Dead or Alive? Identification of Postmortem Blood Through Detection of D-Dimer
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Sample Collection
2.1.1. Postmortem Blood Samples
2.1.2. Antemortem Peripheral Blood Samples
2.1.3. Menstrual Blood Samples
2.2. Immunochromatographic Assay
2.2.1. Liquid Samples
2.2.2. Bloodstain Samples
2.3. Rapid Latex Agglutination Assay
2.3.1. Sample Preparation
2.3.2. Test Procedure
2.4. DNA Extraction
2.5. DNA Quantification
2.6. Nuclear DNA Profiling
3. Results
3.1. SERATEC® PMB Test
3.1.1. Postmortem Liquid Blood Samples
3.1.2. Antemortem Liquid Blood Samples
3.1.3. Menstrual Liquid Blood Samples
3.1.4. Postmortem Bloodstain Samples
3.1.5. Antemortem Bloodstain Samples
3.1.6. Menstrual Bloodstain Samples
3.2. DIMERTEST® Latex Assay
3.3. DNA Extraction and Quantification
3.4. STR Profiling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sijen, T.; Harbison, S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes 2021, 12, 1728. [Google Scholar] [CrossRef] [PubMed]
- An, J.H.; Shin, K.J.; Yang, W.I.; Lee, H.Y. Body fluid identification in forensics. BMB Rep. 2012, 45, 545–553. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, G.; Lednev, I.K. In Situ Identification of Semen Stains on Common Substrates via Raman Spectroscopy. J. Forensic Sci. 2015, 60, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Virkler, K.; Lednev, I.K. Analysis of body fluids for forensic purposes: From laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci. Int. 2009, 188, 1–17. [Google Scholar] [CrossRef]
- Sirker, M.; Schneider, P.M.; Gomes, I. A 17-month time course study of human RNA and DNA degradation in body fluids under dry and humid environmental conditions. Int. J. Leg. Med. 2016, 130, 1431–1438. [Google Scholar] [CrossRef]
- Sakurada, K.; Watanabe, K.; Akutsu, T. Current Methods for Body Fluid Identification Related to Sexual Crime: Focusing on Saliva, Semen, and Vaginal Fluid. Diagnostics 2020, 10, 693. [Google Scholar] [CrossRef]
- Kader, F.; Ghai, M.; Olaniran, A.O. Characterization of DNA methylation-based markers for human body fluid identification in forensics: A critical review. Int. J. Leg. Med. 2020, 134, 1–20. [Google Scholar] [CrossRef]
- Holtkotter, H.; Schwender, K.; Wiegand, P.; Peiffer, H.; Vennemann, M. Improving body fluid identification in forensic trace evidence-construction of an immunochromatographic test array to rapidly detect up to five body fluids simultaneously. Int. J. Leg. Med. 2018, 132, 83–90. [Google Scholar] [CrossRef]
- Pandeshwar, P.; Das, R. Role of oral fluids in DNA investigations. J. Forensic Leg. Med. 2014, 22, 45–50. [Google Scholar] [CrossRef]
- Adam, S.S.; Key, N.S.; Greenberg, C.S. D-dimer antigen: Current concepts and future prospects. Blood 2009, 113, 2878–2887. [Google Scholar] [CrossRef]
- Riley, R.S.; Gilbert, A.R.; Dalton, J.B.; Pai, S.; McPherson, R.A. Widely Used Types and Clinical Applications of D-Dimer Assay. Lab. Med. 2016, 47, 90–102. [Google Scholar] [CrossRef]
- Khalafallah, A.; Jarvis, C.; Morse, M.; Albarzan, A.-M.; Stewart, P.; Bates, G.; Hayes, R.; Robertson, I.; Seaton, D.; Brain, T. Evaluation of the innovance d-dimer assay for the diagnosis of disseminated intravascular coagulopathy in different clinical settings. Clin. Appl. Thromb. Hemost. 2014, 20, 91–97. [Google Scholar] [CrossRef] [PubMed]
