MaxEnt Modeling of Future Habitat Shifts of Itea yunnanensis in China Under Climate Change Scenarios
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Acquisition and Processing of Distribution Data
2.2. Acquisition and Processing of Environmental Data
2.3. MaxEnt Model Optimization and Modeling
2.3.1. Optimization of MaxEnt Model
2.3.2. MaxEnt Model Parameter Setting
2.3.3. Evaluation of MaxEnt Model Results
2.4. Delineation of Suitable Habitats for I. yunnanensis
2.5. Spatial Pattern Changes in Suitable Habitats for I. yunnanensis
2.6. Centroid Migration of Suitable Habitats for I. yunnanensis
3. Results
3.1. Model Optimization and Accuracy Assessment
3.2. The Main Environmental Factors Influencing the Distribution of I. yunnanensis
3.3. Current Potential Suitable Habitats of I. yunnanensis
3.4. Potential Suitable Habitats of I. yunnanensis Under Future Climate Change
3.5. Habitat Suitability Dynamics Under Future Climate Scenarios
3.6. Climate-Driven Centroid Migration of I. yunnanensis Across Emission Scenarios
4. Discussion
4.1. MaxEnt Model Parameter Optimization and Performance
4.2. Key Environmental Variable Interactions and Ecological Threshold
4.3. Climate-Driven Habitat Suitability Dynamics: Path Dependency and Migration Constraints
4.4. Conservation Implications and Research Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ge, L.; Lu, A.; Pan, K. Floral Ontogeny in Itea yunnanensis (Iteaceae). J. Integr. Plant Biol. 2002, 44, 1261–1267. [Google Scholar]
- Zhu, H. Vegetation Diversity of Yunnan. J. Southwest For. Univ. Nat. Sci. 2022, 42, 1–12. [Google Scholar]
- Xing, Y.; Ree, R.H. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl. Acad. Sci. USA. 2017, 114, E3444–E3451. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Gao, X.; Cen, C.; Jian, M.; Wang, Z.; Yang, J. Impact of transforming karst mountainous forests into urban parks on plant diversity patterns. Ecol. Evol. 2024, 14, e70194. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Tian, J.; Quine, T.A.; Powlson, D.; Xing, K.; Yang, L.; Kuzyakov, Y.; Dungait, J.A.J. The persistence of bacterial diversity and ecosystem multifunctionality along a disturbance intensity gradient in karst soil. Sci. Total Environ. 2020, 748, 142381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fan, Z.; Fu, P.; Zhang, H.; Duiie, C.; He, Z. Stem radial growth of dominant subalpine coniferous species and their responses to moisture variability in Northwest Yunnan, China. Chin. J. Appl. Ecol. 2025, 36, 1043–1052, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Yue, W.; Chen, F.; Davi, N.K.; Zhang, H.; Chen, Y.; Zhao, X.; Gao, Z. Little Ice Age cooling in the Western Hengduan Mountains, China: A 600-year warm-season temperature reconstruction from tree rings. Clim. Dyn. 2024, 62, 773–790. [Google Scholar] [CrossRef]
- Jian, J.; Lang, T.; Zhang, W.; Feng, Y.; Luo, G. A new nor-neolignan compound identified from Itea yunnanensis. China J. Chin. Mater. Med. 2024, 49, 1564–1569. [Google Scholar] [CrossRef]
- Lang, T.; Luo, G.; Pu, W.; Wang, Z.; Wang, J.; Tian, X.; Zhang, P.; Zhao, N.; Yang, W.; Chai, H. Three new 3-formyl-2-arylbenzofurans from Itea yunnanensis and their anti-hepatocellular carcinoma effects. Nat. Prod. Res. 2022, 36, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huang, H.; Zhang, Z.; Yan, J.; Wu, T.; Yin, W.; Sun, Y.; Wang, X.; Gu, Y.; Zhao, D.; et al. Design, synthesis and biological evaluation of novel benzofuran derivatives as potent LSD1 inhibitors. Eur. J. Med. Chem. 2021, 220, 113501. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Luo, G.; Yuan, N.; Jian, J.; Liu, L.; Lang, T. Dynamic Content Analysis of Iteafuranal A in Itea yunnanensis at Different Harvest Periods. Pharm. Inf. 2022, 11, 321–326. [Google Scholar] [CrossRef]
