Unraveling the Systemic and Local Immune Response of Rainbow Trout (Oncorhynchus mykiss) to the Viral Hemorrhagic Septicemic Virus
Simple Summary
Abstract
1. Introduction
1.1. Impact of VHSV Infections
1.2. Symptomatology
1.3. Host Antiviral Response
1.4. Viperin Mode of Action
2. Materials and Methods
2.1. Experimental Design and Infection Method
2.2. Hematological Parameters and Differential Peripheral Leukocyte Counts
2.3. Plasma Innate Immune Response
2.4. Viral Load
2.5. Gills, Skin and HK Tissue RNA Extraction and Sequencing
2.6. Statistical Analysis
3. Results
3.1. Hematological Parameters in Response to Infection
3.2. Innate Immune Response
3.3. Viral Load
3.4. Tissue RNAseq
3.4.1. Differential Expression Analysis
3.4.2. Enrichment Analysis
3.4.3. Common and Unique DEGs
4. Discussion
4.1. Route of VHSV Entry
4.2. Cell Antiviral Receptors
4.3. Interferon Inducible Genes—The Central Role of Viperin
4.4. Cytokine Response
4.5. Trout Peripheral Antiviral Response
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Organization for Animal Health. 2025. Available online: http://www.oie.int (accessed on 10 March 2025).
- Einer-Jensen, K.; Forsberg, R.; Lorenzen, N. Evolution of the fish rhabdovirus viral haemorrhagic septicaemia virus. J. Gen. Virol. 2004, 85, 1167–1179. [Google Scholar] [CrossRef]
- Baek, E.J.; Kim, M.J.; Kim, K.I. In vitro and in vivo evaluation of the antiviral activity of arctigenin, ribavirin, and ivermectin against viral hemorrhagic septicemia virus infection. Fish Shellfish Immunol. 2023, 132, 108456. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Kim, D.H.; Kim, K.H. Development of rapid neutralization assay of viral hemorrhagic septicemia virus (VHSV) based on chimeric rhabdovirus expressing heterologous glycoprotein. J. Virol. Methods 2023, 311, 114639. [Google Scholar] [CrossRef]
- Thompson, A.A.; Peersen, O.B. Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase. Proc. EMBO J. 2004, 23, 3462–3471. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Li, X.; Tian, Z.; Xu, Y.; Zhang, R.; Li, Y. Zebrafish as an animal model for the antiviral RNA interference pathway. J. Gen. Virol. 2021, 102. [Google Scholar] [CrossRef]
- Skall, H.F.; Olesen, N.J.; Mellergaard, S. Viral haemorrhagic septicaemia virus in marine fish and its implications for fish farming—A review. J. Fish Dis. 2005, 28, 509–529. [Google Scholar] [CrossRef]
- Schönherz, A.A.; Lorenzen, N.; Einer-Jensen, K. Inter-species transmission of viral hemorrhagic septicemia virus (VHSV) from turbot (Scophthalmus maximus) to rainbow trout (Oncorhynchus mykiss). J. Gen. Virol. 2013, 94, 869–875. [Google Scholar] [CrossRef]
- Jang, Y.-S.; Yoon, S.-Y.; Krishnan, R.; Oh, M.-J. Kinetics of viral hemorrhagic septicemia virus (VHSV) and immune response in olive flounder (Paralichthys olivaceus) at altered temperature. Fish Shellfish Immunol. 2024, 155, 110004. [Google Scholar] [CrossRef] [PubMed]
- Aquilino, C.; Castro, R.; Fischer, U.; Tafalla, C. Transcriptomic responses in rainbow trout gills upon infection with viral hemorrhagic septicemia virus (VHSV). Dev. Comp. Immunol. 2014, 44, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Ross, K.; McCarthy, U.; Huntly, P.J.; Wood, B.P.; Stuart, D.; Rough, E.I.; Smail, D.A.; Bruno, D.W. An outbreak of viral haemorrhagic septicaemia (VHS) in turbot (Scophthalmus maximus) in Scotland. Bull. Eur. Assoc. Fish Pathol. 1995, 14, 213–214. [Google Scholar]
