Genome-Wide Identification of the SRS Gene Family in Cucurbitaceae: Clade Identification and Expression Analysis of CmSRS Genes Under Drought and Salt Stress
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification of SRS Genes in Cucurbitaceae
2.2. Physicochemical Traits and Chromosomal Distribution of SRS in Cucurbitaceae
2.3. Analysis of Gene Structure, Conserved Motifs, and Evolution of the SRS Gene in Cucurbitaceae
2.4. Analysis of Covariance of SRS Genes in Cucurbitaceae
2.5. Analysis of the Role of Cis-Elements in the Promoter of the SRS Genes in Cucurbitaceae
2.6. RNA Extraction and qRT-PCR Analysis
2.7. Transcriptome Data Analysis
2.8. Subcellular Localization
2.9. Interaction Network and Protein Structure Prediction of Melon SRS Proteins
3. Results
3.1. Identification and Physicochemical Properties of Seven SRS Genes in Cucurbitaceae
3.2. Analysis of Gene Structure and Conserved Structural Domains of SRS in Cucurbitaceae
3.3. Evolutionary Analysis of SRS Family Genes in Cucurbitaceae
3.4. Analysis of Cis-Acting Elements in the Promoter Sequence of Melon SRS Genes
3.5. Tissue-Specific Expression Analysis of SRS Genes in Melon
3.6. Expression Analysis of SRS Family Genes in Melon Under Drought and Salt Stresses
3.7. Expression Analysis of SRS Family Genes in Melon Under Biotic Stresses
3.8. Analysis of Subcellular Localization of SRS Family Genes in Melon
3.9. Interaction Network and Structure Prediction of SRS Family Proteins in Melon
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
aa | Amino Acid |
ABA | Abscisic Acid |
bp | Base Pair |
BP | Biological Process |
CC | Cellular Component |
CDD | Conserved Domain Database |
cDNA | Complementary DNA |
CDS | Coding Sequence |
CHT | Charentais-T |
Da | Dalton |
GA | Gibberellic Acid |
HMM | Hidden Markov Model |
IAA | Indole-3-Acetic Acid |
LRP1 | Lateral Root Primordium1 |
MeJA | Methyl Jasmonate |
MEME | Motif-Based Sequence Analysis Tools |
MF | Molecular Function |
qRT-PCR | Quantitative Real-Time PCR |
SA | Salicylic Acid |
SHI | Short Internodes |
References
- Zhao, S.; Song, X.; Guo, L.; Zhang, X.; Zheng, W. Genome-wide analysis of the shi-related sequence family and functional identification of gmsrs18 involving in drought and salt stresses in soybean. Int. J. Mol. Sci. 2020, 21, 1810. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xu, P.; Yu, D. Genome-wide identification and characterization of the shi-related sequence gene family in rice. Evol. Bioinform. 2020, 16, 1612687799. [Google Scholar] [CrossRef] [PubMed]
- Kaulen, H.; Pognonec, P.; Gregor, P.D.; Roeder, R.G. The xenopus b1 factor is closely related to the mammalian activator usf and is implicated in the developmental regulation of tfiiia gene expression. Mol. Cell. Biol. 1991, 11, 412–424. [Google Scholar] [PubMed]
- Elenbaas, B.; Dobbelstein, M.; Roth, J.; Shenk, T.; Levine, A.J. The mdm2 oncoprotein binds specifically to rna through its ring finger domain. Mol. Med. 1996, 2, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Fridborg, I.; Kuusk, S.; Moritz, T.; Sundberg, E. The arabidopsis dwarf mutant shi exhibits reduced gibberellin responses conferred by overexpression of a new putative zinc finger protein. Plant Cell 1999, 11, 1019–1031. [Google Scholar] [CrossRef] [PubMed]
