, R. Geographic variation in growth, survival, and susceptibility to the processionary moth (Thaumetopoea pityocampa Dennis & Schiff.) of Pinus halepensis Mill. and P. brutia Ten.: Results from common gardens in Morocco. Ann. For. Sci. 2018, 75, 69. [Google Scholar] [CrossRef]
- Goubault, M.; Burlaud, R. Do males choose their mates in the lekking moth Achroia grisella? Influence of female body mass and male reproductive status on male mate choice. Insect Sci. 2017, 25, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Tananaki, C.; Zotou, A.; Thrasyvoulou, A. Determination of 1,2-dibromoethane, 1,4-dichlorobenzene and naphthalene residues in honey by gas chromatography–mass spectrometry using purge and trap thermal desorption extraction. J. Chromatogr. A 2005, 1083, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Charrière, J.-D.; Imdorf, A. Protection of Honey Combs from Wax Moth Damage. Am. Bee J. 1999, 139, 627–630. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20000507152 (accessed on 1 July 2025).
- Ritter, W. ; Akratanakul. P. Honey Bee Diseases and Pests: A Practical Guide for Beekeepers; FAO: Rome, Italy, 2006; Volume 4, Available online: https://openknowledge.fao.org/handle/20.500.14283/a0849e (accessed on 1 July 2025).
- Leroy, B.M.L. Global Insights on Insecticide Use in Forest Systems: Current Use, Impacts and Perspectives in a Changing World. Curr. For. Rep. 2024, 11, 1–30. [Google Scholar] [CrossRef]
- Jia, C.; Batterman, S. A Critical Review of Naphthalene Sources and Exposures Relevant to Indoor and Outdoor Air. Int. J. Environ. Res. Public Health 2010, 7, 2903–2939. [Google Scholar] [CrossRef]
- Leroy, B.M.L.; Gossner, M.M.; Lauer, F.P.M.; Petercord, R.; Seibold, S.; Jaworek, J.; Weisser, W.W.; Sullivan, B. Assessing Insecticide Effects in Forests: A Tree-Level Approach Using Unmanned Aerial Vehicles. J. Econ. Èntomol. 2019, 112, 2686–2694. [Google Scholar] [CrossRef]
- Zhao, H.; Li, G.; Cui, X.; Wang, H.; Liu, Z.; Yang, Y.; Xu, B. Review on effects of some insecticides on honey bee health. Pestic. Biochem. Physiol. 2022, 188, 105219. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, L.; Yaqoob, M.; Kanth, R.H.; Wani, F.J.; Shah, Z.A.; Dar, E.A.; Wani, F.F.; Mir, M.S.; Naikoo, N.B.; Gull, A.; et al. Exposure to organophosphate insecticides induces behavioral changes and acetylcholinesterase inhibition in Apis mellifera. Ecotoxicol. Environ. Saf. 2024, 287, 117279. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.-C. Development of Environment-Friendly Strategies in the Management of Processionary Moths. In Processionary Moths and Climate Change: An Update; Springer: Dordrecht, The Netherlands, 2015; pp. 411–427. [Google Scholar] [CrossRef]
