Increased Temporal Variability of Gait in ASD: A Motion Capture and Machine Learning Analysis
Simple Summary
Abstract
1. Introduction
2. Method
2.1. Participants
2.2. Informed Consent
2.3. Community Involvement Statement
2.4. Equipment
2.5. Procedure
2.6. Statistics and Machine Learning
3. Results
3.1. Per-Subject and Per-Trial Analysis
3.2. Gait Variability—‘Per-Subject’ Analysis
3.3. Average Gait Timing—‘Per-Subject’ Analysis
3.4. Gait Variability—‘Per-Trial’ Analysis
3.5. Average Gait Timing—‘Per-Trial’ Analysis
3.6. ADOS and Gait Variability
3.7. Tests for Potential Confounds
3.7.1. Gait Variability and Age
3.7.2. Inter-Rater Reliability for the ADOS
3.7.3. Body Mass Index
3.7.4. Machine Learning Analysis—Feature Set Results
4. Discussion
4.1. Overview: Gait Analysis Results
4.2. Machine Learning and Gait Analysis
4.3. Neurological Implications of Temporal Variability in Gait
5. Applications
6. Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Washington, DC, USA, 2013; pp. 50–59. [Google Scholar] [CrossRef]
- Fombonne, E. The epidemiology of autism: A review. Psychol. Med. 1999, 29, 769–786. [Google Scholar] [CrossRef] [PubMed]
- Fombonne, E. Epidemiology of Pervasive Developmental Disorders. Pediatr Res. 2009, 65, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Christensen, D.L.; Baio, J.; Van Naarden Braun, K.; Bilder, D.; Charles, J.; Constantino, J.N.; Daniels, J.; Durkin, M.S.; Fitzgerald, R.T.; Kurzius-Spencer, M.; et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012. MMWR Surveill. Summ. 2016, 65, 1–23. [Google Scholar] [CrossRef]
- Tordjman, S.; Davlantis, K.S.; Georgieff, N.; Geoffray, M.-M.; Speranza, M.; Anderson, G.M.; Xavier, J.; Botbol, M.; Oriol, C.; Bellissant, E.; et al. Autism as a disorder of biological and behavioral rhythms: Toward new therapeutic perspectives. Front. Pediatr. 2015, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Fournier, K.A.; Hass, C.J.; Naik, S.K.; Lodha, N.; Cauraugh, J.H. Motor Coordination in Autism Spectrum Disorders: A Synthesis and Meta-Analysis. J. Autism Dev. Disord. 2010, 40, 1227–1240. [Google Scholar] [CrossRef]
- Lum, J.A.G.; Shandley, K.; Albein-Urios, N.; Kirkovski, M.; Papadopoulos, N.; Wilson, R.B.; Enticott, P.G.; Rinehart, N.J. Meta-Analysis Reveals Gait Anomalies in Autism. Autism Res. 2021, 14, 733–747. [Google Scholar] [CrossRef]
- Staples, K.L.; Reid, G. Fundamental Movement Skills and Autism Spectrum Disorders. J. Autism Dev. Disord. 2010, 40, 209–217. [Google Scholar] [CrossRef]
- Esposito, G.; Venuti, P.; Apicella, F.; Muratori, F. Analysis of Unsupported Gait in Toddlers with Autism. Brain Dev. 2011, 33, 367–373. [Google Scholar] [CrossRef]
- Miyahara, M.; Tsujii, M.; Hori, M.; Nakanishi, K.; Kageyama, H.; Sugiyama, T. Brief Report: Motor Incoordination in Children with Asperger Syndrome and Learning Disabilities. J. Autism Dev. Disord. 1997, 27, 595–603. [Google Scholar] [CrossRef]
- Travers, B.G.; Powell, P.S.; Klinger, L.G.; Klinger, M.R. Motor Difficulties in Autism Spectrum Disorder: Linking Symptom Severity and Postural Stability. J. Autism Dev. Disord. 2013, 43, 1568–1583. [Google Scholar] [CrossRef]