- Fridborg, I.; Kuusk, S.; Robertson, M.; Sundberg, E. The arabidopsis protein shi represses gibberellin responses in arabidopsis and barley. Plant Physiol. 2001, 127, 937–948. [Google Scholar] [CrossRef] [PubMed]
- Kuusk, S.; Sohlberg, J.J.; Magnus Eklund, D.; Sundberg, E. Functionally redundant shi family genes regulate arabidopsis gynoecium development in a dose-dependent manner. Plant J. 2006, 47, 99–111. [Google Scholar] [CrossRef] [PubMed]
- De Rybel, B.; Audenaert, D.; Xuan, W.; Overvoorde, P.; Strader, L.C.; Kepinski, S.; Hoye, R.; Brisbois, R.; Parizot, B.; Vanneste, S. A role for the root cap in root branching revealed by the non-auxin probe naxillin. Nat. Chem. Biol. 2012, 8, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Eklund, D.M.; Cierlik, I.; Ståldal, V.; Claes, A.R.; Vestman, D.; Chandler, J.; Sundberg, E. Expression of arabidopsis short internodes/stylish family genes in auxin biosynthesis zones of aerial organs is dependent on a gcc box-like regulatory element. Plant Physiol. 2011, 157, 2069–2080. [Google Scholar] [CrossRef] [PubMed]
- Gomariz-Fernández, A.; Sánchez-Gerschon, V.; Fourquin, C.; Ferrándiz, C. The role of shi/sty/srs genes in organ growth and carpel development is conserved in the distant eudicot species Arabidopsis thaliana and Nicotiana benthamiana. Front. Plant Sci. 2017, 8, 814. [Google Scholar] [CrossRef] [PubMed]
- Eklund, D.M.; Ståldal, V.; Valsecchi, I.; Cierlik, I.; Eriksson, C.; Hiratsu, K.; Ohme-Takagi, M.; Sundström, J.F.; Thelander, M.; Ezcurra, I. The Arabidopsis thaliana stylish1 protein acts as a transcriptional activator regulating auxin biosynthesis. Plant Cell 2010, 22, 349–363. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.L.; Fedoroff, N.V. Lrp1, a gene expressed in lateral and adventitious root primordia of arabidopsis. Plant Cell 1995, 7, 735–745. [Google Scholar] [PubMed]
- Kuusk, S.; Sohlberg, J.J.; Long, J.A.; Fridborg, I.; Sundberg, E. Sty1 and sty2 promote the formation of apical tissues during arabidopsis gynoecium development. Development 2002, 129, 4707–4717. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Yadav, S.; Singh, A.; Mahima, M.; Singh, A.; Gautam, V.; Sarkar, A.K. Auxin signaling modulates lateral root primordium 1 (lrp 1) expression during lateral root development in arabidopsis. Plant J. 2020, 101, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Lütken, H.; Haugslien, S.; Blystad, D.; Torre, S.; Rolcik, J.; Rasmussen, S.K.; Olsen, J.E.; Clarke, J.L. Overexpression of the atshi gene in poinsettia, Euphorbia pulcherrima, results in compact plants. PLoS ONE 2013, 8, e53377. [Google Scholar] [CrossRef]
- Lütken, H.; Jensen, L.S.; Topp, S.H.; Mibus, H.; Müller, R.; Rasmussen, S.K. Production of compact plants by overexpression of atshi in the ornamental kalanchoë. Plant Biotechnol. J. 2010, 8, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Duan, E.; Wang, Y.; Li, X.; Lin, Q.; Zhang, T.; Wang, Y.; Zhou, C.; Zhang, H.; Jiang, L.; Wang, J. Osshi1 regulates plant architecture through modulating the transcriptional activity of ipa1 in rice. Plant Cell 2019, 31, 1026–1042. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Nian, L.; Ain, N.U.; Liu, X.; Yang, Y.; Zhu, X.; Haider, F.U.; Lv, Y.; Bai, P.; Zhang, X. Genome-wide identification and expression profiling of the srs gene family in Melilotus albus reveals functions in various stress conditions. Plants 2022, 11, 3101. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Yu, L.; Zhang, S.; Gu, Q.; Wang, M. Genome-wide characterization of the short inter-nodes/stylish and shi-related sequence family in Gossypium hirsutum and functional identification of ghsrs21 under salt stress. Front. Plant Sci. 2023, 13, 1078083. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, H.; Renner, S.S. Phylogenetic relationships in the order cucurbitales and a new classification of the gourd family (cucurbitaceae). Taxon 2011, 60, 122–138. [Google Scholar] [CrossRef]
- Perkins-Veazie, P.; Collins, J.K.; Davis, A.R.; Roberts, W. Carotenoid content of 50 watermelon cultivars. J. Agric. Food Chem. 2006, 54, 2593–2597. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Liu, C.; Liu, Y.; Xu, Q.; Li, X.; Yang, S. New triterpenoids and other constituents from the fruits of Benincasa hispida (thunb.) Cogn. J. Agric. Food Chem. 2013, 61, 12692–12699. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Juliet, P.A.; Matsui-Hirai, H.; Miyazaki, A.; Fukatsu, A.; Funami, J.; Iguchi, A.; Ignarro, L.J. L-citrulline and l-arginine supplementation retards the progression of high-cholesterol-diet-induced atherosclerosis in rabbits. Proc. Natl. Acad. Sci. USA 2005, 102, 13681–13686. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.K.; Wu, G.; Perkins-Veazie, P.; Spears, K.; Claypool, P.L.; Baker, R.A.; Clevidence, B.A. Watermelon consumption increases plasma arginine concentrations in adults. Nutrition 2007, 23, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Grover, J.K.; Adiga, G.; Vats, V.; Rathi, S.S. Extracts of benincasa hispida prevent development of experimental ulcers. J. Ethnopharmacol. 2001, 78, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Fan, S.; Liu, G.; Guo, L.; Ding, X.; Lu, Y.; Zhang, Y.; Ji, G.; Huang, C. Extract of wax gourd peel prevents high-fat diet-induced hyperlipidemia in c57bl/6 mice via the inhibition of the pparγ pathway. Evid.-Based Complement. Altern. Med. 2013, 2013, 342561. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.T.; Li, H.Y.; Xu, J.C. Bioinformatics analysis of the heavy metal transporting atpase gene family in poplar genome. Plant Physiol. J 2014, 50, e900. [Google Scholar]
- FAO. Food and Agriculture Organization of the United Nations; FAO: Rome, Italy, 2018; p. 403. Available online: http://faostat.fao.org (accessed on 10 October 2024).
- Roy, S.J.; Tucker, E.J.; Tester, M. Genetic analysis of abiotic stress tolerance in crops. Curr. Opin. Plant Biol. 2011, 14, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Wu, L. Breeding for salinity tolerance in plants. Crit. Rev. Plant Sci. 1994, 13, 17–42. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. Tbtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant. 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. Mega11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Bechtold, U.; Field, B. Molecular Mechanisms Controlling Plant Growth During Abiotic Stress; Oxford University Press: Oxford, UK, 2018; Volume 69, pp. 2753–2758. [Google Scholar]