- Aydın, T.; Branco, M.; Güven, Ö.; Gonçalves, H.; Lima, A.; Karaca, I.; Butt, T. Significant mortality of eggs and young larvae of two pine processionary moth species due to the entomopathogenic fungus Metarhizium brunneum. Biocontrol Sci. Technol. 2018, 28, 317–331. [Google Scholar] [CrossRef]
- Clerk, G.; Madelin, M. The longevity of conidia of three insect-parasitizing hyphomycetes. Trans. Br. Mycol. Soc. 1965, 48, 193–209. [Google Scholar] [CrossRef]
- Sevim, A.; Demir, I.; Demirbağ, Z. Molecular Characterization and Virulence of Beauveria spp. from the Pine Processionary Moth, Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae). Mycopathologia 2010, 170, 269–277. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Mohamed, H.F.; El-Naggar, S.E.M.; Swelim, M.A.; Elkhawaga, O.E. Isolation and Selection of Entomopathogenic Fungi as Biocontrol Agent against the Greater Wax Moth, Galleria mellonella L. (Lepidoptera: Pyralidae). Egypt. J. Biol. Pest Control 2016, 16, 249–253. [Google Scholar]
- Sönmez, E.; Demir, I.; Bull, J.C.; Butt, T.M.; Demirbağ, Z. Pine processionary moth (Thaumetopoea pityocampa, Lepidoptera: Thaumetopoeidae) larvae are highly susceptible to the entomopathogenic fungi Metarhizium brunneum and Beauveria bassiana. Biocontrol Sci. Technol. 2017, 27, 1168–1179. [Google Scholar] [CrossRef]
- Skinner, M.; Parker, B.L.; Kim, J.S. Chapter 10—Role of Entomopathogenic Fungi in Integrated Pest Management Margaret; Elsevier Inc.: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Dara, S.K.; Montalva, C.; Barta, M. Microbial Control of Invasive Forest Pests with Entomopathogenic Fungi: A Review of the Current Situation. Insects 2019, 10, 341. [Google Scholar] [CrossRef]
- Leite, M.O.G.; Alves, D.A.; Lecocq, A.; Malaquias, J.B.; Delalibera, I.; Jensen, A.B. Laboratory Risk Assessment of Three Entomopathogenic Fungi Used for Pest Control toward Social Bee Pollinators. Microorganisms 2022, 10, 1800. [Google Scholar] [CrossRef]
- Bava, R.; Castagna, F.; Piras, C.; Musolino, V.; Lupia, C.; Palma, E.; Britti, D.; Musella, V. Entomopathogenic Fungi for Pests and Predators Control in Beekeeping. Veter- Sci. 2022, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Hernández, R.A.; Ruíz-Toledo, J.; Toledo, J.; Sánchez, D. Effect of Three Entomopathogenic Fungi on Three Species of Stingless Bees (Hymenoptera: Apidae) Under Laboratory Conditions. J. Econ. Èntomol. 2016, 109, 1015–1019. [Google Scholar] [CrossRef] [PubMed]
- Mantzoukas, S.; Lagogiannis, I.; Mpekiri, M.; Pettas, I.; Eliopoulos, P.A. Insecticidal Action of Several Isolates of Entomopathogenic Fungi against The Granary Weevil Sitophilus granarius. Agriculture 2019, 9, 222. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Milonas, P.; Kontodimas, D.; Angelopoulos, K. Interaction between the entomopathogenic bacterium Bacillus thuringiensis subsp. kurstaki and two entomopathogenic fungi in bio-control of Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae). Ann. Microbiol. 2012, 63, 1083–1091. [Google Scholar] [CrossRef]