- Isshiki, T.; Nishizawa, T.; Kobayashi, T.; Nagano, T.; Miyazaki, T. An outbreak of VHSV (viral hemorrhagic septicemia virus) infection in farmed Japanese flounder Paralichthys olivaceus in Japan. Dis. Aquat. Org. 2001, 47, 87–99. [Google Scholar] [CrossRef]
- Faisal, M.; Shavalier, M.; Kim, R.K.; Millard, E.V.; Gunn, M.R.; Winters, A.D.; Schulz, C.A.; Eissa, A.; Thomas, M.V.; Wolgamood, M.; et al. Spread of the emerging viral hemorrhagic septicemia virus strain, genotype IVb, in Michigan, USA. Viruses 2012, 4, 734–760. [Google Scholar] [CrossRef]
- Lorenzen, N.; LaPatra, S.E. Immunity to rhabdoviruses in rainbow trout: The antibody response. Fish Shellfish Immunol. 1999, 9, 345–360. [Google Scholar] [CrossRef]
- Kim, S.-J.; Kim, W.-S.; Oh, M.-J. Differences of viral hemorrhagic septicemia virus loads among organs of dead and surviving olive flounder infected by intramuscular injection and immersion challenge. J. Aquat. Anim. Health 2019, 31, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Pereiro, P.; Figueras, A.; Novoa, B. Turbot (Scophthalmus maximus) vs. VHSV (Viral Hemorrhagic Septicemia Virus): A Review. Front. Physiol. 2016, 7, 192. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; Faisal, M. Emergence and resurgence of the viral hemorrhagic septicemia virus (Novirhabdovirus, Rhabdoviridae, Mononegavirales). J. Adv. Res. 2011, 2, 9–23. [Google Scholar] [CrossRef]
- Kesterson, S.P.; Ringiesn, J.; Vakharia, V.N.; Shepherd, B.S.; Leanman, D.W.; Malarhi, K. Effect of the viral hemorrhagic septicemia virus nonvirion protein on translation via PERK-eIF2α pathway. Viruses 2020, 12, 499. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Secombes, C.J. Teleost fish interferons and their role in immunity. Dev. Comp. Immunol. 2011, 35, 1376–1387. [Google Scholar] [CrossRef]
- Ortega-Villaizan, M.M.; Chico, V.; Perez, L. Fish innate immune response to viral infection—An overview of five major antiviral genes. Viruses 2022, 14, 1546. [Google Scholar] [CrossRef]
- Stark, G.R. How cells respond to interferons revisited: From early history to current complexity. Cytokine Growth Factor Rev. 2007, 18, 419–423. [Google Scholar] [CrossRef]
- Cuesta, A.; Tafalla, C. Transcription of immune genes upon challenge with viral hemorrhagic septicemia virus (VHSV) in DNA vaccinated rainbow trout (Oncorhynchus mykiss). Vaccine 2009, 27, 280–289. [Google Scholar] [CrossRef]
- Zhang, Y.-B.; Gui, J.-F. Molecular regulation of interferon antiviral response in fish. Dev. Comp. Immunol. 2012, 38, 193–200. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.-B.; Liu, T.-K.; Shi, J.; Sun, F.; Gui, J.-F. Fish viperin exerts a conserved antiviral function through RLR-triggered IFN signaling pathway. Dev. Comp. Immunol. 2014, 47, 140–149. [Google Scholar] [CrossRef]
- Helbig, K.J.; Beard, M.R. The role of viperin in the innate antiviral response. J. Mol. Biol. 2014, 426, 1210–1219. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, R.; Upadhyay, A.; Överby, A.K. Tick-borne flaviviruses and the type I interferon response. Viruses 2018, 10, 340. [Google Scholar] [CrossRef] [PubMed]
- Gizzi, A.S.; Grove, T.L.; Arnold, J.J.; Jose, J.; Jangra, R.K.; Garforth, S.J.; Du, Q.; Cahill, S.M.; Dulyaninova, N.G.; Love, J.D.; et al. A naturally occurring antiviral ribonucleotide encoded by the human genome. Nature 2018, 558, 610–614. [Google Scholar] [CrossRef]
- Ghosh, S.; March, E.N.G. Viperin: An ancient radical SAM enzyme finds its place in modern cellular metabolism and innate immunity. J. Biol. Chem. 2020, 295, 11513–11528. [Google Scholar] [CrossRef] [PubMed]