- Booth, T.H. Species distribution modelling tools and databases to assist managing forests under climate change. For. Ecol. Manag. 2018, 430, 196–203. [Google Scholar] [CrossRef]
- Austin, M.P.; Van Niel, K.P. Improving species distribution models for climate change studies: Variable selection and scale. J. Biogeogr. 2011, 38, 1–8. [Google Scholar] [CrossRef]
- Naughtin, S.R.; Castilla, A.R.; Smith, A.B.; Strand, A.E.; Dawson, A.; Hoban, S.; Abhainn, E.A.; Romero-Severson, J.; Robinson, J.D. Integrating genomic data and simulations to evaluate alternative species distribution models and improve predictions of glacial refugia and future responses to climate change. Ecography 2025, 2025, e07196. [Google Scholar] [CrossRef]
- Wang, Q.; Cui, G.; Liu, H.; Huang, X.; Xiao, X.; Wang, M.; Jia, M.; Mao, D.; Li, X.; Xiao, Y.; et al. Spatiotemporal Dynamics and Potential Distribution Prediction of Spartina alterniflora Invasion in Bohai Bay Based on Sentinel Time-Series Data and MaxEnt Modeling. Remote Sens. 2025, 17, 975. [Google Scholar] [CrossRef]
- Huang, X.; Ma, L.; Chen, C.; Zhou, H.; Yao, B.; Ma, Z. Predicting the Suitable Geographical Distribution of Sinadoxa Corydalifolia under Different Climate Change Scenarios in the Three-River Region Using the MaxEnt Model. Plants 2020, 9, 1015. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Ma, J.; Chen, G. Potential geographical distribution and its multi-factor analysis of Pinus massoniana in China based on the maxent model. Ecol. Indic. 2023, 154, 110790. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, Y.; Ji, X.; Wang, Z.; Liu, Z. Global Warming Drives Shifts in the Suitable Habitats of Subalpine Shrublands in the Hengduan Mountains Region in China. Forests 2025, 16, 624. [Google Scholar] [CrossRef]
- Li, P.; Zhu, W.; Xie, Z.; Qiao, K. Integration of multiple climate models to predict range shifts and identify management priorities of the endangered Taxus wallichiana in the Himalaya–Hengduan Mountain region. J. For. Res. 2020, 31, 2255–2272. [Google Scholar] [CrossRef]
- He, X.; Si, J.; Zhu, L.; Zhou, D.; Zhao, C.; Jia, B.; Wang, C.; Qin, J.; Zhu, X. Modeling habitat suitability of Hippophae rhamnoides L. using MaxEnt under climate change in China: A case study of H. r. sinensis and H. r. turkestanica. Front. For. Glob. Change 2023, 5, 1095784. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Bao, Y.; Yao, F.; Meng, X.; Fan, J.; Zhang, J.; Liu, H.; Mouazen, A.M. Dynamic modeling of topsoil organic carbon and its scenarios forecast in global Mollisols regions. J. Clean. Prod. 2023, 421, 138544. [Google Scholar] [CrossRef]
- Mendes, P.; Velazco, S.J.E.; Andrade, A.F.A.d.; De Marco, P. Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy. Ecol. Model. 2020, 431, 109180. [Google Scholar] [CrossRef]
- Kass, J.M.; Muscarella, R.; Galante, P.J.; Bohl, C.L.; Pinilla-Buitrago, G.E.; Boria, R.A.; Soley-Guardia, M.; Anderson, R.P. ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods Ecol. Evol. 2021, 12, 1602–1608. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Zhang, L.; Wang, Y.; Liu, Y.; Ma, Y. The optimized Maxent model reveals the pattern of distribution and changes in the suitable cultivation areas for Reaumuria songarica being driven by climate change. Ecol. Evol. 2024, 14, e70015. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Qin, F.; Liu, Y.; Hu, Y.; Wang, W.; Duan, H.; Li, M. Forecast of potential suitable areas for forest resources in Inner Mongolia under the Shared Socioeconomic Pathway 245 scenario. Ecol. Indic. 2024, 167, 112694. [Google Scholar] [CrossRef]
- Liu, L.; Wang, R.; Zhang, Y.; Mou, Q.; Gou, Y.; Liu, K.; Huang, N.; Ouyang, C.; Hu, J.; Du, B. Simulation of potential suitable distribution of Alnus cremastogyne Burk. in China under climate change scenarios. Ecol. Indic. 2021, 133, 108396. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the Accuracy of Diagnostic Systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, Q.; Li, S.; Zhang, Y.; Xiang, Y.; Yang, Y.; Zhang, J. Spatiotemporal Dynamics of Ilex macrocarpa Distribution Under Future Climate Scenarios: Implications for Conservation Planning. Forests 2025, 16, 370. [Google Scholar] [CrossRef]
