Effects of Bacillus subtilis and Rhodotorula Yeast Culture on the Growth Performance, Meat Quality, Antioxidant Capacity, and Serum Metabolites in Yellow-Feathered Broilers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Feed Additives
2.2. Experimental Design
2.3. Sample Collection
2.4. Meat Quality Measurement
2.5. Antioxidant Capacity
2.6. Metabolomics Analysis of Serum Samples
2.7. Date Analysis
3. Results
3.1. Growth Performance
3.2. Meat Quality
3.3. Antioxidant Capacity of Breast Muscle
3.4. Serum Metabolome
3.5. The Relationship Between the Metabolites and Meat Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Tang, Y.; Mei, H.; Liu, Z.; Li, Z.; Ma, X.; Luo, Z.; Huang, W.; Li, Y.; Yu, M. Feeding citrus pomace fermented with combined probiotics improves growth performance, meat quality, fatty acid profile, and antioxidant capacity in yellow-feathered broilers. Front. Vet. Sci. 2024, 11, 1469947. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Wang, B.; Mei, X.; Jiang, S.; Li, W. Protocatechuic acid improved growth performance, meat quality, and intestinal health of Chinese yellow-feathered broilers. Poult. Sci. 2019, 98, 3138–3149. [Google Scholar] [CrossRef]
- Yu, Q.; Fang, C.; Ma, Y.; He, S.; Ajuwon, K.M.; He, J. Dietary resveratrol supplement improves carcass traits and meat quality of Pekin ducks. Poult. Sci. 2021, 100, 100802. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, S.; Chen, Y.; Cheng, Y.; Wen, C.; Zhou, Y. Dietary Chitooligosaccharide Supplementation Improves Mineral Deposition, Meat Quality and Intramuscular Oxidant Status in Broilers. J. Sci. Food Agric. 2023, 103, 764–769. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.K.; Zhang, F.J.; He, T.J.; Su, P.W.; Ying, X.Z.; Zhang, L.L.; Wang, T. Dietary Probiotic Bacillus subtilis Strain fmbj Increases Antioxidant Capacity and Oxidative Stability of Chicken Breast Meat during Storage. PLoS ONE 2016, 11, e0167339. [Google Scholar] [CrossRef]
- Yuan, C.; Ji, X.; Zhang, Y.; Liu, X.; Ding, L.; Li, J.; Ren, S.; Liu, F.; Chen, Z.; Zhang, L.; et al. Important role of Bacillus subtilis as a probiotic and vaccine carrier in animal health maintenance. World J. Microbiol. Biotechnol. 2024, 40, 268. [Google Scholar] [CrossRef]
- Dong, J.; Qiu, H.; Gao, S.; Hou, L.; Liu, H.; Zhu, L.; Chen, F. A combination of selenium and Bacillus subtilis improves the quality and flavor of meat and slaughter performance of broilers. Front. Vet. Sci. 2023, 10, 1259760. [Google Scholar] [CrossRef]
- Li, G.; Wang, B.; Mei, X.; Xu, H.; Qin, Y.; Li, W.; Zhou, Y. Effects of three probiotic Bacillus on growth performance, digestive enzyme activities, antioxidative capacity, serum immunity, and biochemical parameters in broilers. Anim. Sci. J. 2018, 89, 1561–1571. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, G.; Wang, Q.; Zhang, Q.; Tian, J.; Li, W.; Gong, L. Effects of Dietary Bacillus subtilis HC6 on Growth Performance, Antioxidant Capacity, Immunity, and Intestinal Health in Broilers. Animals 2023, 13, 2915. [Google Scholar] [CrossRef]
- Tang, X.; Liu, X.; Liu, H. Effects of Dietary Probiotic (Bacillus subtilis) Supplementation on Carcass Traits, Meat Quality, Amino Acid, and Fatty Acid Profile of Broiler Chickens. Front. Vet. Sci. 2021, 8, 767802. [Google Scholar] [CrossRef]