- Leary, M.R.; Hill, D.A. Moving On: Autism and Movement Disturbance. Ment. Retard. 1996, 34, 39–53. [Google Scholar] [PubMed]
- Bhat, A.N.; Landa, R.J.; Galloway, J.C. Current Perspectives on Motor Functioning in Infants, Children, and Adults with Autism Spectrum Disorders. Phys. Ther. 2011, 91, 1116–1129. [Google Scholar] [CrossRef]
- Newson, E. The Social Development of the Young Autistic Child. In Autism—Its Nature, Implications and Consequences; National Autistic Society: London, UK, 1984. [Google Scholar]
- Boucher, J. ‘Lost in a Sea of Time’: Time-Parsing and Autism. In Time and Memory: Issues in Philosophy and Psychology; Hoerl, C., McCormack, T., Eds.; Oxford University Press: Oxford, UK, 2001; pp. 111–135. [Google Scholar]
- Wimpory, D.; Nicholas, B.; Nash, S. Social Timing, Clock Genes and Autism: A New Hypothesis. J. Intellect. Disabil. Res. 2002, 46, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Calhoun, M.; Longworth, M.; Chester, V.L. Gait Patterns in Children with Autism. Clin. Biomech. 2011, 26, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Kindregan, D.; Gallagher, L.; Gormley, J. Gait Deviations in Children with Autism Spectrum Disorders: A Review. Autism Res. Treat. 2015, 2015, 741480. [Google Scholar] [CrossRef]
- Lim, B.-O.; O’Sullivan, D.; Choi, B.-G.; Kim, M.-Y. Comparative Gait Analysis between Children with Autism and Age-Matched Controls: Analysis with Temporal-Spatial and Foot Pressure Variables. J. Phys. Ther. Sci. 2016, 28, 286–292. [Google Scholar] [CrossRef]
- Ambrosini, D.; Courchesne, E.; Kaufman, K. Motion Analysis of Patients with Infantile Autism. Gait Posture 1998, 7, 188. [Google Scholar] [CrossRef]
- Nobile, M.; Perego, P.; Piccinini, L.; Mani, E.; Rossi, A.; Bellina, M.; Molteni, M. Further Evidence of Complex Motor Dysfunction in Drug Naïve Children with Autism Using Automatic Motion Analysis of Gait. Autism 2011, 15, 263–283. [Google Scholar] [CrossRef]
- Vernazza-Martin, S.; Martin, N.; Vernazza, A.; Lepellec-Muller, A.; Rufo, M.; Massion, J.; Assaiante, C. Goal Directed Locomotion and Balance Control in Autistic Children. J. Autism Dev. Disord. 2005, 35, 91–102. [Google Scholar] [CrossRef]
- Vilensky, J.A.; Damasio, A.R.; Maurer, R.G. Gait Disturbances in Patients with Autistic Behavior: A Preliminary Study. Arch. Neurol. 1981, 38, 646–649. [Google Scholar] [CrossRef]
- Weiss, M.J.; Moran, M.F.; Parker, M.E.; Foley, J.T. Gait Analysis of Teenagers and Young Adults Diagnosed with Autism & Severe Verbal Communication Disorders. Front. Integr. Neurosci. 2013, 7, 33. [Google Scholar] [CrossRef]
- Chester, V.L.; Calhoun, M. Gait Symmetry in Children with Autism. Autism Res. Treat. 2012, 2012, 576478. [Google Scholar] [CrossRef] [PubMed]
- Nayate, A.; Tonge, B.J.; Bradshaw, J.L.; McGinley, J.L.; Iansek, R.; Rinehart, N.J. Differentiation of High-Functioning Autism and Asperger’s Disorder Based on Neuromotor Behaviour. J. Autism Dev. Disord. 2012, 42, 707–717. [Google Scholar] [CrossRef]