- Anderson, R.P.; Gonzalez, I. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecol. Model. 2011, 222, 2796–2811. [Google Scholar] [CrossRef]
- Coelho, M.T.P.; Diniz-Filho, J.A.; Rangel, T.F. A parsimonious view of the parsimony principle in ecology and evolution. Ecography 2019, 42, 968–976. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Yang, Q.; Xiang, Y.; Li, S.; Zhao, L.; Liu, Y.; Luo, Y.; Long, Y.; Yang, S.; Luo, X. Modeling the Impacts of Climate Change on Potential Distribution of Betula luminifera H. Winkler in China Using MaxEnt. Forests 2024, 15, 1624. [Google Scholar] [CrossRef]
- Wang, X.; Duan, Y.; Jin, L.; Wang, C.; Peng, M.; Li, Y.; Wang, X.; Ma, Y. Prediction of historical, present and future distribution of Quercus sect. Heterobalanus based on the optimized MaxEnt model in China. Acta Ecol. Sin. 2023, 43, 6590–6604. [Google Scholar]
- Radosavljevic, A.; Anderson, R.P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Shcheglovitova, M.; Anderson, R.P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol. Model. 2013, 269, 9–17. [Google Scholar] [CrossRef]
- Shi, X.; Wang, J.; Zhang, L.; Chen, S.; Zhao, A.; Ning, X.; Fan, G.; Wu, N.; Zhang, L.; Wang, Z. Prediction of the potentially suitable areas of Litsea cubeba in China based on future climate change using the optimized MaxEnt model. Ecol. Indic. 2023, 148, 110093. [Google Scholar] [CrossRef]
- Zhang, T.; Jiang, L.; Liu, B.; Liu, R.; Xiao, Z.; Liu, W. Quantitative analysis of vegetation sensitivity to climate change in China. Acta Ecol. Sin. 2025, 45, 2412–2423. [Google Scholar] [CrossRef]
- Zhang, J.; Bian, L.; Zhou, F.; Wang, X.; Yang, T.; Zhang, S.; Wang, W.; Song, M.; Xu, X. Response of the suitable distribution areas of Prunus pedunculata to Climate Change. For. Res. 2022, 35, 180–187. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, J.; Ao, D.; Hong, M.; Zhang, Y.; Bao, F.; Wang, L.; Wuyun, T.; Bai, Y.e.; Bao, W. Prediction of Potential Suitable Areas of Amygdalus pedunculata in China under Climate Change. Sci. Silvae Sin. 2023, 59, 25–36. [Google Scholar] [CrossRef]
- Halvorsen, R.; Mazzoni, S.; Dirksen, J.W.; Næsset, E.; Gobakken, T.; Ohlson, M. How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt? Ecol. Model. 2016, 328, 108–118. [Google Scholar] [CrossRef]
- Hammoud, Y.; Stephan, J. Novelty predictors for shrub (and climbers) ecological niche modeling, based on their successional stage. Ecol. Inform. 2022, 71, 101771. [Google Scholar] [CrossRef]
- Wang, L.; Yilihamu, Y. Prediction of potential suitable areas for a Chinese endemic shrub Sophora davidii using the MaxEnt Model. Chin. J. Ecol. 2021, 40, 3114–3124. [Google Scholar] [CrossRef]
- Sorbe, F.; Gränzig, T.; Förster, M. Evaluating sampling bias correction methods for invasive species distribution modeling in Maxent. Ecol. Inform. 2023, 76, 102124. [Google Scholar] [CrossRef]
- Bucci, S.J.; Scholz, F.G.; Goldstein, G.; Meinzer, F.C.; Arce, M.E. Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species. Oecologia 2009, 160, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Chen, H.; Wang, K.; Tan, W.; Deng, P.; Yang, J. Seasonal water use patterns of woody species growing on the continuous dolostone outcrops and nearby thin soils in subtropical China. Plant Soil 2011, 341, 399–412. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, J.; Cao, K. Seasonal variation in photosynthesis in six woody species with different leaf phenology in a valley savanna in southwestern China. Trees 2007, 21, 631–643. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, Z.; Wang, J. Projected degradation of Quercus habitats in Southern China under future global warming scenarios. For. Ecol. Manag. 2024, 568, 122133. [Google Scholar] [CrossRef]