- Feng, Z.; Zhong, Y.; He, G.; Sun, H.; Chen, Y.; Zhou, W.; Lin, S. Yeast culture improved the growth performance, liver function, intestinal barrier and microbiota of juvenile largemouth bass (Micropterus salmoides) fed high-starch diet. Fish Shellfish. Immunol. 2022, 120, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.Y.; Kim, I.H. Dietary Supplementation of Mixed Yeast Culture Derived from Saccharomyces cerevisiae and Kluyveromyces maxianus: Effects on Growth Performance, Nutrient Digestibility, Meat Quality, Blood Parameters, and Gut Health in Broilers. J. Poult. Sci. 2019, 56, 140–147. [Google Scholar] [CrossRef]
- Lin, Y.; Yu, C.; Ma, Z.; Che, L.; Feng, B.; Fang, Z.; Xu, S.; Zhuo, Y.; Li, J.; Zhang, J.; et al. Effects of Yeast Culture Supplementation in Wheat–Rice-Based Diet on Growth Performance, Meat Quality, and Gut Microbiota of Growing–Finishing Pigs. Animals 2022, 12, 2177. [Google Scholar] [CrossRef]
- Wang, T.; Cheng, K.; Yu, C.Y.; Li, Q.M.; Tong, Y.C.; Wang, C.; Yang, Z.B.; Wang, T. Effects of a yeast-derived product on growth performance, antioxidant capacity, and immune function of broilers. Poult. Sci. 2021, 100, 101343. [Google Scholar] [CrossRef] [PubMed]
- Geng, C.Y.; Ren, L.P.; Zhou, Z.M.; Chang, Y.; Meng, Q.X. Comparison of active dry yeast (Saccharomyces cerevisiae) and yeast culture for growth performance, carcass traits, meat quality and blood indexes in finishing bulls. Anim. Sci. J. 2016, 87, 982–988. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Ribeiro, H.F.; Santos-Ebinuma, V.C.; Schuur, B.; Pereira, J.F.B. Rhodotorula sp.-based biorefinery: A source of valuable biomolecules. Appl. Microbiol. Biotechnol. 2022, 106, 7431–7447. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Mao, J.; Zeng, Y.; Sun, Z.; Deng, H.; Chen, C.; Sun, W.; Tang, Z. Isolation, Identification, and Function of Rhodotorula mucilaginosa TZR2014 and Its Effects on the Growth and Health of Weaned Piglets. Front. Microbiol. 2022, 13, 922136. [Google Scholar] [CrossRef]
- Landolfo, S.; Chessa, R.; Zara, G.; Zara, S.; Budroni, M.; Mannazzu, I. Rhodotorula mucilaginosa C2.5t1 Modulates Carotenoid Content and CAR Genes Transcript Levels to Counteract the Pro-Oxidant Effect of Hydrogen Peroxide. Microorganisms 2019, 7, 316. [Google Scholar] [CrossRef]
- Sun, J.; Li, M.; Tang, Z.; Zhang, X.; Chen, J.; Sun, Z. Effects of Rhodotorula mucilaginosa fermentation product on the laying performance, egg quality, jejunal mucosal morphology and intestinal microbiota of hens. J. Appl. Microbiol. 2020, 128, 54–64. [Google Scholar] [CrossRef]
- Chen, M. Effects of Red Yeast Culture on Meat Quality, Antioxidation, Flavor, and Shelf Life of Mutton. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2024. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, L.; Xia, Y.; Zhuang, X.; Chu, W. Isolation, Identification of Carotenoid-Producing Rhodotorula sp. from Marine Environment and Optimization for Carotenoid Production. Mar. Drugs 2019, 17, 161. [Google Scholar] [CrossRef]
- Maina, A.N.; Schulze, H.; Kiarie, E.G. Response of broiler breeder pullets when fed hydrolyzed whole yeast from placement to 22 wk of age. Poult. Sci. 2024, 103, 103383. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Wang, K.; Liu, Y.; Lu, X.; Chen, M.; Dang, J.; Zhang, G.; Yang, G.; Gao, A.; Xu, Y. Single or Combined Supplementation of Rhodotorula Yeast Culture and Bacillus Subtilis Enhances Intestinal Barrier Function in Yellow-Feathered Broilers. Vet. Sci. 2025, 12, 558. [Google Scholar] [CrossRef] [PubMed]
- NY/T 33-2004; Feeding Standard of Chicken. Ministry of Agriculture of China: Beijing, China, 2004.