- Rinehart, N.J.; Tonge, B.J.; Bradshaw, J.L.; Iansek, R.; Enticott, P.G.; McGinley, J. Gait Function in High-Functioning Autism and Asperger’s Disorder: Evidence for Basal-Ganglia and Cerebellar Involvement? Eur. Child Adolesc. Psychiatry 2006, 15, 256–264. [Google Scholar] [CrossRef]
- Rinehart, N.J.; Tonge, B.J.; Iansek, R.; McGinley, J.; Brereton, A.V.; Enticott, P.G.; Bradshaw, J.L. Gait Function in Newly Diagnosed Children with Autism: Cerebellar and Basal Ganglia Related Motor Disorder. Dev. Med. Child Neurol. 2006, 48, 819–824. [Google Scholar] [CrossRef]
- Hallett, M.; Lebiedowska, M.K.; Thomas, S.L.; Stanhope, S.J.; Denckla, M.B.; Rumsey, J. Locomotion of Autistic Adults. Arch. Neurol. 1993, 50, 1304–1308. [Google Scholar] [CrossRef] [PubMed]
- Arin, D.M.; Bauman, M.L.; Kemper, T.L. The Distribution of Purkinje Cell Loss in the Cerebellum in Autism. Neurology 1991, 41, 307. [Google Scholar]
- Courchesne, E.; Townsend, J.; Akshoomoff, N.A.; Saitoh, O.; Yeung-Courchesne, R.; Lincoln, A.J.; James, H.E.; Haas, R.H.; Schreibman, L.; Lau, L. Impairment in Shifting Attention in Autistic and Cerebellar Patients. Behav. Neurosci. 1994, 108, 848–865. [Google Scholar] [CrossRef]
- Palmen, S.J.M.C.; Van Engeland, H.; Hof, P.R.; Schmitz, C. Neuropathological Findings in Autism. Brain 2004, 127, 2572–2583. [Google Scholar] [CrossRef]
- Mielke, M.M.; Roberts, R.O.; Savica, R.; Cha, R.; Drubach, D.I.; Christianson, T.; Pankratz, V.S.; Geda, Y.E.; Machulda, M.M.; Ivnik, R.J.; et al. Assessing the Temporal Relationship between Cognition and Gait: Slow Gait Predicts Cognitive Decline in the Mayo Clinic Study of Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 929–937. [Google Scholar] [CrossRef]
- Nürnberg, L.; Klein, C.; Baudrexel, S.; Roggendorf, J.; Hildner, M.; Chen, S.; Kang, J.-S.; Hilker, R.; Hagenah, J. Ultrasound-Based Motion Analysis Demonstrates Bilateral Arm Hypokinesia during Gait in Heterozygous PINK1 Mutation Carriers. Mov. Disord. 2015, 30, 386–392. [Google Scholar] [CrossRef]
- Ozonoff, S.; Young, G.S.; Goldring, S.; Greiss-Hess, L.; Herrera, A.M.; Steele, J.; Macari, S.; Hepburn, S.; Rogers, S.J. Gross Motor Development, Movement Abnormalities, and Early Identification of Autism. J. Autism Dev. Disord. 2008, 38, 644–656. [Google Scholar] [CrossRef] [PubMed]
- Eskofier, B.; Lee, S.; Daneault, J.-F.; Golabchi, F.; Carvalho, G.; Vergara-Diaz, G.; Sapienza, S.; Costante, G.; Klucken, J.; Kautz, T.; et al. Recent Machine Learning Advancements in Sensor-Based Mobility Analysis: Deep Learning for Parkinson’s Disease Assessment. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, FL, USA, 16–20 August 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Kubota, K.J.; Chen, J.A.; Little, M.A. Machine Learning for Large-Scale Wearable Sensor Data in Parkinson’s Disease: Concepts, Promises, Pitfalls, and Futures. Mov. Disord. 2016, 31, 1314–1326. [Google Scholar] [CrossRef]
- Shetty, S.; Rao, Y.S. SVM Based Machine Learning Approach to Identify Parkinson’s Disease Using Gait Analysis. In Proceedings of the 2016 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–27 August 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Ilias, S.; Tahir, N.; Jailani, R.; Hasan, C. Classification of Autism Children Gait Patterns Using Neural Network and Support Vector Machine. In Proceedings of the 2016 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang, Malaysia, 30–31 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 52–56. [Google Scholar]