- St Leger, R.J.; Wang, J.B. Metarhizium: Jack of All Trades, Master of Many: Sex and Host Switching in a Fungus. Open Biol. 2020, 10, 200307. [Google Scholar] [CrossRef]
- Seyoum, E.; Namusana, H. Evaluation of indigenous fungal isolates and Metarhizium anisopliae var. acriidum against adult lesser wax moth, Achroia grisella (l) (Pyralidae: Lepidoptera). SINET: Ethiop. J. Sci. 2011, 33, 41–48. [Google Scholar] [CrossRef]
- Girişgin, A.O.; Çimenlikaya, N.; Aydın, L.; Zengin, S.A. Experimentation of Essential Oils and Entomopathogenic Fungi Against Wax Moth Larvae in Laboratory Conditions. Turk. J. Parasitol. 2022, 46, 322–326. [Google Scholar] [CrossRef]
- Er, M.K.; Tunaz, H.; Gökçe, A. Pathogenicity of entomopathogenic fungi to Thaumetopoea pityocampa (Schiff.) (Lepidoptera: Thaumatopoeidae) larvae in laboratory conditions. J. Pest Sci. 2007, 80, 235–239. [Google Scholar] [CrossRef]
- Alikhani, M.; Safavi, S.A.; Iranipour, S. Effect of the Entomopathogenic Fungus, Metarhizium anisopliae (Metschnikoff) Sorokin, on Demographic Fitness of the Tomato Leaf Miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Egypt. J. Biol. Pest Control 2019, 29, 1–7. [Google Scholar] [CrossRef]
- Ndereyimana, A.; Nyalala, S.; Murerwa, P.; Gaidashova, S. Pathogenicity of some commercial formulations of entomopathogenic fungi on the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Egypt. J. Biol. Pest Control 2019, 29, 1–5. [Google Scholar] [CrossRef]
- Wakil, W.; Ghazanfar, M.U.; Riasat, T.; Kwon, Y.J.; Qayyum, M.A.; Yasin, M. Occurrence and diversity of entomopathogenic fungi in cultivated and uncultivated soils in Pakistan. Èntomol. Res. 2013, 43, 70–78. [Google Scholar] [CrossRef]
- Gençer, D.; Bayramoğlu, Z. Characterization and pathogenicity of Beauveria bassiana strains isolated from Galleria mellonella L. (Lepidoptera: Pyralidae) in Turkey. Egypt. J. Biol. Pest Control 2022, 32, 1–7. [Google Scholar] [CrossRef]
- Fargues, J.; Goettel, M.S.; Smits, N.; Ouedraogo, A.; Vidal, C.; Lacey, L.A.; Lomer, C.J.; Rougier, M. Variability in susceptibility to simulated sunlight of conidia among isolates of entomopathogenic Hyphomycetes. Mycopathologia 1996, 135, 171–181. [Google Scholar] [CrossRef]
- Cox, P.D.; Wakefield, M.E.; Price, N.; Wildey, K.B.; Chambers, J.; Moore, D.; Aquino De Muro, M.; Bell, B.A. The Potential Use of Insect-Specific Fungi to Control Grain Storage Pests in Empty Grain Stores. HGCA Proj. Rep. 2004, 1–49. [Google Scholar]