- Ben Ammar, H.; Picchi, V.; Arena, D.; Treccarichi, S.; Bianchi, G.; Lo Scalzo, R.; Marghali, S.; Branca, F. Variation of bio-morphometric traits and antioxidant compounds of Brassica oleracea L. Accessions in relation to drought stress. Agronomy 2022, 12, 2016. [Google Scholar] [CrossRef]
- Raza, A. Eco-physiological and biochemical responses of rapeseed (Brassica napus L.) to abiotic stresses: Consequences and mitigation strategies. J. Plant Growth Regul. 2021, 40, 1368–1388. [Google Scholar] [CrossRef]
- He, B.; Shi, P.; Lv, Y.; Gao, Z.; Chen, G. Gene coexpression network analysis reveals the role of srs genes in senescence leaf of maize (Zea mays L.). J. Genet. 2020, 99, 3. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ahmad, B.; Zeng, S.; Lan, Y.; Hu, X.; Fu, L.; Hu, T.; Li, J.; Zhang, X.; Pan, Y. Genome-wide characterization of shi-related sequence gene family and its roles in response to Zn2+ stress in cucumber. Horticulturae 2024, 10, 1154. [Google Scholar] [CrossRef]
- Baylis, T.; Cierlik, I.; Sundberg, E.; Mattsson, J. Short internodes/stylish genes, regulators of auxin biosynthesis, are involved in leaf vein development in a Rabidopsis thaliana. New Phytol. 2013, 197, 737–750. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, S.; Kim, Y.; Yun, D.; Woo, J.; Park, C. Activation tagging of an arabidopsis shi-related sequence gene produces abnormal anther dehiscence and floral development. Plant Mol. Biol. 2010, 74, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Yang, S.; Shi, K.; Yang, L.; An, M.; Wang, F.; Qi, Y.; Feng, M.; Wang, M.; Geng, P. Genome-wide identification of the lrx gene family in cucurbitaceae and expression analysis under salt and drought stress in cucumber. Veg. Res. 2024, 4, e026. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, B.; Wang, X.; Wei, X. Genome-wide identification, structural analysis and expression profiles of short internodes related sequence gene family in quinoa. Front. Genet. 2022, 13, 961925. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.; Stein, L.; Ware, D. Evolution of arabidopsis microrna families through duplication events. Genome Res. 2006, 16, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Liu, Y.; Zhou, J.; Zhao, S.; Zhang, X.; Min, D. Genome-wide analysis of the lectin receptor-like kinase family in foxtail millet (Setaria italica L.). Plant Cell Tissue Organ Cult. (PCTOC) 2016, 127, 335–346. [Google Scholar] [CrossRef]
- Sohlberg, J.J.; Myrenås, M.; Kuusk, S.; Lagercrantz, U.; Kowalczyk, M.; Sandberg, G.; Sundberg, E. Sty1 regulates auxin homeostasis and affects apical–basal patterning of the arabidopsis gynoecium. Plant J. 2006, 47, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Ståldal, V.; Sohlberg, J.J.; Eklund, D.M.; Ljung, K.; Sundberg, E. Auxin can act independently of crc, lug, seu, spt and sty1 in style development but not apical-basal patterning of the arabidopsis gynoecium. New Phytol. 2008, 180, 798–808. [Google Scholar] [CrossRef] [PubMed]