- Eslamloo, K.; Ghorbani, A.; Xue, X.; Inkpen, S.M.; Larijani, M.; Rise, M.L. Characterization and transcript expression analyses of Atlantic cod viperin. Front. Immunol. 2019, 10, 311. [Google Scholar] [CrossRef]
- Boudinot, P.; Massin, P.; Blanco, M.; Riffault, S.; Benmansour, A. vig-1, a new fish gene induced by the rhabdovirus glycoprotein, has a virus-induced homologue in humans and shares conserved motifs with the MoaA family. J. Virol. 1999, 73, 1846–1852. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, X.; Kuang, J.; Li, B.; Yu, Q.; Liu, M.; Li, B.; Guo, H.; Li, P. Molecular and functional characterization of viperin in golden pompano, Trachinotus ovatus. Fish Shellfish Immunol. 2023, 142, 109098. [Google Scholar] [CrossRef]
- Kaplow, L.S.; Ladd, C. Brief report: Simplified myeloperoxidase stain using benzidine dihydrochloride. Blood 1965, 26, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Afonso, A.; Lousada, S.; Silva, J.; Ellis, A.E.; Silva, M.T. Neutrophil and macrophage responses to inflammation in the peritoneal cavity of rainbow trout Oncorhynchus mykiss. A light and electron microscopic cytochemical study. Dis. Aquat. Organ. 1998, 34, 27–37. [Google Scholar] [CrossRef]
- Machado, M.; Azeredo, R.; Díaz-Rosales, P.; Afonso, A.; Peres, H.; Oliva-Teles, A.; Costas, B. Dietary tryptophan and methionine as modulators of European seabass (Dicentrarchus labrax) immune status and inflammatory response. Fish Shellfish Immunol. 2015, 42, 353–362. [Google Scholar] [CrossRef]
- Ellis, A.E. Serum antiproteases in fish. In Techniques in Fish Immunology; Stolen, F.T., Anderson, D.P., Roberson, B.S., Van Muiswinkel, W.B., Eds.; SOS: Fair Haven, NJ, USA, 1990. [Google Scholar]
- Costas, B.; Conceição, L.E.C.; Dias, J.; Novoa, B.; Figueras, A.; Afonso, A. Dietary arginine and repeated handling increase disease resistance and modulate innate immune mechanisms of Senegalese sole (Solea senegalensis Kaup, 1858). Fish Shellfish Immunol. 2011, 31, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Quade, M.J.; Roth, J.A. A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Vet. Immunol. Immunopathol. 1997, 58, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.; Secombes, C.J. The production of a macrophage-activating factor from rainbow trout Salmo gairdneri leukocytes. Immunology 1988, 65, 293–297. [Google Scholar]
- Machado, M.; Azeredo, R.; Fontinha, F.; Fernández-Boo, S.; Conceição, L.E.C.; Dias, J.; Costas, B. Dietary methionine improves the European seabass (Dicentrarchus labrax) immune status, inflammatory response, and disease resistance. Front. Immunol. 2018, 9, 5. [Google Scholar] [CrossRef]
- Chico, V.; Gomez, N.; Estepa, A.; Perez, L. Rapid detection and quantitation of viral hemorrhagic septicemia virus in experimentally challenged rainbow trout by real-time RT-PCR. J. Virol. Methods 2006, 132, 154–159. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef]
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016, 34, 525–527. [Google Scholar] [CrossRef]
- Garver, K.A.; Hawley, L.M.; McClure, C.A.; Schoeder, T.; Aldous, S.; Doig, F.; Snow, M.; Edes, S.; Baynes, C.; Richard, J. Development and validation of a reverse transcription quantitative PCR for universal detection of viral hemorrhagic septicemia virus. Dis. Aquat. Org. 2011, 95, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Montero, J.; Garcia, J.; Ordas, M.C.; Casanova, I.; Gonzalez, A.; Villena, A.; Coll, J.; Tafalla, C. Specific regulation of the chemokine response to viral hemorrhagic septicemia virus at the entry site. J. Virol. 2011, 85, 4046–4055. [Google Scholar] [CrossRef] [PubMed]