- Altre, J.; Vandenberg, J.; Cantone, F. Pathogenicity of Paecilomyces fumosoroseus Isolates to Diamondback Moth, Plutella xylostella: Correlation with Spore Size, Germination Speed, and Attachment to Cuticle. J. Invertebr. Pathol. 1999, 73, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Dillon, R.; Charnley, A. Influence of accelerated germination of conidia on the pathogenicity of Metarhizium anisopliae for Manduca sexta. J. Invertebr. Pathol. 1989, 54, 277–279. [Google Scholar] [CrossRef]
- Ibrahim, L.; Butt, T.M.; Jenkinson, P. Effect of artificial culture media on germination, growth, virulence and surface properties of the entomopathogenic hyphomycete Metarhizium anisopliae. Mycol. Res. 2002, 106, 705–715. [Google Scholar] [CrossRef]
- Rangel, D.E.; Alston, D.G.; Roberts, D.W. Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus. Mycol. Res. 2008, 112, 1355–1361. [Google Scholar] [CrossRef]
Factor | df | F | Sig. |
---|---|---|---|
Insect | 2 | 6.773 | <0.001 |
Fungal Isolate | 1 | 15.373 | <0.001 |
Dose | 5 | 5.678 | <0.001 |
Days | 6 | 9.312 | <0.001 |
Insect * Fungal Isolate | 2 | 7.306 | <0.001 |
Insect * Dose | 10 | 0.366 | 0.900 |
Insect * Days | 12 | 2.717 | 0.004 |
Fungal Isolate * Dose | 5 | 2.118 | 0.085 |
Fungal Isolate * Days | 6 | 8.833 | <0.001 |
Dose * Days | 30 | 1.651 | 0.132 |
Insect * Fungal Isolate * Dose | 4 | 0.450 | 0.976 |
Insect * Fungal Isolate * Days | 24 | 3.659 | <0.001 |
Insect * Dose * Days | 60 | 1.307 | <0.001 |
Fungal Isolate * Dose * Days | 30 | 3.097 | <0.001 |
Insect * Fungal Isolate * Dose * Days | 60 | 0.956 | <0.001 |
Treatment/Mortality | Concentration | 24 h | 48 h | 72 h | 96 h | 120 h | 144 h |
---|---|---|---|---|---|---|---|
MET S | 103 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 3.4 ± 1.6 b | 5.3 ± 2.7 b | 16.8 ± 2.4 b | 28.4 ± 1.6 bc |
104 | 0.0 ± 0.0 a | 2.5 ± 2.4 b | 6.9 ± 1.8 b | 10.5 ± 2.1 b | 23.5 ± 1.5 b | 40.6 ± 2.8 d | |
105 | 0.0 ± 0.0 a | 3.8 ± 1.3 b | 14.0 ± 0.0 b | 27.4 ± 1.6 bc | 39.2 ± 1.2 d | 50.9 ± 1.1 e | |
106 | 5.3 ± 3.2 b | 10 ± 0.0 b | 18.5 ± 2.5 b | 33.4 ± 1.4 c | 56.6 ± 2.6 e | 67.8 ± 1.5 f | |
107 | 6.8 ± 1.4 b | 12.4 ± 1.5 b | 21.0 ± 0.0 b | 41.5 ± 2.6 d | 65.4 ± 2.3 f | 78.2 ± 1.2 h | |
108 | 10.0 ± 0.0 b | 16.3 ± 1.3 b | 26.4 ± 2.1 c | 53.9 ± 1.6 e | 84.7 ± 1.4 g | 87.8 ± 2.5 i | |
MET K | 103 | 0.0 ± 0.0 a | 2.4 ± 1.6 b | 4.4 ± 2.2 b | 7.3 ± 2.5 b | 18.3 ± 1.5 b | 27.7 ± 2.1 bc |
104 | 0.0 ± 0.0 a | 4.5 ± 1.4 b | 9.9 ± 1.1 b | 17.5 ± 1.8 b | 34.5 ± 2.3 d | 40.9 ± 2.4 d | |
105 | 0.0 ± 0.0 a | 7.8 ± 1.2 b | 18.3 ± 2.3 b | 25.2 ± 1.5 bc | 49.2 ± 2.2 e | 55.3 ± 2.1e | |
106 | 7.4 ± 2.1 b | 15.3 ± 2.3 b | 22.5 ± 2.1 bc | 33.4 ± 2.1 c | 52.6 ± 1.2 e | 69.3 ± 3.4 f | |
107 | 8.8 ± 1.8 b | 18.4 ± 1.2 b | 24.0 ± 0.0 c | 40.3 ± 2.8 d | 63.7 ± 1.5 f | 75.6 ± 2.9 h | |