- Hasan, C.Z.C.; Jailani, R.; Md Tahir, N.; Ilias, S. The Analysis of Three-Dimensional Ground Reaction Forces during Gait in Children with Autism Spectrum Disorders. Res. Dev. Disabil. 2017, 66, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, N.K.; Tahir, N.M.; Jailani, R. ASD Children Gait Classification Based on Principal Component Analysis and Linear Discriminant Analysis. Int. J. Emerg. Trends Eng. Res. 2020, 8, 2438–2445. [Google Scholar] [CrossRef]
- Han, X.; Guffanti, D.; Brunete, A. A Comprehensive Review of Vision-Based Sensor Systems for Human Gait Analysis. Sensors 2025, 25, 498. [Google Scholar] [CrossRef]
- Gotham, K.; Risi, S.; Pickles, A.; Lord, C. The Autism Diagnostic Observation Schedule (ADOS). J. Autism Dev. Disord. 2006, 37, 613–627. [Google Scholar] [CrossRef]
- Sordo, M.; Zeng, Q. On Sample Size and Classification Accuracy: A Performance Comparison. In Biological and Medical Data Analysis; Oliveira, J.L., Maojo, V., Martín-Sánchez, F., Pereira, A.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 193–201. [Google Scholar]
- Han, H.; Wang, W.-Y.; Mao, B.-H. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In Advances in Intelligent Computing; Huang, D.S., Zhang, X.-P., Huang, G.-B., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 878–887. [Google Scholar]
- Ilias, S.; Tahir, N.M.; Jailani, R.; Hasan, C.Z.C. Linear Discriminant Analysis in Classifying Walking Gait of Autistic Children. In Proceedings of the 2017 European Modelling Symposium (EMS), Manchester, UK, 20–21 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 67–72. [Google Scholar] [CrossRef]
- Henderson, B.; Yogarajah, P.; Gardiner, B.; McGinnity, M.; Forster, K.; Nicholas, B.; Wimpory, D.; Wanigasinghe, J. Effects of Intra-Subject Variation in Gait Analysis on ASD Classification Performance in Machine Learning Models. In Proceedings of the 2020 31st Irish Signals and Systems Conference (ISSC), Dublin, Ireland, 11–12 June 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Terrier, P.; Schutz, Y. Variability of gait patterns during unconstrained walking assessed by satellite positioning (GPS). Eur. J. Appl. Physiol. 2003, 90, 554–561. [Google Scholar] [CrossRef]
- Gabell, A.; Nayak, U.S.L. The Effect of Age on Variability in Gait. J. Gerontol. 1984, 39, 662–666. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Zemany, L.; Peng, C.; Goldberger, A.L. Maturation of gait dynamics: Stride-to-stride variability and its temporal organization in children. J. Appl. Physiol. 1999, 86, 1040–1047. [Google Scholar] [CrossRef]
- Yogev, G.; Plotnik, M.; Peretz, C.; Giladi, N.; Hausdorff, J.M. Gait asymmetry in patients with Parkinson’s disease and elderly fallers: When does the bilateral coordination of gait require attention? Exp. Brain Res. 2007, 177, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Liu, Y.; Yi, L.; Fang, J.; Yang, Y.; Wei, K. Abnormal Gait Patterns in Autism Spectrum Disorder and Their Correlations with Social Impairments. Autism Res. 2020, 13, 1215–1226. [Google Scholar] [CrossRef] [PubMed]