- Wolf, K. Hemorrhagic septicemia virus. In Fish Viruses and Fish Viral Diseases; Wolf, K., Ed.; Cornell University Press: Ithaca, NY, USA, 1988; pp. 217–248. [Google Scholar]
- Snow, M.; Smail, D.A. Experimental susceptibility of turbot Scophthalmus maximus to viral haemorrhagic septicaemia virus isolated from cultivated turbot. Dis. Aquat. Org. 1999, 38, 163–168. [Google Scholar] [CrossRef]
- Bunnoy, A.; Na-Nakorn, U.; Srisapoome, P. Development of a monoclonal antibody specific to the IgM heavy chain of bighead catfish (Clarias macrocephalus): A biomolecular tool for the detection and quantification of IgM molecules and IgM+ cells in Clarias catfish. Biomolecules 2020, 10, 567. [Google Scholar] [CrossRef] [PubMed]
- Vaz, M.; Pires, D.; Pires, P.; Simões, M.; Pombo, A.; Santos, P.; Carmo, B.; Passos, R.; Costa, J.Z.; Thompson, K.D.; et al. Early immune modulation in European seabass (Dicentrarchus labrax) juveniles in response to betanodavirus infection. Fishes 2022, 7, 63. [Google Scholar] [CrossRef]
- Aoki, T.; Hikima, J.I.; Hwang, S.D.; Jung, T.S. Innate immunity of finfish: Primordial conservation and function of viral RNA sensors in teleosts. Fish Shellfish Immunol. 2013, 35, 1689–1702. [Google Scholar] [CrossRef]
- Zou, J.; Bird, S.; Secombes, C. Antiviral sensing in teleost fish. Curr. Pharm. Des. 2010, 16, 4185–4193. [Google Scholar] [CrossRef]
- Xu, X.; Lai, Q.; Gu, M.; Liu, D.; Hou, Q.; Liu, X.; Mi, Y.; Sun, Z.; Wang, H.; Lin, G.; et al. Fish IRF3 up-regulates the transcriptional level of IRF1, IRF2, IRF3 and IRF7 in CIK cell. Fish Shellfish Immunol. 2015, 47, 978–985. [Google Scholar] [CrossRef]
- Medzhitov, R.; Janeway, C. The Toll receptor family and microbial recognition. Trends Microbiol. 2000, 8, 452–456. [Google Scholar] [CrossRef]
- Yoneyama, M.; Kikuchi, M.; Natsukawa, T.; Shinobu, N.; Imaizumi, T.; Miyagishi, M.; Taira, K.; Akira, S.; Fujita, T. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 2004, 5, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Zevini, A.; Olagnier, D.; Hiscott, J. Crosstalk between cytoplasmic RIG-I and STING sensing pathways. Trends Immunol. 2017, 38, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Clark, T.C.; Boudinot, P.; Collet, B. Evolution of the IRF family in salmonids. Genes 2021, 12, 238. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Huang, J.; Li, Y.; Wu, S.; Zhao, L. Dynamic immune response in the spleens of rainbow trout (Oncorhynchus mykiss) to infectious hematopoietic necrosis virus revealed by transcriptome and immune-related genes expression analysis. Aqua. Rep. 2023, 29, 101473. [Google Scholar] [CrossRef]
- Pillon, N.J.; Krook, A. Innate immune receptors in skeletal muscle metabolism. Exp. Cell Res. 2017, 360, 47–54. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Ding, N.-Z.; He, C.-Q. Novirhabdoviruses versus fish innate immunity: A review. Virus Res. 2021, 304, 198525. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Herman, M.; Ciancanelli, M.J.; de Diego, R.P.; Sancho-Shimizu, V.; Abel, L.; Casanova, J.-L. TLR3 immunity to infection in mice and humans. Curr. Opin. Immunol. 2013, 25, 19–33. [Google Scholar] [CrossRef]
- Lin, K.; Ge, H.; Lin, Q.; Wu, J.; He, L.; Fang, Q.; Zhou, C.; Sun, M.; Huang, Z. Molecular characterization and functional analysis of Toll-like receptor 3 gene in orange-spotted grouper (Epinephelus coioides). Gene 2013, 527, 174–182. [Google Scholar] [CrossRef]