108 | 13.2 ± 2.4 b | 19.2 ± 2.7 b | 29.9 ± 2.1 c | 50.9 ± 3.1 e | 79.3 ± 1.5 h | 89.2 ± 1.5 i | |
Control | H2O + Tween 80 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 3.3 ± 2.3 b | 3.3 ± 2.3 b | 3.3 ± 2.3 b |
Treatment/Mortality | Concentration | 24 h | 48 h | 72 h | 96 h | 120 h | 144 h |
---|---|---|---|---|---|---|---|
MET S | 103 | 0.0 ± 0.0 a | 2.9 ± 2.1 b | 3.4 ± 1.5 b | 5.3 ± 2.2 b | 16.8 ± 1.8 bc | 26.4 ± 1.6 c |
104 | 0.0 ± 0.0 a | 3.5 ± 1.5 b | 6.6 ± 2.1 b | 10.5 ± 1.9 b | 23.5 ± 1.9 c | 42.4 ± 1.2 e | |
105 | 0.0 ± 0.0 a | 6.8 ± 1.2 b | 13.4 ± 1.2 b | 27.4 ± 1.6 cd | 39.2 ± 3.1 e | 56.3 ± 2.3 h | |
106 | 4.3 ± 1.1 b | 10.0 ± 0.0 b | 18.5 ± 1.3 c | 37.4 ± 1.8 e | 55.9 ± 0.9 h | 67.8 ± 2.1 g | |
107 | 8.9 ± 1.7 b | 12.4 ± 2.1 b | 23.2 ± 1.2 c | 43.5 ± 2.4 f | 66.4 ± 1.1 g | 73.2 ± 3.5 g | |
108 | 11.9 ± 2.2 b | 17.3 ± 1.7 c | 29.4 ± 1.6 d | 64.9 ± 1.5 g | 77.7 ± 2.1 i | 88.3 ± 2.9 k | |
MET K | 103 | 0.0 ± 0.0 a | 3.2 ± 1.4 b | 4.4 ± 1.2 b | 7.3 ± 2.7 a | 15.2 ± 2.9 c | 29.2 ± 1.8 d |
104 | 0.0 ± 0.0 a | 4.4 ± 1.3 b | 9.9 ± 1.1 b | 17.5 ± 2.5 c | 34.5 ± 1.6 e | 43.6 ± 1.4 e | |
105 | 0.0 ± 0.0 a | 7.5 ± 2.1 b | 18.3 ± 2.3 c | 25.2 ± 1.8 d | 49.2 ± 0.8 j | 54.8 ± 1.1 h | |
106 | 7.3 ± 1.7 b | 17.7 ± 3.7 c | 22.5 ± 2.4 c | 33.4 ± 1.6 e | 52.6 ± 2.7 h | 69.3 ± 2.1 g | |
107 | 7.8 ± 1.2 b | 18.7 ± 2.2 c | 25.8 ± 1.2 c | 41.5 ± 0.9 f | 63.7 ± 1.5 g | 77.2 ± 3.2 i | |
108 | 13.2 ± 2.1 b | 19.2 ± 2.7 c | 29.9 ± 1.1 d | 60.9 ± 2.1 g | 78.3 ± 1.4 i | 90.2 ± 1.8 k | |
Control | H2O + Tween 80 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 1.7 ± 2.3 b | 1.7 ± 2.3 b |
Treatment/Mortality | Concentration | 24 h | 48 h | 72 h | 96 h | 120 h | 144 h |
---|---|---|---|---|---|---|---|
MET S | 103 | 0.0 ± 0.0 a | 2.7 ± 1.3 b | 5.4 ± 2.1 b | 8.3 ± 1.7 b | 18.9 ± 1.8 bc | 29.4 ± 2.7 d |
104 | 0.0 ± 0.0 a | 3.5 ± 2.8 b | 9.9 ± 1.6 b | 13.5 ± 2.1 b | 27.8 ± 1.5 d | 42.6 ± 2.1 f | |
105 | 0.0 ± 0.0 a | 5.8 ± 1.4 b | 14.9 ± 2.1 b | 27.4 ± 1.3 d | 39.9 ± 1.9 f | 56.7 ± 1.2 g | |
106 | 4.3 ± 1.9 b | 10.9 ± 1.5 b | 18.5 ± 1.4 bc | 35.8 ± 1.8 e | 56.6 ± 2.4 g | 69.8 ± 1.9 i | |
107 | 8.9 ± 1.1 b | 12.4 ± 0.9 b | 24.7 ± 1.3 c | 45.6 ± 2.9 f | 68.4 ± 1.3 i | 78.9 ± 0.9 j | |
108 | 13.6 ± 1.4 b | 18.9 ± 1.1 bc | 29.4 ± 1.1 d | 57.9 ± 2.9 g | 78.7 ± 1.9 j | 89.8 ± 1.1 l | |
MET K | 103 | 0.0 ± 0.0 a | 3.2 ± 3.3 b | 4.4 ± 1.6 b | 7.3 ± 1.7 b | 16.8 ± 2.1 bc | 28.9 ± 1.5 d |
104 | 0.0 ± 0.0 a | 4.4 ± 1.7 b | 9.7 ± 2.3 b | 17.5 ± 2.3 bc | 34.5 ± 1.9 e | 44.6 ± 1.8 f | |
105 | 0.0 ± 0.0 a | 7.5 ± 1.3 b | 18.3 ± 1.8 bc | 25.2 ± 2.6 cd | 49.2 ± 1.5 f | 57.3 ± 2.6 g | |
106 | 6.3 ± 1.4 b | 12.7 ± 1.4 b | 21.6 ± 1.7 c | 33.4 ± 1.9 e | 52.8 ± 2.6 f | 69.3 ± 0.9 i | |
107 | 6.5 ± 1.2 b | 15.7 ± 1.6 b | 23.2 ± 1.2 c | 41.5 ± 2.1 f | 63.7 ± 1.4 k | 75.7 ± 2.2 j | |
