Next Article in Journal
Unveiling the Defenses: A Current and Comprehensive Review of Coleoptera Carabidae Strategies
Next Article in Special Issue
Mechanisms of Zooplankton Community Assembly and Their Associations with Environmental Drivers in Arid-Region Reservoirs of Northwest China
Previous Article in Journal
Response of cbbL Carbon-Sequestering Microorganisms to Simulated Warming in the River Source Wetland of the Wayan Mountains
Previous Article in Special Issue
Linking Ecological Stoichiometry to Biomass Allocation in Plants Under Cadmium and Petroleum Stress in the Yellow River Delta
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Vegetation Analysis of Wetland Ecosystems in Southern Turkey Using the Fuzzy Means Method

1
Department of Biology, Faculty of Arts and Sciences, Cukurova University, Adana 01250, Turkey
2
Department of Tourism Management, Kozan Faculty of Business, Cukurova University, Adana 01250, Turkey
Biology 2025, 14(6), 710; https://doi.org/10.3390/biology14060710
Submission received: 19 March 2025 / Revised: 21 May 2025 / Accepted: 6 June 2025 / Published: 17 June 2025
(This article belongs to the Special Issue Wetland Ecosystems (2nd Edition))

Simple Summary

In this study, the vegetation of the Göksu Delta Special Environmental Protection Area, one of Turkey’s most important wetlands, was investigated. The delta natural area is divided into three main habitat groups: aquatic, sand dune, and halophytic. During research in the delta, 279 samples were examined, and 29 associations were identified, 16 of which are new to science. Of these, aquatic vegetation is represented by 4 associations, sand dune vegetation by 12 associations, and halophytic vegetation by 13 associations. Three of the endemic and rare plants discovered during the study were recorded as new alliance characteristics. The delta is an international RAMSAR site. The delta, one of the most important wetlands in the Middle East and Europe, is one of Turkey’s most important sand dune areas, a habitat for halophytic plants, an important bird and plant area, and an important breeding ground for turtles. This research will form the basis for environmental protection and land use planning studies in the natural areas of the Göksu Delta Special Environmental Protection Area. This research is important in terms of protecting the region from environmental pollution and ecological degradation, and ensuring that natural resources and historical remains are preserved for future generations.

Abstract

In this study, the vegetation of the natural area of the Göksu Delta Special Environmental Protection Agency (SEPA), one of Turkey’s most important wetlands, is researched. The importance of this study in terms of contributing to environmental protection and land use planning studies reveals that this natural area, where rare ecosystems are found, has started to degrade and disappear under human influence. This study was conducted because the area is not only a designated RAMSAR wetland (a wetland site designated of international importance especially for the Waterfowl Habitat under the Ramsar Convention) but also includes nearby residential developments. With this study, the vegetation of the area was studied to determine the syntaxonomic units across different habitats. The natural area of Göksu Delta is divided into three main habitat groups: aquatic, sand dune, and halophytic. In the research, the Braun-Blanquet method was used. During the research in the Göksu Delta, 279 sample areas were surveyed. The data were analysed according to the fuzzy means cluster method. During the investigation, 29 associations were identified, and 16 of them are considered a new finding for science. These 29 associations can be classified as follows: aquatic vegetation is represented with four associations (three of them belong to Phragmito-Magnocaricetea and one of them belongs to Potametea classes), sand dune vegetation is represented with 12 associations (belonging to Ammophiletea Br.-Bl. & Tüxen ex Westhoff, Dijk, & Passchier 1946 class), and halophytic vegetation is represented with 13 associations (six of them belong to Salicornietea fruticosae Br.-Bl. & Tüxen ex A. & O. Bolòs 1950, six of them belong to Juncetea maritimi Br.-Bl. in Br.-Bl., Roussine & Nègre 1952, and one of them belong to Molinio-Juncetea Br.-Bl. (1931) 1947 classes). Three (Onopordum boissieri, Ambrosia maritima, and Chlamydophora tridentata) of the endemics and rare plants that were explored during the study were recorded as new alliance characteristics.