- Ding, X.; Liang, Y.; Peng, W.; Li, R.; Lin, H.; Zhang, Y.; Lu, D. Intracellular TLR22 acts as an inflammation equalizer via suppression of NF-κB and selective activation of MAPK pathway in fish. Fish Shellfish Immunol. 2018, 72, 646–657. [Google Scholar] [CrossRef]
- Langevin, C.; Aleksejeva, E.; Passoni, G.; Palha, N.; Levraud, J.-P.; Boudinot, P. The antiviral innate immune response in fish: Evolution and conservation of the IFN system. J. Mol. Biol. 2013, 425, 4904–4920. [Google Scholar] [CrossRef]
- Li, C.; Wei, J.; Zhang, X.; Sun, M.; Wu, S.; Qin, Q. Fish TRAF2 promotes innate immune response to RGNNV infection. Fish Shellfish Immunol. 2020, 102, 108–116. [Google Scholar] [CrossRef]
- Prause, M.; Berchtold, L.A.; Urizar, A.I.; Hyldgaard Trauelsen, M.; Billestrup, N.; Mandrup-Poulsen, T.; Storling, J. TRAF2 mediates JNK and STAT3 activation in response to IL-1β and IFNγ and facilitates apoptotic death of insulin-producing beta-cells. Mol. Cell. Endocrinol. 2016, 420, 24–36. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, J.; Wang, L.; Cui, Z.; Sun, X.; Liu, Z.; Zu, Z.; Qiu, Y. Up-regulation of TRAF2 suppresses neuronal apoptosis after rat spinal cord injury. Tissue Cell 2017, 49, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Murti, A.; Pfeffer, L.M. Interferon induces NF-kappa B-inducing kinase/tumor necrosis factor receptor-associated factor-dependent NF-kappa B activation to promote cell survival. J. Biol. Chem. 2005, 280, 31530–31536. [Google Scholar] [CrossRef]
- Rothe, M.; Wong, S.C.; Henzel, W.J.; Goeddel, D.V. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 1994, 78, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Xiang, Z.; Zhou, Y.; Qin, Y. A molluscan TNF receptor-associated factor 2 (TRAF2) was involved in host defense against immune challenges. Fish Shellfish Immunol. 2017, 71, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.-B.; Wu, M.; Wang, B.; Chen, C.; Gui, J.-F. Fish MAVS is involved in RLR pathway-mediated IFN response. Fish Shellfish Immunol. 2014, 41, 222–230. [Google Scholar] [CrossRef]
- Alvarez-Torres, D.; Podadera, A.M.; Bejar, J.; Bandin, I.; Alonso, M.C.; Garcia-Rosado, E. Role of the IFN I system against the VHSV infection in juvenile Senegalese sole (Solea senegalensis). Vet. Res. 2016, 47, 3. [Google Scholar] [CrossRef]
- Chico, V.; Martinez-Lopez, A.; Ortega-Villaizan, M.; Falco, A.; Perez, L.; Coll, J.M.; Estepa, A. Pepscan mapping of viral hemorrhagic septicemia virus glycoprotein G major lineal determinants implicated in triggering host cell antiviral responses mediated by type I interferon. J. Virol. 2010, 84, 7140–7149. [Google Scholar] [CrossRef]
- Lee, E.G.; Kim, K.H. Effect of temperature and IRF-9 gene-knockout on dynamics of vRNA, cRNA, and mRNA of viral hemorrhagic septicemia virus (VHSV). Fish Shellfish Immunol. 2023, 134, 108617. [Google Scholar] [CrossRef]
- Courreges, M.C.; Kantake, N.; Goetz, D.J.; Schwartz, F.L.; McCall, K.D. Phenylmethimazole blocks dsRNA-induced IRF3 nuclear translocation and homodimerization. Molecules 2012, 17, 12365–12377. [Google Scholar] [CrossRef]
- Shi, Y.; Yuan, B.; Qi, N.; Zhu, W.; Su, J.; Li, X.; Qi, P.; Zhang, D.; Hou, F. An autoinhibitory mechanism modulates MAVS activity in antiviral innate immune response. Nat. Commun. 2015, 6, 7811. [Google Scholar] [CrossRef]