- Guo, P.; Tong, Y.; Yang, R.; Zhang, M.; Lin, Q.; Lin, S.; Wang, C. Effects of hydrolyzed gallotannin on intestinal physical barrier, immune function, and microbiota structure of yellow-feather broilers. Poult. Sci. 2023, 102, 103010. [Google Scholar] [CrossRef] [PubMed]
- NY/T 3645-2020; Nutrient Requirements of Yellow-Feathered Broilers. Ministry of Agriculture and Rural Affairs of China: Beijing, China, 2020.
- Li, X.; Wang, C.; Li, S.; Zhang, L.; Liao, X.; Lu, L. Low protein diet influences mineral absorption and utilization in medium-growing yellow-feathered broilers from 1 to 30 days of age. Poult. Sci. 2024, 103, 104512. [Google Scholar] [CrossRef]
- Mao, J.; Wang, Y.; Duan, T.; Yin, N.; Dong, C.; Ren, X.; Liu, N.; An, X.; Qi, J. Effect of fermented dandelion on productive performance, meat quality, immune function, and intestinal microbiota of broiler chickens. BMC Vet. Res. 2023, 19, 178. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, G.; Shi, C.; Liu, L.; Guo, Q.; Han, C.; Zhang, D.; Zhang, L.; Liu, B.; Gao, H.; et al. Majorbio Cloud: A one-stop, comprehensive bioinformatic platform for multiomics analyses. Imeta 2022, 1, e12. [Google Scholar] [CrossRef]
- Ferlizza, E.; Fasoli, S.; Cavallini, D.; Bolcato, M.; Andreani, G.; Isani, G. Preliminary Study on Urine Chemistry and Protein Profile in Cows and Heifers. Pak. Vet. J. 2020, 40, 413–418. [Google Scholar] [CrossRef]
- Felini, R.; Cavallini, D.; Buonaiuto, G.; Bordin, T. Assessing the impact of thermoregulatory mineral supplementation on thermal comfort in lactating Holstein cows. Vet. Anim. Sci. 2024, 24, 100363. [Google Scholar] [CrossRef]
- Huo, D.; Sun, L.; Zhang, L.; Ru, X.; Liu, S.; Yang, H. Metabolome responses of the sea cucumber Apostichopus japonicus to multiple environmental stresses: Heat and hypoxia. Mar. Pollut. Bull. 2019, 138, 407–420. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Qattan, S.Y.; Batiha, G.E.; Khafaga, A.F.; Abdel-Moneim, A.-M.E.; Alagawany, M. Probiotics in Poultry Feed: A Comprehensive Review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1835–1850. [Google Scholar] [CrossRef]
- Wang, J.; Ishfaq, M.; Miao, Y.; Liu, Z.; Hao, M.; Wang, C.; Wang, J.; Chen, X. Dietary Administration of Bacillus subtilis KC1 Improves Growth Performance, Immune Response, Heat Stress Tolerance, and Disease Resistance of Broiler Chickens. Poult. Sci. 2022, 101, 101693. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhong, G.; Shao, D.; Wang, Q.; Hu, Y.; Wu, T.; Ji, C.; Shi, S. Dietary Supplementation with Bacillus subtilis Promotes Growth Performance of Broilers by Altering the Dominant Microbial Community. Poult. Sci. 2021, 100, 100935. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Yang, Z.; Song, C.; Liang, C.; Li, H.; Chen, W.; Lin, W.; Xie, Q. Effects of Dietary Yeast Nucleotides Supplementation on Intestinal Barrier Function, Intestinal Microbiota, and Humoral Immunity in Specific Pathogen-Free Chickens. Poult. Sci. 2018, 97, 3837–3846. [Google Scholar] [CrossRef]