- van der Hulle, T.; Tan, M.; Exter, P.L.D.; Mol, G.C.; del Sol, A.I.; van de Ree, M.; Huisman, M.V.; Klok, F.A. Selective D-dimer testing for the diagnosis of acute deep vein thrombosis: A validation study. J. Thromb. Haemost. 2013, 11, 2184–2186. [Google Scholar] [CrossRef]
- Sikora-Skrabaka, M.; Skrabaka, D.; Ruggeri, P.; Caramori, G.; Skoczyński, S.; Barczyk, A. D-dimer value in the diagnosis of pulmonary embolism—May it exclude only? J. Thorac. Dis. 2019, 11, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Wiewel-Verschueren, S.; Knol, H.M.; Lisman, T.; Bogchelman, D.H.; Kluin-Nelemans, J.C.; van der Zee, A.; Mulder, A.B.; Meijer, K. No increased systemic fibrinolysis in women with heavy menstrual bleeding. J. Thromb. Haemost. 2014, 12, 1488–1493. [Google Scholar] [CrossRef]
- Beller, F.K. Observations on the clotting of menstrual blood and clot formation. Am. J. Obstet. Gynecol. 1971, 111, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Holtkotter, H.; Filho, C.R.D.; Schwender, K.; Stadler, C.; Vennemann, M.; Pacheco, A.C.; Roca, G. Forensic differentiation between peripheral and menstrual blood in cases of alleged sexual assault-validating an immunochromatographic multiplex assay for simultaneous detection of human hemoglobin and D-dimer. Int. J. Leg. Med. 2018, 132, 683–690. [Google Scholar] [CrossRef]
- Miyaishi, S.; Kitao, T.; Yamamoto, Y.; Ishizu, H.; Matsumoto, T.; Mizutani, Y.; Heinemann, A.; Püschel, K. Identification of menstrual blood by the simultaneous determination of FDP-D dimer and myoglobin contents. Nihon Hoigaku Zasshi 1996, 50, 400–403. [Google Scholar]
- Takeichi, S.; Wakasugi, C.; Shikata, I. Fluidity of cadaveric blood after sudden death: Part I. Postmortem fibrinolysis and plasma catecholamine level. Am. J. Forensic Med. Pathol. 1984, 5, 223–227. [Google Scholar] [CrossRef]
- Rutty, G.N.; Woolley, A.; Brookfield, C.; Shepherd, F.; Kitchen, S. The PIVKA II test. The first reliable coagulation test for autopsy investigations. Int. J. Leg. Med. 2003, 117, 143–148. [Google Scholar] [CrossRef]
- Sakurada, K.; Sakai, I.; Sekiguchi, K.; Shiraishi, T.; Ikegaya, H.; Yoshida, K.-I. Usefulness of a latex agglutination assay for FDP D-dimer to demonstrate the presence of postmortem blood. Int. J. Leg. Med. 2005, 119, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Elms, M.J.; Bunce, I.H.; Bundesen, P.G.; Rylatt, D.B.; Webber, A.J.; Masci, P.P.; Whitaker, A.N. Rapid detection of cross-linked fibrin degradation products in plasma using monoclonal antibody-coated latex particles. J. Clin. Pathol. 1986, 85, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Konrad, H.; Hartung, B.; Poetsch, M. (Un)Reliable detection of menstrual blood in forensic casework—Evaluation of the Seratec(R) PMB test with mock samples. Int. J. Leg. Med. 2023, 138, 781–786. [Google Scholar] [CrossRef]
- Tita-Nwa, F.; Bos, A.; Adjei, A.; Ershler, W.B.; Longo, D.L.; Ferrucci, L. Correlates of D-dimer in older persons. Aging Clin. Exp. Res. 2010, 22, 20–23. [Google Scholar] [CrossRef]
- SERATEC. 2019. Available online: https://www.seratec.com/pmb-test (accessed on 27 June 2025).