- Samuel, C.E. ADARs: Viruses and innate immunity. Curr. Top. Microbiol. Immunol. 2012, 353, 163–195. [Google Scholar] [CrossRef]
- Bibeau Poirier, A.; Gravel, S.P.; Clement, J.F.; Rolland, S.; Rodier, G.; Coulombe, P.; Hiscott, J.; Grandvaux, N.; Meloche, S.; Servant, M.J. Involvement of the IκB kinase (IKK)-related kinases tank-binding kinase 1/IKKi and cullin-based ubiquitin ligases in IFN regulatory factor-3 degradation. J. Immunol. 2006, 177, 5059–5067. [Google Scholar] [CrossRef]
- Zhu, H.; Zheng, C.; Xing, J.; Wang, S.; Li, S.; Lin, R.; Mossman, K.L. Varicella-zoster virus immediate-early protein ORF61 abrogates the IRF3-mediated innate immune response through degradation of activated IRF3. J. Virol. 2011, 85, 11079–11089. [Google Scholar] [CrossRef]
- Huang, L.; Cheng, Y.; Han, S.; Liu, M.; Yu, Q.; Wei, H.; He, J.; Li, P. Identification of ISG15 in golden pompano (Trachinotus ovatus) and its role in virus and bacteria infections. Fish Shellfish Immunol. 2022, 132, 108481. [Google Scholar] [CrossRef] [PubMed]
- Angsujinda, K.; Mahony, T.J.; Smith, D.R.; Kettratad, J.; Assavalapsakul, W. Expression profile of selected genes of the E-11 cell line in response to red-spotted grouper nervous necrosis virus infection. Aquacul. Rep. 2020, 18, 100468. [Google Scholar] [CrossRef]
- Fenwick, M.K.; Li, Y.; Cresswell, P.; Modis, Y.; Ealick, S.E. Structural studies of viperin, an antiviral radical SAM enzyme. Proc. Natl. Acad. Sci. USA 2017, 114, 6806–6811. [Google Scholar] [CrossRef]
- Seo, J.Y.; Yaneva, R.; Hinson, E.R.; Cresswell, P. Human cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity. Science 2011, 332, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hinson, E.R.; Cresswell, P. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2007, 2, 96–105. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, S.; Zheng, J.; Huang, X.; Huang, Y.; Qin, Q. Grouper viperin acts as a crucial antiviral molecule against iridovirus. Fish Shellfish Immunol. 2019, 86, 1026–1034. [Google Scholar] [CrossRef]
- Zhang, B.C.; Zhang, J.; Xiao, Z.Z.; Sun, L. Rock bream (Oplegnathus fasciatus) viperin is a virus-responsive protein that modulates innate immunity and promotes resistance against megalocytivirus infection. Dev. Comp. Immunol. 2014, 45, 35–42. [Google Scholar] [CrossRef]
- Madushani, K.P.; Shanaka, K.; Yang, H.; Lim, C.; Jeong, T.; Tharuka, M.D.N.; Lee, J. Molecular characterization, expression profile, and antiviral activity of redlip mullet (Liza haematocheila) viperin. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2022, 258, 110699. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Jiao, H.; Liu, W.; Chen, B.; Wang, Y.; Chen, B.; Lu, Y.; Su, J.; Zhang, Y.; Liu, X. The antiviral mechanism of viperin and its splice variant in spring viremia of carp virus infected fathead minnow cells. Fish Shellfish Immunol. 2019, 86, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, K.H.; Howie, D.; Rowbotham, J.S.; McCullagh, J.; Armstrong, F.A.; James, W.S. Viperin, through its radical-SAM activity, depletes cellular nucleotide pools and interferes with mitochondrial metabolism to inhibit viral replication. FEBS Letters. 2020, 594, 1624–1630. [Google Scholar] [CrossRef]
- Shu, B.; Gong, P. Structural basis of viral RNA-dependent RNA polymerase catalysis and translocation. Proc. Natl. Acad. Sci. USA 2016, 113, E4005–E4014. [Google Scholar] [CrossRef]