- de Araújo, P.D.; Araújo, W.M.C.; Patarata, L.; Fraqueza, M.J. Understanding the Main Factors that Influence Consumer Quality Perception and Attitude Towards Meat and Processed Meat Products. Meat Sci. 2022, 193, 108952. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of Water-Holding Capacity of Meat: The Role of Postmortem Biochemical and Structural Changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, C.; Li, J.; Zhang, L.; Gao, F.; Zhou, G. Effects of Dietary Energy Sources on Early Postmortem Muscle Metabolism of Finishing Pigs. Asian-Australas. J. Anim. Sci. 2017, 30, 1764–1772. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, C.; Li, J.; Liang, R.; Liu, Y.; Song, Z.; Buyse, J.; Zhu, L. Dietary Bacillus subtilis Benefits Meat Quality by Regulating the Muscle Fiber Type and Antioxidant Capacity of Broilers. Poult. Sci. 2024, 103, 104267. [Google Scholar] [CrossRef]
- Fang, S.; Fan, X.; Xu, S.; Gao, S.; Wang, T.; Chen, Z.; Li, D. Effects of Dietary Supplementation of Postbiotic Derived from Bacillus subtilis ACCC 11025 on Growth Performance, Meat Yield, Meat Quality, Excreta Bacteria, and Excreta Ammonia Emission of Broiler Chicks. Poult. Sci. 2024, 103, 103444. [Google Scholar] [CrossRef]
- Shi, M. Effects of Dietary Supplementation with Novel Saccharomyces cerevisiae Culture on Immune Function, Meat Quality and Intestinal Microbiota in Cherry Valley Ducks. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2018. [Google Scholar]
- Mohammed, A.A.; Zaki, R.S.; Negm, E.A.; Mahmoud, M.A.; Cheng, H.W. Effects of Dietary Supplementation of a Probiotic (Bacillus subtilis) on Bone Mass and Meat Quality of Broiler Chickens. Poult. Sci 2021, 100, 100906. [Google Scholar] [CrossRef]
- Condron, K.; Lemenager, R.; Claeys, M.; Lipkie, T.; Schoonmaker, J. Supplemental β-Carotene I: Effect on Plasma Vitamin A, Growth Performance, and Carcass Characteristics of Feedlot Cattle. Meat Sci. 2014, 98, 736–743. [Google Scholar] [CrossRef]
- Ma, Y.; Dong, X.; Wang, Y.; Wang, Z.; Xie, Y.; Zhang, W.; Pan, D.; Zhou, H.; Xu, B. New findings on post-mortem chicken quality changes: The ROS-influenced MAPK-JNK signaling pathway affects chicken quality by regulating muscle cell apoptosis. Food Chem. 2024, 459, 140298. [Google Scholar] [CrossRef]
- Oke, O.E.; Akosile, O.A.; Oni, A.I.; Opowoye, I.O.; Ishola, C.A.; Adebiyi, J.O.; Odeyemi, A.J.; Adjei-Mensah, B.; Uyanga, V.A.; Abioja, M.O. Oxidative Stress in Poultry Production. Poult. Sci. 2024, 103, 104003. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z. Effects of Yeast Culture on Production Performance, Digestive Physiology and Immune Function of Sichuan White Geese. Master’s Thesis, Southwest University, Chongqing, China, 2020. [Google Scholar] [CrossRef]
- Turner, K.J.N.; Whyte, R. Does It Look Cooked? A Review of Factors that Influence Cooked Meat Color. J. Food Sci. 2006, 71, R31–R40. [Google Scholar] [CrossRef]
- Estévez, M. Oxidative Damage to Poultry: From Farm to Fork. Poult. Sci. 2015, 94, 1368–1378. [Google Scholar] [CrossRef]
- Dou, L.; Liu, C.; Yang, Z.; Su, R.; Chen, X.; Hou, Y.; Hu, G.; Yao, D.; Zhao, L.; Su, L.; et al. Effects of Oxidative Stability Variation on Lamb Meat Quality and Flavor During Postmortem Aging. J. Food Sci. 2022, 87, 2578–2594. [Google Scholar] [CrossRef]