- Blin, O.; Ferrandez, A.M.; Serratrice, G. Quantitative analysis of gait in Parkinson patients: Increased variability of stride length. J. Neurol. Sci. 1990, 98, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Ebersbach, G.; Sojer, M.; Valldeoriola, F.; Wissel, J.; Müller, J.; Tolosa, E.; Poewe, W. Comparative analysis of gait in Parkinson’s disease, cerebellar ataxia and subcortical arteriosclerotic encephalopathy. Brain 1999, 122, 1349–1355. [Google Scholar] [CrossRef]
- Palliyath, S.; Hallett, M.; Thomas, S.L.; Lebiedowska, M.K. Gait in Patients With Cerebellar Ataxia. Mov. Disord. 1998, 13, 958–963. [Google Scholar] [CrossRef]
- Damasio, A.R.; Maurer, R.G. A Neurological Model for Childhood Autism. Arch. Neurol. 1978, 35, 777–786. [Google Scholar] [CrossRef]
- Hollander, E.; Wang, A.T.; Braun, A.; Marsh, L. Neurological considerations: Autism and Parkinson’s disease. Psychiatry Res. 2009, 170, 43–51. [Google Scholar] [CrossRef]
- Maurer, R.G.; Damasio, A.R. Childhood autism from the point of view of behavioral neurology. J. Autism Dev. Disord. 1982, 12, 195–205. [Google Scholar] [CrossRef]
- Mostofsky, S.H.; Powell, S.K.; Simmonds, D.J.; Goldberg, M.C.; Caffo, B.; Pekar, J.J. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain 2009, 132, 2413–2425. [Google Scholar] [CrossRef]
- Müller, R.A.; Pierce, K.; Ambrose, J.B.; Allen, G.; Courchesne, E. Atypical patterns of cerebral motor activation in autism: A functional magnetic resonance study. Biol. Psychiatry 2001, 49, 665–676. [Google Scholar] [CrossRef]
- Nayate, A.; Bradshaw, J.; Rinehart, N. Autism and Asperger’s disorder: Are they movement disorders involving the cerebellum and/or basal ganglia? Brain Res. Bull. 2005, 67, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M.; Cudkowicz, M.E.; Firtion, R.; Wei, J.Y.; Goldberger, A.L. Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov. Disord. 1998, 13, 428–437. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Nelson, M.E.; Kaliton, D.; Layne, J.E.; Bernstein, M.J.; Nuernberger, A.; Singh, M.A. Etiology and modification of gait instability in older adults: A randomized controlled trial of exercise. J. Appl. Physiol. 2001, 90, 2117–2129. [Google Scholar] [CrossRef]
- Burns, R.S.; Chiueh, C.C.; Markey, S.P.; Ebert, M.H.; Jacobowitz, D.M.; Kopin, I.J. A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci. USA 1983, 80, 4546–4550. [Google Scholar] [CrossRef]
- Nickl-Jockschat, T.; Habel, U.; Michel, T.M.; Manning, J.; Laird, A.R.; Fox, P.T.; Schneider, F.; Eickhoff, S.B. Brain structure anomalies in autism spectrum disorder--a meta-analysis of VBM studies using anatomic likelihood estimation. Hum. Brain Mapp. 2012, 33, 1470–1489. [Google Scholar] [CrossRef]