- Ståldal, V.; Cierlik, I.; Chen, S.; Landberg, K.; Baylis, T.; Myrenås, M.; Sundström, J.F.; Eklund, D.M.; Ljung, K.; Sundberg, E. The Arabidopsis thaliana transcriptional activator stylish1 regulates genes affecting stamen development, cell expansion and timing of flowering. Plant Mol. Biol. 2012, 78, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Barcala, M.; García, A.; Cabrera, J.; Casson, S.; Lindsey, K.; Favery, B.; García Casado, G.; Solano, R.; Fenoll, C.; Escobar, C. Early transcriptomic events in microdissected arabidopsis nematode-induced giant cells. Plant J. 2010, 61, 698–712. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Gene ID | AA | MW(Da) | pI | Instability Index | Aliphatic Index | Grand Average of Hydropathicity |
---|---|---|---|---|---|---|---|
CmSRS1 | MELO3C018686.1 | 320 | 35,379.07 | 6.55 | 55.97 | 60.62 | −0.733 |
CmSRS2 | MELO3C010984.1 | 347 | 37,430.36 | 6.45 | 57.79 | 53.08 | −0.615 |
CmSRS3 | MELO3C003781.1 | 307 | 34,469 | 8.04 | 52.18 | 54.92 | −0.821 |
CmSRS4 | MELO3C027042.1 | 265 | 28,899.03 | 5.98 | 60.84 | 46.75 | −0.709 |
CmSRS5 | MELO3C007877.1 | 328 | 35,598.99 | 6.96 | 54.16 | 50 | −0.769 |
CmaSRS1 | CmaCh01G019390.1 | 297 | 32,894.42 | 6.36 | 44.45 | 54.85 | −0.724 |
CmaSRS2 | CmaCh02G012730.1 | 363 | 37,868.88 | 7.14 | 46.07 | 67.77 | −0.398 |
CmaSRS3 | CmaCh03G007080.1 | 316 | 34,060.38 | 6.52 | 54.28 | 52.22 | −0.701 |
CmaSRS4 | CmaCh04G007690.1 | 263 | 28,771.27 | 6.99 | 52.33 | 56.05 | −0.573 |
CmaSRS5 | CmaCh04G013270.1 | 292 | 30,939.92 | 9.14 | 42.92 | 71.13 | −0.328 |
CmaSRS6 | CmaCh05G002810.1 | 337 | 36,312.15 | 6.4 | 58.68 | 52.02 | −0.575 |
CmaSRS7 | CmaCh07G004520.1 | 286 | 31,221.31 | 7.09 | 57.93 | 52.94 | −0.739 |
CmaSRS8 | CmaCh11G008840.1 | 791 | 84,224.85 | 5.73 | 46.89 | 68.31 | −0.343 |
CmaSRS9 | CmaCh12G004300.1 | 297 | 32,178.62 | 7.2 | 56.66 | 54.34 | −0.569 |
CmaSRS10 | CmaCh16G006400.1 | 229 | 24,649.34 | 6.74 | 51.25 | 54.59 | −0.593 |
CmaSRS11 | CmaCh18G008580.1 | 288 | 30,660.29 | 9.35 | 48.71 | 61.01 | −0.518 |
CmaSRS12 | CmaCh19G002830.1 | 280 | 31,479.16 | 8.3 | 47.86 | 61.25 | −0.695 |
CmaSRS13 | CmaCh20G001080.1 | 451 | 46,311.77 | 6.05 | 38.83 | 65.23 | −0.393 |
CmoSRS1 | CmoCh01G020010.1 | 298 | 33,041.58 | 6.55 | 46.82 | 55 | −0.751 |
CmoSRS2 | CmoCh02G013150.1 | 364 | 38,054.02 | 7.19 | 46.54 | 67.58 | −0.404 |
CmoSRS3 | CmoCh03G007340.1 | 323 | 34,976.26 | 6.36 | 53.38 | 50.77 | −0.757 |
CmoSRS4 | CmoCh04G008220.1 | 757 | 84,845.82 | 8.74 | 46.24 | 76.06 | −0.226 |
CmoSRS5 | CmoCh04G014000.1 | 366 | 39,658.77 | 9.01 | 46.59 | 71.69 | −0.386 |
CmoSRS6 | CmoCh05G002870.1 | 337 | 36,308.17 | 6.4 | 58.6 | 52.02 | −0.578 |
CmoSRS7 | CmoCh07G004500.1 | 282 | 30,684.85 | 7.06 | 56.94 | 54.4 | −0.685 |
CmoSRS8 | CmoCh11G008930.1 | 313 | 31,704.21 | 9.06 | 39.01 | 57.7 | −0.322 |
CmoSRS9 | CmoCh12G003810.1 | 267 | 28,731.75 | 8.62 | 58.69 | 50.6 | −0.567 |
CmoSRS10 | CmoCh18G008640.1 | 286 | 30,427.01 | 9.23 | 45.66 | 63.15 | −0.484 |
CmoSRS11 | CmoCh19G003110.1 | 267 | 30,091.45 | 6.23 | 45.87 | 57.68 | −0.731 |
CmoSRS12 | CmoCh20G001160.1 | 373 | 38,508.3 | 6.88 | 36.08 | 64.91 | −0.406 |
CsSRS1 | CsaV3_1G043360.1 | 307 | 31,146.62 | 8.9 | 41.44 | 58.18 | −0.338 |
CsSRS2 | CsaV3_2G029220.1 | 211 | 21,977.57 | 6.87 | 44.57 | 57.63 | −0.225 |
CsSRS3 | CsaV3_3G002100.1 | 388 | 43,201.45 | 8.93 | 49.09 | 67.16 | −0.865 |
CsSRS4 | CsaV3_3G045570.1 | 329 | 37,236.52 | 9 | 48.97 | 60.09 | −0.806 |
CsSRS5 | CsaV3_4G005360.1 | 263 | 28,682.78 | 6.24 | 61.27 | 45.59 | −0.751 |
CsSRS6 | CsaV3_5G036780.1 | 303 | 32,073.74 | 8.89 | 41.15 | 62.21 | −0.493 |