- Zapico, S.C.; Roca, G. Making the Most of Lateral Flow Immunochromatographic Tests: An Efficient Protocol to Recover DNA. Methods Protoc. 2024, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, C.; Gomez-Tamayo, J.C.; Nebel, J.C.; Pardo, L.; Gonzalez, A. Identifying human diamine sensors for death related putrescine and cadaverine molecules. PLoS Comput. Biol. 2018, 14, e1005945. [Google Scholar] [CrossRef]
- Boehringer, H.R.; O’Farrell, B.J. Lateral Flow Assays in Infectious Disease Diagnosis. Clin. Chem. 2021, 68, 52–58. [Google Scholar] [CrossRef]
- Akashi, Y.; Kiyasu, Y.; Takeuchi, Y.; Kato, D.; Kuwahara, M.; Muramatsu, S.; Ueda, A.; Notake, S.; Nakamura, K.; Ishikawa, H.; et al. Evaluation and clinical implications of the time to a positive results of antigen testing for SARS-CoV-2. J. Infect. Chemother. 2022, 28, 248–251. [Google Scholar] [CrossRef]
- Bar, W.; Kratzer, A.; Machler, M.; Schmid, W. Postmortem stability of DNA. Forensic Sci. Int. 1988, 39, 59–70. [Google Scholar] [CrossRef]
- Rahikainen, A.L.; Palo, J.U.; de Leeuw, W.; Budowle, B.; Sajantila, A. DNA quality and quantity from up to 16 years old post-mortem blood stored on FTA cards. Forensic Sci. Int. 2016, 261, 148–153. [Google Scholar] [CrossRef]
- Carrasco, P.; Inostroza, C.; Didier, M.; Godoy, M.; Holt, C.L.; Tabak, J.; Loftus, A. Optimizing DNA recovery and forensic typing of degraded blood and dental remains using a specialized extraction method, comprehensive qPCR sample characterization, and massively parallel sequencing. Int. J. Leg. Med. 2020, 134, 79–91. [Google Scholar] [CrossRef] [PubMed]
Antemortem Sample | Gender | Anticoagulant in the Collection Tube | SERATEC® PMB Test | |
---|---|---|---|---|
D-Dimer | Hemoglobin | |||
A011 | F | None | Negative | Positive |
A012 | F | None | Negative | Positive |
A013 | F | EDTA | Negative | Positive |
A014 | M | EDTA | Negative | Positive |
A015 | F | EDTA | weak positive | Positive |
A016 | M | EDTA | Negative | Positive |
A017 | Pooled | EDTA | Negative | Positive |
A018 | Pooled | EDTA | Negative | Positive |
A019 | Pooled | EDTA | Negative | Positive |
A020 | Pooled | EDTA | Negative | Positive |
A021 | Pooled | EDTA | Negative | Positive |
Postmortem Sample | PMB Test | |||||
---|---|---|---|---|---|---|
Trial 1 | Trial 2 | Trial 3 | ||||
Hemoglobin | D-Dimer | Hemoglobin | D-Dimer | Hemoglobin | D-Dimer | |
P001 | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ |
P002 | Weak+ | Strong+ | Weak+ | Strong+ | Weak+ | Strong+ |
P003 | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ |
P004 | Weak+ | Strong+ | Weak+ | Strong+ | Weak+ | Strong+ |
P005 | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ |
P006 | Moderate+ | Moderate+ | Moderate+ | Moderate+ | Moderate+ | Moderate+ |
P007 | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ |
P008 | Weak+ | Strong+ | Weak+ | Strong+ | Weak+ | Strong+ |
P009 | Weak+ | Strong+ | Weak+ | Strong+ | Weak+ | Strong+ |
P010 | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ |
P011 | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ |
P012 | Weak+ | Strong+ | Weak+ | Strong+ | Weak+ | Strong+ |
P013 | Weak+ | Strong+ | Weak+ | Strong+ | Weak+ | Strong+ |
P014 | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ |
P015 | Weak+ | Strong+ | Weak+ | Strong+ | Weak+ | Strong+ |
P016 | Moderate+ | Strong+ | Strong+ | Strong+ | Moderate+ | Strong+ |
P017 | Moderate+ | Moderate+ | Moderate+ | Moderate+ | Moderate+ | Moderate+ |
P018 | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ |
P019 | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ |
P020 | Moderate+ | Strong+ | Moderate+ | Strong+ | Moderate+ | Strong+ |
Postmortem Sample | PMB Test | |||||