- Delmonte, S.; Balsters, J.H.; McGrath, J.; Fitzgerald, J.; Brennan, S.; Fagan, A.J.; Gallagher, L. Social and monetary reward processing in autism spectrum disorders. Mol. Autism 2012, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Fuccillo, M.V. Striatal Circuits as a Common Node for Autism Pathophysiology. Front. Neurosci. 2016, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Kohls, G.; Schulte-Rüther, M.; Nehrkorn, B.; Müller, K.; Fink, G.R.; Kamp-Becker, I.; Herpertz-Dahlmann, B.; Schultz, R.T.; Konrad, K. Reward system dysfunction in autism spectrum disorders. Soc. Cogn. Affect. Neurosci. 2013, 8, 565–572. [Google Scholar] [CrossRef]
- Shafritz, K.M.; Dichter, G.S.; Baranek, G.T.; Belger, A. The neural circuitry mediating shifts in behavioral response and cognitive set in autism. Biol. Psychiatry 2008, 63, 974–980. [Google Scholar] [CrossRef]
- Bauman, M.L.; Kemper, T.L. Histoanatomic observations of the brain in early infantile autism. Neurology 1985, 35, 866–874. [Google Scholar] [CrossRef]
- Bauman, M.L.; Kemper, T.L. Developmental cerebellar abnormalities—A consistent finding in early infantile-autism. Neurology 1986, 36, 190. [Google Scholar]
- Bauman, M.L.; Kemper, T.L. Limbic and cerebellar abnormalities—Consistent findings in infantile autism. J. Neuropathol. Exp. Neurol. 1988, 47, 369. [Google Scholar]
- Pierce, K.; Courchesne, E. Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol. Psychiatry 2001, 49, 655–664. [Google Scholar] [CrossRef] [PubMed]
- D’Mello, A.M.; Crocetti, D.; Mostofsky, S.H.; Stoodley, C.J. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. NeuroImage Clin. 2015, 7, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Stoodley, C.J.; D’Mello, A.M.; Ellegood, J.; Jakkamsetti, V.; Liu, P.; Nebel, M.B.; Gibson, J.M.; Kelly, E.; Meng, F.; Cano, C.A.; et al. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat. Neurosci. 2017, 20, 1744–1751. [Google Scholar] [CrossRef]
- Kelly, E.; Meng, F.; Fujita, H.; Morgado, F.; Kazemi, Y.; Rice, L.; Ren, C.; Ochoa, C.; Gibson, J.; Sajadi, S.; et al. Regulation of autism-relevant behaviors by cerebellar–prefrontal cortical circuits. Nat. Neurosci. 2020, 23, 1102–1110. [Google Scholar] [CrossRef]
- Liu, D.; Nanclares, C.; Simbriger, K.; Fang, K.; Lorsung, E.; Le, N.; Cao, R. Autistic-like behavior and cerebellar dysfunction in Bmal1 mutant mice ameliorated by mTORC1 inhibition. Mol. Psychiatry 2023, 28, 3727–3738. [Google Scholar] [CrossRef]
- Nguyen, A.; Rauch, T.A.; Pfeifer, G.P.; Hu, V.W. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J. 2010, 24, 3036–3051. [Google Scholar] [CrossRef]
- Hamilton, B.A.; Frankel, W.N.; Kerrebrock, A.W.; Hawkins, T.L.; FitzHugh, W.; Kusumi, K.; Russell, L.B.; Mueller, K.L.; van Berkel, V.; Birren, B.W.; et al. Disruption of the nuclear hormone receptor RORalpha in staggerer mice. Nature 1996, 379, 736–740. [Google Scholar] [CrossRef]
- Hu, V.W. Is retinoic acid-related orphan receptor-alpha (RORA) a target for gene–environment interactions contributing to autism? Neurotoxicology 2012, 33, 1434–1435. [Google Scholar] [CrossRef]
- Guissart, C.; Latypova, X.; Rollier, P.; Khan, T.N.; Stamberger, H.; McWalter, K.; Cho, M.T.; Kjaergaard, S.; Weckhuysen, S.; Lesca, G.; et al. Dual Molecular Effects of Dominant RORA Mutations Cause Two Variants of Syndromic Intellectual Disability with Either Autism or Cerebellar Ataxia. Am. J. Hum. Genet. 2018, 102, 744–759. [Google Scholar] [CrossRef] [PubMed]