CsSRS7 | CsaV3_6G039030.1 | 365 | 37,662.42 | 7.15 | 37.75 | 61.21 | −0.417 |
CsSRS8 | CsaV3_6G046800.1 | 331 | 35,897.29 | 7 | 54.07 | 50.45 | −0.769 |
CsSRS9 | CsaV3_7G006060.1 | 317 | 35,221.94 | 7.13 | 53.15 | 60.88 | −0.736 |
ClaSRS1 | Cla97C01G019470.2 | 435 | 48,014.42 | 8.72 | 54.09 | 56.34 | −0.63 |
ClaSRS2 | Cla97C02G048970.2 | 542 | 56,691.2 | 8.62 | 47.87 | 73.12 | −0.232 |
ClaSRS3 | Cla97C03G062920.2 | 382 | 38,886.5 | 9.19 | 43.25 | 65.99 | −0.183 |
ClaSRS4 | Cla97C05G099960.2 | 311 | 34,917.29 | 6.53 | 50.85 | 49.52 | −0.876 |
ClaSRS5 | Cla97C05G109100.2 | 318 | 33,822.69 | 8.95 | 43.59 | 62.01 | −0.533 |
ClaSRS6 | Cla97C07G135860.2 | 275 | 29,953.39 | 6.65 | 54.08 | 54.65 | −0.602 |
ClaSRS7 | Cla97C08G158100.2 | 359 | 39,151.43 | 6.61 | 59.13 | 52.65 | −0.655 |
ClaSRS8 | Cla97C09G176200.2 | 669 | 76,183.14 | 6.04 | 66.87 | 72.86 | −0.588 |
BhiSRS1 | Bhi01M001886 | 265 | 28,659.96 | 6.08 | 55.08 | 50.08 | −0.581 |
BhiSRS2 | Bhi02M001250 | 308 | 30,990.5 | 8.96 | 43.1 | 62.47 | −0.264 |
BhiSRS3 | Bhi03M000673 | 328 | 35,617.15 | 6.96 | 54.47 | 50.91 | −0.747 |
BhiSRS4 | Bhi05M000625 | 306 | 34,206.05 | 6.49 | 39.03 | 61.76 | −0.665 |
BhiSRS5 | Bhi07M001030 | 302 | 31,942.66 | 8.89 | 44.19 | 64.67 | −0.463 |
BhiSRS6 | Bhi09M001884 | 307 | 34,150.55 | 6.89 | 52.03 | 55.24 | −0.817 |
BhiSRS7 | Bhi10M000200 | 387 | 40,243.5 | 7.24 | 43.53 | 69.59 | −0.352 |
LsiSRS1 | Lsi01G006310.1 | 335 | 36,537.99 | 6.88 | 54.6 | 47.52 | −0.808 |
LsiSRS2 | Lsi04G000260.1 | 301 | 31,654.32 | 8.83 | 43.82 | 63.59 | −0.468 |
LsiSRS3 | Lsi04G017130.1 | 299 | 33,410.68 | 6.55 | 48 | 49.87 | −0.857 |
LsiSRS4 | Lsi06G005760.1 | 369 | 37,719.13 | 8.5 | 45.78 | 63.31 | −0.165 |
LsiSRS5 | Lsi07G002300.1 | 273 | 29,457.71 | 6.3 | 53.85 | 50.81 | −0.549 |
LsiSRS6 | Lsi08G013510.1 | 336 | 36,292.11 | 6.66 | 60.64 | 52.5 | −0.622 |
LsiSRS7 | Lsi10G010870.1 | 372 | 38,375.3 | 8.36 | 42.65 | 66.64 | −0.376 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, H.; Wang, K.; Guo, Y.; Yang, J.; Wang, X.; He, M.; Lin, T.; Mao, J.; Xuan, Z. Genome-Wide Identification of the SRS Gene Family in Cucurbitaceae: Clade Identification and Expression Analysis of CmSRS Genes Under Drought and Salt Stress. Biology 2025, 14, 891. https://doi.org/10.3390/biology14070891
Min H, Wang K, Guo Y, Yang J, Wang X, He M, Lin T, Mao J, Xuan Z. Genome-Wide Identification of the SRS Gene Family in Cucurbitaceae: Clade Identification and Expression Analysis of CmSRS Genes Under Drought and Salt Stress. Biology. 2025; 14(7):891. https://doi.org/10.3390/biology14070891
Chicago/Turabian StyleMin, Haozhe, Kexiang Wang, Yao Guo, Junyan Yang, Xuhui Wang, Miao He, Tao Lin, Jiancai Mao, and Zhengying Xuan. 2025. "Genome-Wide Identification of the SRS Gene Family in Cucurbitaceae: Clade Identification and Expression Analysis of CmSRS Genes Under Drought and Salt Stress" Biology 14, no. 7: 891. https://doi.org/10.3390/biology14070891
APA StyleMin, H., Wang, K., Guo, Y., Yang, J., Wang, X., He, M., Lin, T., Mao, J., & Xuan, Z. (2025). Genome-Wide Identification of the SRS Gene Family in Cucurbitaceae: Clade Identification and Expression Analysis of CmSRS Genes Under Drought and Salt Stress. Biology, 14(7), 891. https://doi.org/10.3390/biology14070891