- Su, L.; Zhao, Z.; Xia, J.; Xia, J.; Nian, Y.; Shan, K.; Zhao, D.; He, H.; Li, C. Protecting meat color: The interplay of betanin red and myoglobin through antioxidation and coloration. Food Chem. 2024, 442, 138410. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, R.; Kiyimba, F.; Suman, S.P.; Mafi, G.G. The Potential of Metabolomics in Meat Science: Current Applications, Trends, and Challenges. J. Proteom. 2023, 283–284, 104926. [Google Scholar] [CrossRef]
- Tang, Z.; Song, B.; Zheng, C.; Zheng, J.; Yin, Y.; Chen, J. Dietary Beta-Hydroxy-Beta-Methyl Butyrate Supplementation Affects Growth, Carcass Characteristics, Meat Quality, and Serum Metabolomics Profile in Broiler Chickens. Front. Physiol. 2021, 12, 633964. [Google Scholar] [CrossRef]
- An, J.; Zhao, X.; Song, Y.; He, H.; Wang, Z.; Lan, X.; Ge, Y.; Liu, L.; Cheng, A.; Shen, W.; et al. High Leucine Bioavailability Improves Beef Quality by Altering Serum Metabolism in Beef Cattle. Meat Sci. 2025, 220, 109693. [Google Scholar] [CrossRef]
- Warner, R.D.; Wheeler, T.L.; Ha, M.; Li, X.; Bekhit, A.E.; Morton, J.; Vaskoska, R.; Dunshea, F.R.; Liu, R.; Purslow, P.; et al. Meat Tenderness: Advances in Biology, Biochemistry, Molecular Mechanisms and New Technologies. Meat Sci. 2022, 185, 108657. [Google Scholar] [CrossRef]
- Cui, H.; Jin, Y.; Wang, N.; Liu, H.; Shu, R.; Wang, J.; Wang, X.; Jia, B.; Wang, Y.; Bian, Y.; et al. Mechanistic Evaluation of Wu-Mei-Pill on Colitis-Associated Colorectal Cancer: An Integrated Transcriptomics, Metabolomics, and Experimental Validation Study. Phytomedicine 2024, 128, 155509. [Google Scholar] [CrossRef] [PubMed]
- Mrowicka, M.; Mrowicki, J.; Kucharska, E.; Majsterek, I. Lutein and Zeaxanthin and Their Roles in Age-Related Macular Degeneration—Neurodegenerative Disease. Nutrients 2022, 14, 827. [Google Scholar] [CrossRef]
- Pandey, S.; Gupta, A.; Mahato, D.K.; Paul, V.; Tripathi, A.D.; Rasane, P.; Kumar, P.; Kamle, M.; Haque, S. Lutein and Zeaxanthin: Source, Extraction, Stability, Bioactivity, and Functional Food Applications. Curr. Pharm. Biotechnol. 2025, 26, 1873–4316. [Google Scholar] [CrossRef]
- Yu, C.; Hu, W.; Chen, L.; Ouyang, K.; Chen, H.; Lin, S.; Wang, W. Basic Amino Acids as Salt Substitutes in Low-Salt Gel-Based Meat Products: A Comprehensive Review of Mechanisms, Benefits, and Future Perspectives. Foods 2025, 14, 637. [Google Scholar] [CrossRef]
- Miyamoto, T.; Katane, M.; Saitoh, Y.; Sekine, M.; Homma, H. Identification and Characterization of Novel Broad-Spectrum Amino Acid Racemases from Escherichia coli and Bacillus subtilis. Amino Acids 2017, 49, 1885–1894. [Google Scholar] [CrossRef]