- Shanaka, K.A.S.N.; Jung, S.; Madushani, K.P.; Wijerathna, H.M.S.M.; Tharuka, M.D.N.; Kim, M.-J.; Lee, J. Generation of viperin-knockout zebrafish by CRISPR/Cas9-mediated genome engineering and the effect of this mutation under VHSV infection. Fish Shellfish Immunol. 2022, 131, 672–681. [Google Scholar] [CrossRef]
- Dumbrepatil, A.B.; Ghosh, S.; Zegalia, K.A.; Malec, P.A.; Hoff, J.D.; Kennedy, R.T.; Marsh, E.N.G. Viperin interacts with the kinase IRAK1 and the E3 ubiquitin ligase TRAF6, coupling innate immune signaling to antiviral ribonucleotide synthesis. J. Biol. Chem. 2019, 294, 6888–6898. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Serrano, E.E.; Gizzi, A.S.; Arnold, J.J.; Grove, T.L.; Almo, S.C.; Cameron, C.E. Viperin Reveals Its True Function. Annu. Rev. Virol. 2020, 7, 421–446. [Google Scholar] [CrossRef]
- Machado, M.; Engrola, S.; Colen, R.; Conceição, L.E.C.; Dias, J.; Costas, B. Dietary methionine supplementation improves the European seabass (Dicentrarchus labrax) immune status following long-term feeding on fishmeal-free diets. Br. J. Nutr. 2020, 124, 890–902. [Google Scholar] [CrossRef]
- Secombes, C.J. The nonspecific immune system: Cellular defense. In The Fish Immune System; Iwama, G., Nakanishi, T., Eds.; Academic Press Inc.: San Diego, CA, USA, 1996; pp. 1–378. [Google Scholar] [CrossRef]
- López-Guerrero, J.A.; Carrasco, L. Effect of nitric oxide on poliovirus infection of two human cell lines. J. Virol. 1998, 72, 2538–2540. [Google Scholar] [CrossRef]
- Ferreira, I.A.; Peixoto, D.; Losada, A.P.; Quiroga, M.I.; do Vale, A.; Costas, B. Early innate immune responses in European sea bass (Dicentrarchus labrax L.) following Tenacibaculum maritimum infection. Front. Immunol. 2023, 14, 6–15. [Google Scholar] [CrossRef]
- Fazio, F.; Saoca, C.; Casella, S.; Forino, G.; Piccione, G. Relationship between blood parameters and biometric indices of Sparus aurata and Dicentrarchus labrax cultured in onshore tanks. Mar. Freshw. Behav. Physiol. 2015, 48, 289–296. [Google Scholar] [CrossRef]
- Stosik, M.; Tokarz-Deptula, B.; Deptula, W. Characterisation of thrombocytes in Osteichthyes. J. Vet. Res. 2019, 63, 123–131. [Google Scholar] [CrossRef]
- Campos-Sánchez, J.C.; Esteban, M.Á. Review of inflammation in fish and value of the zebrafish model. J. Fish Dis. 2021, 44, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Montoya, L.N.F.; Favero, G.C.; Zanuzzo, F.S.; Urbinati, E.C. Distinct β-glucan molecules modulate differently the circulating cortisol levels and innate immune responses in matrinxã (Brycon amazonicus). Fish Shellfish Immunol. 2018, 83, 314–320. [Google Scholar] [CrossRef]
- Gong, Q.; Yang, D.; Jiang, M.; Zheng, J.; Peng, B. L-aspartic acid promotes fish survival against Vibrio alginolyticus infection through nitric oxide-induced phagocytosis. Fish Shellfish Immunol. 2020, 97, 359–366. [Google Scholar] [CrossRef]
- Lisi, F.; Zelikin, A.N.; Chandrawati, R. Nitric oxide to fight viral infections. Adv. Sci. 2021, 8, 2003895. [Google Scholar] [CrossRef]
- Costas, B.; Rêgo, P.C.N.P.; Conceição, L.E.C.; Dias, J.; Afonso, A. Dietary arginine supplementation decreases plasma cortisol levels and modulates immune mechanisms in chronically stressed turbot (Scophthalmus maximus). Aquac. Nutr. 2013, 19, 25–38. [Google Scholar] [CrossRef]
- Passos, R.; Correia, A.P.; Pires, D.; Pires, P.; Ferreira, I.; Simões, M.; do Carmo, B.; Santos, P.; Pombo, A.; Afonso, C.; et al. Potential use of macroalgae Gracilaria gracilis in diets for European seabass (Dicentrarchus labrax): Health benefits from a sustainable source. Fish Shellfish Immunol. 2021, 119, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Ellis, A.E. Innate host defense mechanisms of fish against viruses and bacteria. Dev. Comp. Immunol. 2001, 25, 827–839. [Google Scholar] [CrossRef]