108 | 11.4 ± 2.1 b | 17.2 ± 1.8 bc | 27.5 ± 0.8 d | 50.9 ± 2.6 f | 78.3 ± 2.1 j | 88.1 ± 2.6 l | |
Control | H2O + Tween 80 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 3.3 ± 2.3 b | 3.3 ± 2.3 b |
Insect | Fungal Isolate | df | LC50 (conidia/mL) 95% CL | Slope ± SE | Chi-test (χ2) Sig | Intercept |
---|---|---|---|---|---|---|
G. mellonella | Met S | 4 | 9.24 × 105 (8.80 × 104–9.45 × 106) | 0.339 ± 0.51 | 0.997 | 3.380 |
Met K | 4 | 9.12 × 105 (9.32 × 104–8.95 × 106) | 0.341 ± 0.50 | 1.000 | 3.375 | |
A. grisella | Met S | 4 | 7.82 × 105 (7.97 × 104–9.11 × 106) | 0.342 ± 0.51 | 1.000 | 3.329 |
Met K | 4 | 6.99 × 104 (7.16 × 103–6.73 × 105) | 0.344 ± 0.50 | 1.000 | 3.334 | |
T. pityocampa | Met S | 4 | 5.10 × 104 (5.26 × 103–4.95 × 105) | 0.346 ± 0.53 | 1.000 | 3.373 |
Met K | 4 | 5.31 × 104 (4.76 × 103–5.93 × 105) | 0.322 ± 0.54 | 0.999 | 3.477 |
Insect | Fungal Isolate | Sporulation on Cadavers (% + SD) | Sporulation Time on Cadavers (Days + SD) |
G. mellonella | Met S | 73.3 ± 9.4 a | 3.93 ± 0.2 a |
Met K | 69.2 ± 8.7 a | 4.17 ± 0.57 a | |
A. grisella | Met S | 71.7 ± 6.9 a | 4.11 ± 0.32 a |
Met K | 68.2 ± 4.6 a | 4.33 ± 0.87 a | |
T. pityocampa | Met S | 69.8 ± 9.4 a | 3.82 ± 0.61 a |
Met K | 62.4 ± 12.3 a | 4.19 ± 0.48 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantzoukas, S.; Papantzikos, V.; Zarmakoupi, C.; Eliopoulos, P.A.; Lagogiannis, I.; Patakioutas, G. Virulence of Metarhizium robertsii Strains Isolated from Forest Ecosystems Against Wax Moths (Galleria mellonella, Achroia grisella) and Pine Processionary (Thaumetopoea pityocampa) Larvae. Biology 2025, 14, 1009. https://doi.org/10.3390/biology14081009
Mantzoukas S, Papantzikos V, Zarmakoupi C, Eliopoulos PA, Lagogiannis I, Patakioutas G. Virulence of Metarhizium robertsii Strains Isolated from Forest Ecosystems Against Wax Moths (Galleria mellonella, Achroia grisella) and Pine Processionary (Thaumetopoea pityocampa) Larvae. Biology. 2025; 14(8):1009. https://doi.org/10.3390/biology14081009
Chicago/Turabian StyleMantzoukas, Spiridon, Vasileios Papantzikos, Chrysanthi Zarmakoupi, Panagiotis A. Eliopoulos, Ioannis Lagogiannis, and George Patakioutas. 2025. "Virulence of Metarhizium robertsii Strains Isolated from Forest Ecosystems Against Wax Moths (Galleria mellonella, Achroia grisella) and Pine Processionary (Thaumetopoea pityocampa) Larvae" Biology 14, no. 8: 1009. https://doi.org/10.3390/biology14081009
APA StyleMantzoukas, S., Papantzikos, V., Zarmakoupi, C., Eliopoulos, P. A., Lagogiannis, I., & Patakioutas, G. (2025). Virulence of Metarhizium robertsii Strains Isolated from Forest Ecosystems Against Wax Moths (Galleria mellonella, Achroia grisella) and Pine Processionary (Thaumetopoea pityocampa) Larvae. Biology, 14(8), 1009. https://doi.org/10.3390/biology14081009