- Olin-Sandoval, V.; Yu, J.S.L.; Miller-Fleming, L.; Alam, M.T.; Kamrad, S.; Correia-Melo, C.; Haas, R.; Segal, J.; Peña Navarro, D.A.; Herrera-Dominguez, L.; et al. Lysine Harvesting Is an Antioxidant Strategy and Triggers Underground Polyamine Metabolism. Nature 2019, 572, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Korbecki, J.; Bosiacki, M.; Kupnicka, P.; Barczak, K.; Ziętek, P.; Chlubek, D.; Baranowska-Bosiacka, I. Biochemistry and Diseases Related to the Interconversion of Phosphatidylcholine, Phosphatidylethanolamine, and Phosphatidylserine. Int. J. Mol. Sci. 2024, 25, 10745. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Hu, J.; Li, L.; Xue, L.; Tian, J.; Zhang, T.; Yang, L.; Gu, Y.; Zhang, J. Integrating Lipidomics and Metabolomics to Reveal Biomarkers of Fat Deposition in Chicken Meat. Food Chem. 2025, 464, 141732. [Google Scholar] [CrossRef]
- Lin, F.D.; Smith, T.K.; Bayley, H.S. A Role for Tryptophan in Regulation of Protein Synthesis in Porcine Muscle. J. Nutr. 1988, 118, 445–449. [Google Scholar] [CrossRef]
- Wei, Y.; Zhou, Z.; Zhang, Z.; Zhao, L.; Li, Y.; Ma, Q.; Liang, M.; Xu, H. Effects of Dietary Tryptophan Levels on Growth Performance, Serotonin Metabolism, Brain 5-HT and Cannibalism Activities in Tiger Puffer, Takifugu rubripes Fingerlings. Aquaculture 2024, 593, 741313. [Google Scholar] [CrossRef]
- Baira, E.; Dagla, I.; Siapi, E.; Zoumpoulakis, P.; Simitzis, P.; Goliomytis, M.; Deligeorgis, S.G.; Skaltsounis, A.L.; Gikas, E. UHPLC-HRMS-Based Tissue Untargeted Metabolomics Study of Naringin and Hesperidin After Dietary Supplementation in Chickens. Food Chem. 2018, 269, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Newman, R.E.; Bryden, W.L.; Fleck, E.; Ashes, J.R.; Storlien, L.H.; Downing, J.A. Dietary n-3 and n-6 Fatty Acids Alter Avian Metabolism: Molecular-Species Composition of Breast-Muscle Phospholipids. Br. J. Nutr. 2002, 88, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.Y.; Gou, Z.Y.; Abouelezz, K.F.M.; Li, L.; Lin, X.J.; Fan, Q.L.; Wang, Y.B.; Cheng, Z.G.; Ding, F.Y.; Jiang, S.Q. Alterations of the Fatty Acid Composition and Lipid Metabolome of Breast Muscle in Chickens Exposed to Dietary Mixed Edible Oils. Animal 2020, 14, 1322–1332. [Google Scholar] [CrossRef] [PubMed]
Items | 1 to 28 Days of Age | 29 to 56 Days of Age |
---|---|---|
Ingredients | ||
Corn | 58.95 | 60.90 |
Soybean oil | 3.00 | 3.00 |
Soybean meal | 23.00 | 20.00 |
Cottonseed cake | 6.00 | 6.00 |
Rapeseed cake | 5.00 | 6.00 |
Limestone | 1.07 | 1.22 |
CaHPO4 | 1.90 | 1.80 |
NaCl | 0.37 | 0.37 |
Choline | 0.11 | 0.11 |
Vitamin premix 1 | 0.10 | 0.10 |
Mineral premix 2 | 0.50 | 0.50 |
Total | 100.00 | 100.00 |
Nutrient levels 2 % DM | ||
ME 3 (MJ/kg) | 12.26 | 12.64 |
Crude protein | 21.00 | 20.00 |
Crude fiber | 7.00 | 6.00 |
Calcium | 1.05 | 0.95 |
Total phosphorus | 0.52 | 0.47 |
Methionine + Cystine | 0.82 | 0.71 |
Items | Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | BS | RYC | MIX | |||
BW, g | ||||||
d1 | 40.21 | 40.24 | 40.04 | 39.89 | 0.084 | 0.438 |
d28 | 851.01 b | 911.17 a | 869.71 ab | 890.80 ab | 7.295 | 0.022 |
d56 | 2122.14 | 2046.10 | 2055.90 | 2098.10 | 25.692 | 0.696 |
1–28 days | ||||||
ADG, g/day | 29.15 b | 31.15 a | 29.63 ab | 30.69 ab | 0.254 | 0.021 |
ADFI, g/day | 58.47 | 59.60 | 57.89 | 59.12 | 3.088 | 0.998 |
FCR | 2.03 | 1.97 | 1.97 | 1.97 | 0.018 | 0.620 |
29–56 d | ||||||
ADG, g/day | 45.13 | 41.11 | 42.28 | 43.31 | 0.936 | 0.476 |