---|---|---|---|---|---|---|
Trial 1 | Trial 2 | Trial 3 | ||||
Hemoglobin | D-Dimer | Hemoglobin | D-Dimer | Hemoglobin | D-Dimer | |
P002-Dil | Strong+ | Strong+ | Moderate+ | Strong+ | Strong+ | Strong+ |
P004-Dil | Moderate+ | Strong+ | Moderate+ | Strong+ | Moderate+ | Strong+ |
P008-Dil | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ |
P009-Dil | Moderate+ | Strong+ | Moderate+ | Strong+ | Moderate+ | Strong+ |
P012-Dil | Moderate+ | Moderate+ | Moderate+ | Strong+ | Moderate+ | Strong+ |
P013-Dil | Moderate+ | Moderate+ | Moderate+ | Moderate+ | Moderate+ | Moderate+ |
Menstrual Blood Sample | PMB Test | |||||
---|---|---|---|---|---|---|
Trial 1 | Trial 2 | Trial 3 | ||||
Hemoglobin | D-Dimer | Hemoglobin | D-Dimer | Hemoglobin | D-Dimer | |
M001-Day3 | Weak+ | Weak+ | Weak+ | Weak+ | Weak+ | Weak+ |
M001-Day3-Diluted | Weak+ | Weak+ | Weak+ | Weak+ | Moderate+ | Moderate+ |
M001-Day4 | Moderate+ | Weak+ | Moderate+ | Weak+ | Moderate+ | Weak+ |
M002-Day2 | Strong+ | Negative | Strong+ | Negative | Strong+ | Negative |
M002-Day3 | Strong+ | Negative | Strong+ | Negative | Strong+ | Negative |
M003-Day2 | Strong+ | Weak+ | Strong+ | Weak+ | Strong+ | Weak+ |
M003-Day3 | Strong+ | Weak+ | Strong+ | Weak+ | Strong+ | Negative |
M004-Day2 | Strong+ | Weak+ | Strong+ | Weak+ | Strong+ | Weak+ |
M004-Day3 | Moderate+ | Moderate+ | Moderate+ | Moderate+ | Moderate+ | Moderate+ |
M005-Day1 | Strong+ | Moderate+ | Strong+ | Moderate+ | Strong+ | Moderate+ |
M005-Day3 | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ | Strong+ |
Antemortem Sample | Approx. D-Dimer (mg/L) | Postmortem Sample | Approx. D-Dimer (mg/L) | Menstrual Sample | Approx. D-Dimer (mg/L) |
---|---|---|---|---|---|
A001 | 0.8–1.6 | P018 | 51.2–102.4 | M001 | 51.2–102.4 |
A002 | 0.4–0.8 | P037 | 12.8–25.6 | M002 | 12.8–25.6 |
A003 | <0.2 | P029 | 25.6–51.2 | M008 | 51.2–102.4 |
A004 | <0.2 | P024 | 12.8–25.6 | M003 | 25.6–51.2 |
A005 | <0.2 | P028 | 12.8–25.6 | M004 | 12.8–25.6 |
A006 | <0.2 | P017 | 6.4–12.8 | ||
A007 | <0.2 | P004 | 12.8–25.6 | ||
A009 | <0.2 | P040 | 12.8–25.6 | ||
A010 | <0.2 | P026 | 6.4–12.8 | ||
P010 | 25.6–51.2 |
Sample | DNA Concentration (ng/µL) | Degradation Ratio | IPC Shift |
---|---|---|---|
P001 | 12.0279 | 0.98 | 0.05 |
P002 | 0.2939 | 1.61 | −0.14 |
P003 | 6.9269 | 7.2 | 0.02 |
P004 | 2.1811 | 11.78 | −0.25 |
P005 | 0.2146 | 11.73 | −0.62 |
P006 | 0.0674 | 3.72 | −0.57 |
P007 | 1.3605 | 2.21 | −0.21 |
P008 | 0.8472 | 1.4 | −0.26 |
P009 | 1.2457 | 2.34 | −0.02 |
P010 | 11.9166 | 2.28 | 0.01 |
P022 | 0.0485 | 0 | −0.10 |
P029 | 0.0873 | 1.26 | −0.19 |
P032 | Undetermined | Undetermined | −0.4 |
P037 | 2.1875 | 1.34 | −0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brodeur, A.N.; Tsai, T.-H.; Javan, G.T.; Bell, D.; Stadler, C.; Roca, G.; Zapico, S.C. Dead or Alive? Identification of Postmortem Blood Through Detection of D-Dimer. Biology 2025, 14, 784. https://doi.org/10.3390/biology14070784
Brodeur AN, Tsai T-H, Javan GT, Bell D, Stadler C, Roca G, Zapico SC. Dead or Alive? Identification of Postmortem Blood Through Detection of D-Dimer. Biology. 2025; 14(7):784. https://doi.org/10.3390/biology14070784
Chicago/Turabian StyleBrodeur, Amy N., Tai-Hua Tsai, Gulnaz T. Javan, Dakota Bell, Christian Stadler, Gabriela Roca, and Sara C. Zapico. 2025. "Dead or Alive? Identification of Postmortem Blood Through Detection of D-Dimer" Biology 14, no. 7: 784. https://doi.org/10.3390/biology14070784
APA StyleBrodeur, A. N., Tsai, T.-H., Javan, G. T., Bell, D., Stadler, C., Roca, G., & Zapico, S. C. (2025). Dead or Alive? Identification of Postmortem Blood Through Detection of D-Dimer. Biology, 14(7), 784. https://doi.org/10.3390/biology14070784