- Yin, H.; Yang, M.; Li, P.; Yu, X.; Xiong, H.; Xu, Q.; Zou, F.; Chen, Y.; Dai, W.; Jiang, Y.; et al. Seasonality of Photosynthetic Physiology and Leaf Anatomy in Three Different Quercus L. Section Cyclobalanopsis Seedlings of Quercus chungii, Quercus gilva, and Quercus glauca in the Subtropical Region of South China. Forests 2022, 13, 2067. [Google Scholar] [CrossRef]
- Dai, E.; Wang, Y. Spatial heterogeneity and driving mechanisms of water yield service in the Hengduan Mountain region. Acta Geogr. Sin. 2020, 75, 607–619. [Google Scholar] [CrossRef]
- Shen, Z. Plant diversity in the dry valleys of Southwest China: Spatial deviation and determinants for flora and plant communities. Biodivers. Sci. 2016, 24, 363–366. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, J.; Zhang, C.; Feng, Y.; Jin, L.; Wei, S.; Yang, H.; Cao, Z.; Peng, J.; Luo, Y. Prediction of the Future Evolution Trends of Prunus sibirica in China Based on the Key Climate Factors Using MaxEnt Modeling. Biology 2024, 13, 973. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H. Vegetation geography of evergreen broad-leaved forests in Yunnan, southwestern China. Chin. J. Plant Ecol. 2021, 45, 224–241. [Google Scholar] [CrossRef]
- Enright, N.J.; Fontaine, J.B.; Bowman, D.M.J.S.; Bradstock, R.A.; Williams, R.J. Interval squeeze: Altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 2015, 13, 265–272. [Google Scholar] [CrossRef]
- Valladares, F.; Matesanz, S.; Guilhaumon, F.; Araújo, M.B.; Balaguer, L.; Benito-Garzón, M.; Cornwell, W.; Gianoli, E.; van Kleunen, M.; Naya, D.E.; et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 2014, 17, 1351–1364. [Google Scholar] [CrossRef] [PubMed]
- Holeštová, A.; Douda, J. Plant species over-occupancy indicates river valleys are natural corridors for migration. Plant Ecol. 2022, 223, 71–83. [Google Scholar] [CrossRef]
- Feng, J.; Wang, B.; Xian, M.; Zhou, S.; Huang, C.; Cui, X. Prediction of future potential distributions of Pinus yunnanensis varieties under climate change. Front. For. Glob. Change 2023, 6, 1308416. [Google Scholar] [CrossRef]
- Grace, J.; Berninger, F.; Nagy, L. Impacts of Climate Change on the Tree Line. Ann. Bot. 2002, 90, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guo, C.; Xiao, Z. Fruit composition and seed dispersal strategies of woody plants in a Dujiangyan subtropical forest, Southwest China. Biodivers. Sci. 2013, 21, 572–581. [Google Scholar] [CrossRef]
- Nonsri, P.; He, X.; Lin, L. Evaluating drivers shaping the structure of bird-plant pollination and seed dispersal mutualistic networks in a subtropical evergreen broadleaf forest. Glob. Ecol. Conserv. 2025, 59, e03523. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, G.; Wang, Q.Q.; Ye, L.; Lin, X.; Lu, S.; Jiao, Y.; Li, R.; Meng, G.; Wang, Y.; et al. Influence of mountain orientation on precipitation isotopes in the westerly belt of Eurasia. Glob. Planet. Change 2024, 240, 104543. [Google Scholar] [CrossRef]
- Di Pierro, E.A.; Mosca, E.; González-Martínez, S.C.; Binelli, G.; Neale, D.B.; La Porta, N. Adaptive variation in natural Alpine populations of Norway spruce (Picea abies [L.] Karst) at regional scale: Landscape features and altitudinal gradient effects. For. Ecol. Manag. 2017, 405, 350–359. [Google Scholar] [CrossRef]
- Lang, N.; Kalischek, N.; Armston, J.; Schindler, K.; Dubayah, R.; Wegner, J.D. Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles. Remote Sens. Environ. 2022, 268, 112760. [Google Scholar] [CrossRef]