- Nayak, S.K. Probiotics and immunity: A fish perspective. Fish Shellfish Immunol. 2010, 29, 2–14. [Google Scholar] [CrossRef]
Parameters | Treatment | Two-Way ANOVA | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTRL | VHSV | Time | Infection | Time × Infection | Time | Infection | ||||||||
24 h | 72 h | 120 h | 24 h | 72 h | 120 h | 24 h | 72 h | 120 h | CTRL | VHSV | ||||
WBCs | 4.30 ± 0.71 | 3.60 ± 1.25 | 3.48 ± 1.02 | 3.44 ± 1.27 | 3.37 ± 0.83 | 2.87 ± 1.42 | ns | ns | ns | - | - | - | - | - |
RBCs | 0.81 ± 0.11 | 0.67 ± 0.17 | 0.68 ± 0.17 | 0.68 ± 0.16 | 0.49 ± 0.05 | 0.5 ± 0.10 | <0.01 | <0.01 | ns | a | b | b | # | * |
Hematocrit | 35.00 ± 0.00 | 37.33 ± 2.89 | 38.00 ± 1.58 # | 33.67 ± 3.21 | 26.00 ± 4.06 | 28.75 ± 3.50 * | ns | <0.01 | 0.041 | - | - | - | - | - |
MCV | 450.93 ± 54.70 | 541.17 ± 62.70 | 539.92 ± 52.87 | 415.99 ± 123.75 | 531.83 ± 92.75 | 464.91 ± 15.19 | 0.05 | ns | ns | b | ab | a | - | - |
Hemoglobin | 2.08 ± 0.26 | 1.57 ± 0.26 | 1.50 ± 0.20 | 1.50 ± 0.26 | 1.22 ± 0.23 | 0.81 ± 0.33 | <0.01 | <0.01 | ns | a | b | b | # | * |
MCH | 25.29 ± 3.53 | 21.40 ± 3.16 | 19.96 ± 2.06 | 24.17 ± 7.97 | 24.83 ± 4.90 | 16.49 ± 3.21 | ns | ns | ns | - | - | - | - | - |
MCHC | 5.78 ± 0.61 | 4.03 ± 0.27 | 3.81 ± 0.40 | 5.34 ± 0.98 | 4.36 ± 0.43 | 3.22 ± 0.39 | ns | ns | ns | - | - | - | - | - |
Neutrophils | 0.15 ± 0.08 | 0.17 ± 0.03 | 0.12 ± 0.05 | 0.22 ± 0.17 | 0.09 ± 0.10 | 0.16 ± 0.13 | ns | ns | ns | - | - | - | - | - |
Monocytes | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.04 ± 0.03 | 0.00 ± 0.00 | 0.11 ± 0.05 | 0.19 ± 0.05 | <0.01 | <0.01 | ns | b | ab | a | * | # |
Lymphocytes | 3.68 ± 0.69 | 2.98 ± 0.33 | 2.42 ± 0.77 | 2.40 ± 1.18 | 2.16 ± 0.93 | 2.26 ± 1.12 | ns | 0.03 | ns | - | - | - | # | * |
Thrombocytes | 0.46 ± 0.33 | 0.99 ± 0.37 | 0.79 ± 0.50 | 0.70 ± 0.22 a | 0.72 ± 0.43 a | 0.21 ± 0.15 b | ns | ns | 0.03 | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaz, M.; Themudo, G.E.; Schöninger, F.B.; Carvalho, I.; Tafalla, C.; Díaz-Rosales, P.; Ramos-Pinto, L.; Costas, B.; Machado, M. Unraveling the Systemic and Local Immune Response of Rainbow Trout (Oncorhynchus mykiss) to the Viral Hemorrhagic Septicemic Virus. Biology 2025, 14, 1003. https://doi.org/10.3390/biology14081003
Vaz M, Themudo GE, Schöninger FB, Carvalho I, Tafalla C, Díaz-Rosales P, Ramos-Pinto L, Costas B, Machado M. Unraveling the Systemic and Local Immune Response of Rainbow Trout (Oncorhynchus mykiss) to the Viral Hemorrhagic Septicemic Virus. Biology. 2025; 14(8):1003. https://doi.org/10.3390/biology14081003
Chicago/Turabian StyleVaz, Mariana, Gonçalo Espregueira Themudo, Felipe Bolgenhagen Schöninger, Inês Carvalho, Carolina Tafalla, Patricia Díaz-Rosales, Lourenço Ramos-Pinto, Benjamín Costas, and Marina Machado. 2025. "Unraveling the Systemic and Local Immune Response of Rainbow Trout (Oncorhynchus mykiss) to the Viral Hemorrhagic Septicemic Virus" Biology 14, no. 8: 1003. https://doi.org/10.3390/biology14081003
APA StyleVaz, M., Themudo, G. E., Schöninger, F. B., Carvalho, I., Tafalla, C., Díaz-Rosales, P., Ramos-Pinto, L., Costas, B., & Machado, M. (2025). Unraveling the Systemic and Local Immune Response of Rainbow Trout (Oncorhynchus mykiss) to the Viral Hemorrhagic Septicemic Virus. Biology, 14(8), 1003. https://doi.org/10.3390/biology14081003