Phase of Gait Cycle | Coefficient of Variation (CoV) = Standard Deviation/Mean (0.000) | Mann–Whitney U Results | CoV (%) = (SD/M) × 100 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean ASD | Mean TD | Mdn ASD | Mdn TD | U | z | p | r | Mean ASD | Mean TD | ||
Step | L | 0.113 | 0.054 | 0.084 | 0.052 | 218 | 3.39 | <0.001 | 0.60 | 11.35 | 5.43 |
R | 0.103 | 0.055 | 0.081 | 0.053 | 220 | 3.47 | <0.001 | 0.61 | 10.30 | 5.48 | |
Stance | L | 0.115 | 0.054 | 0.082 | 0.045 | 219 | 3.43 | <0.001 | 0.61 | 11.47 | 5.37 |
R | 0.112 | 0.051 | 0.097 | 0.047 | 237 | 4.11 | <0.001 | 0.73 | 11.20 | 5.11 | |
Swing | L | 0.109 | 0.052 | 0.089 | 0.044 | 216 | 3.32 | <0.001 | 0.59 | 10.85 | 5.25 |
R | 0.117 | 0.054 | 0.090 | 0.050 | 216 | 3.32 | <0.001 | 0.59 | 11.72 | 5.39 | |
Stride | L | 0.088 | 0.043 | 0.066 | 0.038 | 227 | 3.73 | <0.001 | 0.66 | 8.76 | 4.30 |
R | 0.094 | 0.041 | 0.075 | 0.037 | 236 | 4.07 | <0.001 | 0.72 | 9.38 | 4.05 |
Phase of Gait Cycle | Mean Values Calculated from Raw Temporal Data Sampled at 250 Hz | Independent Samples t Test | Seconds (Raw Values × 0.004) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean ASD | Mean TD | SEM ASD | SEM TD | t (30) | p | Mean ASD | Mean TD | ||
Step | L | 133.75 | 127.93 | 3.59 | 3.88 | −1.100 | 0.28 | 0.535 | 0.512 |
R | 130.73 | 126.36 | 3.59 | 3.90 | −0.825 | 0.42 | 0.523 | 0.505 | |
Stance | L | 149.62 | 144.70 | 4.51 | 4.93 | −0.736 | 0.47 | 0.598 | 0.579 |
R | 151.00 | 145.04 | 4.43 | 4.85 | −0.908 | 0.37 | 0.604 | 0.580 | |
Stride | L | 264.02 | 254.18 | 7.18 | 7.79 | −0.929 | 0.36 | 1.056 | 1.017 |
R | 264.21 | 254.63 | 6.75 | 7.75 | −0.932 | 0.36 | 1.057 | 1.019 | |
Mean ASD | Mean TD | SEM ASD | SEM TD | Mann–Whitney | Mean ASD | Mean TD | |||
U | p | ||||||||
Swing | L | 114.98 | 109.65 | 5.45 | 2.96 | 135 | 0.81 | 0.460 | 0.439 |
R | 120.08 | 109.48 | 7.61 | 3.07 | 146 | 0.52 | 0.480 | 0.438 |
Phase of Gait Cycle | Coefficient of Variation (CoV) = Standard Deviation/Mean (0.000) | Mann–Whitney U Results | CoV (%) = (SD/M) × 100 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean ASD | Mean TD | Mdn ASD | Mdn TD | U | z | p | r | Mean ASD | Mean TD | ||
Step | L | 0.056 | 0.031 | 0.041 | 0.028 | 14,428.5 | 5.04 | <0.001 | 0.34 | 5.56 | 3.06 |
R | 0.056 | 0.034 | 0.044 | 0.031 | 14,180.0 | 4.70 | <0.001 | 0.32 | 5.65 | 3.37 | |
Stance | L | 0.053 | 0.030 | 0.036 | 0.027 | 13,837.5 | 4.23 | <0.001 | 0.29 | 5.28 | 2.95 |
R | 0.046 | 0.027 | 0.034 | 0.025 | 13,801.5 | 4.18 | <0.001 | 0.28 | 4.61 | 2.66 | |
Swing | L | 0.058 | 0.030 | 0.042 | 0.026 | 15,087.0 | 5.94 | <0.001 | 0.40 | 5.80 | 2.98 |
R | 0.055 | 0.034 | 0.044 | 0.031 | 14,146.5 | 4.65 | <0.001 | 0.31 | 5.55 | 3.41 | |
Stride | L | 0.037 | 0.021 | 0.028 | 0.020 | 14,176.0 | 4.69 | <0.001 | 0.32 | 3.69 | 2.10 |
R | 0.039 | 0.019 | 0.026 | 0.017 | 14,295.0 | 4.86 | <0.001 | 0.33 | 3.93 | 1.86 |