- Zhou, G.; Huan, Y.; Wang, L.; Lan, Y.; Liang, T.; Shi, B.; Zhang, Q. Linking ecosystem services and circuit theory to identify priority conservation and restoration areas from an ecological network perspective. Sci. Total Environ. 2023, 873, 162261. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Delang, C.O.; Li, Y.; Ye, Q.; Zhou, J.; Liu, H.; He, H.; He, W. Application of a combined model simulation to determine ecological corridors for western black-crested gibbons in the Hengduan Mountains, China. Ecol. Indic. 2021, 128, 107826. [Google Scholar] [CrossRef]
- Di Santo, L.N.; Hamilton, J.A. Using environmental and geographic data to optimize ex situ collections and preserve evolutionary potential. Conserv. Biol. 2021, 35, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Ulyshen, M.D.; Ballare, K.M.; Fettig, C.J.; Rivers, J.W.; Runyon, J.B. The Value of Forests to Pollinating Insects Varies with Forest Structure, Composition, and Age. Curr. For. Rep. 2024, 10, 322–336. [Google Scholar] [CrossRef]
- Sun, P.; Chang, J.; Luo, M.; Liao, P. Genomic insights into local adaptation and vulnerability of Quercus longinux to climate change. BMC Plant Biol. 2024, 24, 279. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Liu, S.; Wu, W.; Hong, K.; Li, R.; Zhu, L.; Liu, Y.; Lu, Y.; Chen, J.; Yang, L.; et al. Genome-wide identification and cold stress-induced expression analysis of the CBF gene family in Liriodendron chinense. J. For. Res. 2021, 32, 2531–2543. [Google Scholar] [CrossRef]
- Zou, L.; Stan, K.; Cao, S.; Zhu, Z. Dynamic global vegetation models may not capture the dynamics of the leaf area index in the tropical rainforests: A data-model intercomparison. Agric. For. Meteorol. 2023, 339, 109562. [Google Scholar] [CrossRef]
Period | Total Suitable Area | Generally Suitable Area | Moderately Suitable Area | Highly Suitable Area |
---|---|---|---|---|
Current | 94.88 | 38.08 | 21.35 | 35.45 |
2050s-SSP1-2.6 | 101.14 | 50.18 | 20.55 | 30.41 |
2070s-SSP1-2.6 | 93.73 | 48.08 | 24.45 | 21.19 |
2090s-SSP1-2.6 | 101.24 | 51.08 | 24.62 | 25.53 |
2050s-SSP2-4.5 | 113.99 | 60.35 | 25.43 | 28.20 |
2070s-SSP2-4.5 | 110.86 | 59.52 | 23.49 | 27.85 |
2090s-SSP2-4.5 | 118.18 | 64.88 | 22.62 | 30.69 |
2050s-SSP5-8.5 | 105.85 | 55.98 | 21.45 | 28.43 |
2070s-SSP5-8.5 | 124.76 | 71.59 | 25.37 | 27.79 |
2090s-SSP5-8.5 | 135.31 | 80.02 | 29.71 | 25.58 |
Period | Area (104 km2) | Rate of Change (%) | ||||
---|---|---|---|---|---|---|
Stability | Contraction | Expansion | Stability | Contraction | Expansion | |
2050s-SSP1-2.6 | 104.85 | 11.81 | 19.73 | 76.88 | 8.66 | 14.47 |
2070s-SSP1-2.6 | 97.35 | 19.31 | 18.09 | 72.25 | 14.33 | 13.43 |
2090s-SSP1-2.6 | 103.08 | 13.57 | 21.66 | 74.53 | 9.81 | 15.66 |
2050s-SSP2-4.5 | 105.84 | 10.80 | 34.67 | 69.95 | 7.14 | 22.91 |
2070s-SSP2-4.5 | 106.96 | 9.69 | 29.74 | 73.06 | 6.62 | 20.32 |
2090s-SSP2-4.5 | 107.85 | 8.78 | 38.01 | 69.74 | 5.68 | 24.58 |
2050s-SSP5-8.5 | 104.61 | 12.04 | 25.94 | 73.36 | 8.45 | 18.19 |
2070s-SSP5-8.5 | 100.82 | 15.83 | 53.24 | 59.35 | 9.32 | 31.34 |
2090s-SSP5-8.5 | 100.62 | 16.03 | 66.38 | 54.98 | 8.76 | 36.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, X.; Li, S.; Yang, Q.; Li, Y.; Xiang, Y.; Yao, B. MaxEnt Modeling of Future Habitat Shifts of Itea yunnanensis in China Under Climate Change Scenarios. Biology 2025, 14, 899. https://doi.org/10.3390/biology14070899
Zhang J, Li X, Li S, Yang Q, Li Y, Xiang Y, Yao B. MaxEnt Modeling of Future Habitat Shifts of Itea yunnanensis in China Under Climate Change Scenarios. Biology. 2025; 14(7):899. https://doi.org/10.3390/biology14070899
Chicago/Turabian StyleZhang, Jinxin, Xiaoju Li, Suhang Li, Qiong Yang, Yuan Li, Yangzhou Xiang, and Bin Yao. 2025. "MaxEnt Modeling of Future Habitat Shifts of Itea yunnanensis in China Under Climate Change Scenarios" Biology 14, no. 7: 899. https://doi.org/10.3390/biology14070899
APA StyleZhang, J., Li, X., Li, S., Yang, Q., Li, Y., Xiang, Y., & Yao, B. (2025). MaxEnt Modeling of Future Habitat Shifts of Itea yunnanensis in China Under Climate Change Scenarios. Biology, 14(7), 899. https://doi.org/10.3390/biology14070899