ADFI, g/day | 133.64 | 130.51 | 131.71 | 131.11 | 1.725 | 0.929 |
FCR | 3.26 | 3.41 | 3.42 | 3.32 | 0.088 | 0.910 |
1–56 days | ||||||
ADG, g/day | 36.65 | 35.55 | 35.43 | 36.49 | 0.572 | 0.826 |
ADFI, g/day | 96.05 | 95.05 | 94.80 | 95.12 | 3.014 | 0.999 |
FCR | 2.60 | 2.63 | 2.64 | 2.61 | 0.055 | 0.995 |
Items | Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | BS | RYC | MIX | |||
pH | ||||||
45 min | 5.81 | 6.04 | 6.16 | 5.97 | 0.111 | 0.742 |
24 h | 5.62 | 5.69 | 5.67 | 5.68 | 0.028 | 0.869 |
Meat color | ||||||
L* (lightness) | 52.84 | 55.69 | 51.96 | 52.73 | 0.838 | 0.438 |
a* (redness) | 2.73 | 2.69 | 3.26 | 3.41 | 0.120 | 0.059 |
b*(yellowness) | 13.54 | 14.90 | 13.64 | 15.41 | 0.499 | 0.481 |
Cooking loss, % | 18.88 | 17.95 | 18.60 | 17.58 | 1.137 | 0.980 |
Shear force, N | 44.69 a | 39.56 ab | 39.87 ab | 32.21 b | 1.352 | 0.020 |
Drip loss, % | 5.31 | 4.82 | 4.43 | 5.03 | 0.278 | 0.744 |
Water loss rate, % | 21.00 a | 18.17 ab | 19.67 ab | 15.23 b | 0.727 | 0.021 |
Items | Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | BS | RYC | MIX | |||
d28 | ||||||
CAT (U/mg prot) | 0.40 b | 1.42 a | 0.99 a | 1.21 a | 0.108 | 0.001 |
SOD (U/mg prot) | 7.90 b | 11.61 a | 8.98 b | 7.63 b | 0.412 | <0.001 |
GSH-Px (U/mg prot) | 0.94 | 1.16 | 1.48 | 1.08 | 0.120 | 0.430 |
T-AOC (mmol/mg prot) | 46.02 | 50.21 | 52.20 | 56.35 | 1.850 | 0.269 |
MDA (nmol/mg prot) | 0.15 | 0.16 | 0.13 | 0.15 | 0.014 | 0.960 |
d56 | ||||||
CAT (U/mg prot) | 0.82 | 0.88 | 0.78 | 0.65 | 0.067 | 0.720 |
SOD (U/mg prot) | 7.90 | 7.12 | 7.63 | 7.46 | 0.190 | 0.607 |
GSH-Px (U/mg prot) | 0.67 b | 1.15 a | 0.86 ab | 0.82 b | 0.054 | 0.003 |
T-AOC (mmol/mg prot) | 43.61 | 47.34 | 47.24 | 50.53 | 0.866 | 0.067 |
MDA (nmol/mg prot) | 0.20 | 0.13 | 0.14 | 0.16 | 0.024 | 0.737 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Su, X.; Lu, X.; Yang, G.; Zhang, G.; Chen, J.; Sun, J.; Gao, A. Effects of Bacillus subtilis and Rhodotorula Yeast Culture on the Growth Performance, Meat Quality, Antioxidant Capacity, and Serum Metabolites in Yellow-Feathered Broilers. Biology 2025, 14, 820. https://doi.org/10.3390/biology14070820
Wang K, Su X, Lu X, Yang G, Zhang G, Chen J, Sun J, Gao A. Effects of Bacillus subtilis and Rhodotorula Yeast Culture on the Growth Performance, Meat Quality, Antioxidant Capacity, and Serum Metabolites in Yellow-Feathered Broilers. Biology. 2025; 14(7):820. https://doi.org/10.3390/biology14070820
Chicago/Turabian StyleWang, Ke, Xiangtan Su, Xinyu Lu, Guang Yang, Gaowei Zhang, Jiwei Chen, Jiale Sun, and Aiqin Gao. 2025. "Effects of Bacillus subtilis and Rhodotorula Yeast Culture on the Growth Performance, Meat Quality, Antioxidant Capacity, and Serum Metabolites in Yellow-Feathered Broilers" Biology 14, no. 7: 820. https://doi.org/10.3390/biology14070820
APA StyleWang, K., Su, X., Lu, X., Yang, G., Zhang, G., Chen, J., Sun, J., & Gao, A. (2025). Effects of Bacillus subtilis and Rhodotorula Yeast Culture on the Growth Performance, Meat Quality, Antioxidant Capacity, and Serum Metabolites in Yellow-Feathered Broilers. Biology, 14(7), 820. https://doi.org/10.3390/biology14070820