Phase of Gait Cycle | Mean Values Calculated from Raw Temporal Data Sampled at 250 Hz | Mann–Whitney U Results | Seconds (Raw values × 0.004) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ASD | Mean TD | Mdn ASD | Mdn TD | U | z | p | Mean ASD | Mean TD | ||
Step | L | 132.89 | 128.77 | 133.75 | 133.3 | 11,798 | 1.43 | 0.15 | 0.53 | 0.52 |
R | 130.50 | 127.57 | 130.83 | 132.1 | 1.443 ** | - | 0.15 | 0.52 | 0.51 | |
Stance | L | 149.47 | 146.04 | 147.67 | 151.3 | 11,553 | 1.09 | 0.28 | 0.60 | 0.58 |
R | 150.70 | 146.12 | 149.33 | 152.5 | 11,755 | 1.37 | 0.17 | 0.60 | 0.58 | |
Swing | L | 113.61 | 110.40 | 111.57 | 112.0 | 11,134 | 0.52 | 0.60 | 0.45 | 0.44 |
R | 117.48 | 110.46 | 110.00 | 111.3 | 11,226 | 0.64 | 0.52 | 0.47 | 0.44 | |
Stride | L | 262.75 | 256.23 | 264.50 | 266.4 | 11,756 | 1.37 | 0.17 | 1.05 | 1.02 |
R | 263.00 | 256.61 | 265.00 | 267.2 | 11,813 | 1.49 | 0.15 | 1.05 | 1.03 |
Phase of Gait Cycle | Kolmogorov–Smirnov | Spearman’s Rho | Pearson’s | |||
---|---|---|---|---|---|---|
D (16) | p | r (14) | p | r (14) | p | |
Left step | 0.21 | 0.059 | −0.19 | 0.478 | −0.31 | 0.243 |
Right step | 0.19 | 0.128 | 0.37 | 0.161 | −0.43 | 0.101 |
Left stance | 0.23 | 0.024 * | −0.38 | 0.147 | n/a | n/a |
Right stance | 0.17 | 0.200 | −0.20 | 0.451 | −0.34 | 0.195 |
Left Swing | 0.18 | 0.153 | −0.09 | 0.729 | −0.30 | 0.256 |
Right swing | 0.25 | 0.009 * | −0.19 | 0.485 | n/a | n/a |
Left stride | 0.21 | 0.055 | −0.28 | 0.289 | −0.46 | 0.074 |
Right stride | 0.21 | 0.070 | −0.24 | 0.368 | −0.41 | 0.120 |
Feature Group | A | B | C | D |
---|---|---|---|---|
Mean Gait Phase Timings | No | Yes | No | Yes |
CoV Phase Timings | Yes | Yes | Yes | Yes |
CoV Cadence | Yes | Yes | No | No |
Mean Cadence | No | Yes | No | Yes |
Test Number | Best Model | Accuracy (%) | Mean CV Accuracy (%) |
---|---|---|---|
1 | AdaBoost | 85.71 | 45.00 |
2 | Decision Tree | 85.71 | 76.67 |
3 | Random Forest | 63.77 | 53.94 |
4 | Random Forest | 61.80 | 71.87 |
5 | Random Forest | 75.76 | 68.85 |
6 | Random Forest | 82.18 | 82.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goldthorp, K.; Henderson, B.; Yogarajah, P.; Gardiner, B.; McGinnity, T.M.; Nicholas, B.; Wimpory, D.C. Increased Temporal Variability of Gait in ASD: A Motion Capture and Machine Learning Analysis. Biology 2025, 14, 832. https://doi.org/10.3390/biology14070832
Goldthorp K, Henderson B, Yogarajah P, Gardiner B, McGinnity TM, Nicholas B, Wimpory DC. Increased Temporal Variability of Gait in ASD: A Motion Capture and Machine Learning Analysis. Biology. 2025; 14(7):832. https://doi.org/10.3390/biology14070832
Chicago/Turabian StyleGoldthorp, Katharine, Benn Henderson, Pratheepan Yogarajah, Bryan Gardiner, Thomas Martin McGinnity, Brad Nicholas, and Dawn C. Wimpory. 2025. "Increased Temporal Variability of Gait in ASD: A Motion Capture and Machine Learning Analysis" Biology 14, no. 7: 832. https://doi.org/10.3390/biology14070832
APA StyleGoldthorp, K., Henderson, B., Yogarajah, P., Gardiner, B., McGinnity, T. M., Nicholas, B., & Wimpory, D. C. (2025). Increased Temporal Variability of Gait in ASD: A Motion Capture and Machine Learning Analysis. Biology, 14(7), 832. https://doi.org/10.3390/biology14070832