1. Introduction

The Göksu Delta SEPA is one of the most important RAMSAR wetlands in the Middle East and Europe. SEPA, as an obligation imposed by the Convention for the Protection of the Mediterranean Sea against Pollution (Barcelona), these are the areas that are of ecological importance in our country and the world and are under special protection by the Decree of the Council of Ministers because they are at risk of deterioration or extinction due to pressures such as industry, tourism, and construction. The research area is a turtle breeding zone, a habitat of halophytic plants, and one of Turkey’s most significant sand dunes. For example, drainage and watering channels are important habitats for aquatic plants in small and large salty and freshwater lakes, such as Akgöl and Paradeniz. Therefore, the research area includes SEPA, the RAMSAR wetland, the Key Biodiversity Area, Important Bird Area, Important Plant Area, Wildlife Protection and Improvement Area, Sensitive Zone, and the First Degree Natural Site Area.
In terms of plant geography, Göksu Delta generally belongs to the Tethys sub-kingdom, which is a border and migration area of Boreal and Tropical floras, which belong to the Holarctic kingdom [1]. Göksu Delta is located in the East Mediterranean subregion, part of the Mediterranean region, one of the four regions of the Tethys sub-kingdom [1]. Since the Göksu Delta is located on the coastline, there is a lot of anthropogenic pressure and destruction.
Despite the forest vegetation of the Mediterranean region being very well studied, aquatic, sand dune, and halophytic vegetation in its wetlands are not well-investigated [2]. From 1977 to 1999, the flora and vegetation of some areas in the Göksu Delta SEPA were already studied. According to the literature, there are three articles on the aquatic, sand dune, and halophytic vegetation in the Göksu Delta SEPA area. These studies, such as those by Uslu (1977) [3], Gehu et al. (1989) [4], and Gürkan et al. (1999) [5], are considered important ones. The following works of literature were used for the nomenclature of the associations and syntaxonomic units [6]. Although the dominant species are the same in these three articles, the associations with different floristic composition, soil, and water characteristics are named as new. These studies on the vegetation of the research area can be listed as follows: Bekat and Seçmen (1984, 1988) [7,8], Çakan et al. (2003) [9], Çetik (1982) [10], Gehu and Uslu (1989) [11], Hamzaoğlu and Aksoy (2006) [12], Kavak (2006) [13], Kılınç et al. (1992) [14], Kılınç and Karaer (1995) [15], Küçüködük (1987) [16], Öner et al. (1973a,b) [17,18], Özkanca (1989) [19], Özen and Kılınç (1995) [20], Seçmen (1977) [21], Seçmen and Leblebici (1978, 1980, 1982, 1984, 1987, 1991, 1992, 1994, 1996) [22,23,24,25,26,27,28,29,30], Seçmen et al. (1986) [31], Yurdakulol (1974) [32], Yurdakulol et al. (1996) [33], Rivas-Martinez (1997) [34], Rivas-Martinez et al. (1999, 2001) [35,36]. Coastal sand dunes are the most threatened ecosystems. In light of the limited number of vegetation and habitat classification studies that have employed the fuzzy means method, this study stands to make a significant contribution to the extant literature [37,38].
In this study, the vegetation of the Göksu Delta SEPA is investigated. The vegetation study was carried out according to the sample area method of Braun-Blanquet [39]. Göksu Delta SEPA is categorised within the NATURA2000 habitat classification, which subdivides the area into three distinct groups: aquatic, dune, and halophytic. The fuzzy means method was utilised to calculate the similarity percentages of water and soil samples, and habitat subgroups were determined [40]. At the end of the study, the plant associations, which spread to different habitats in the area, and their syntaxonomic upper categories were determined.
Given the significance of this study area as a RAMSAR wetland and its current state of anthropogenic disruption, primarily characterised by human settlements, it has been hypothesised that the consequences of the research will contribute significantly to the advancement of environmental protection and land use planning studies.

2. Materials and Methods

The research area covers the natural habitats of Göksu Delta SEPA. The area is located in the C4 and C5 grids of Davis (Figure 1) [41]. The altitude of the area varies between 0 and 8 m. The Göksu Delta is formed by sediments carried by the Göksu River, 150 km2 (relatively without tide) and a delta type that extends to the sea. The west and east coasts of the delta are affected by water coming from the Mediterranean Sea. The research area has permanent water masses, namely, the Paradeniz Lagoon, Kuğu Lake, Ak Lake, and Arapalanı Lake. The geological structures in the research area mostly consist of clay, sand, and gravel. Under normal conditions, there is a lot of sediment coming from the Göksu River; however, the amounts brought by winds and streams are very small [5]. The morphology of the delta is shaped by the changes in the flow direction of the river, winds, sea streams, and strong winds. The strongly blowing winds are the main cause of sand dune formations at the coastline [11]. The research area is still undergoing changing geomorphologic processes. The area has various soil types: Xerochrept, Haloquept, Xerofluvent, and Fluvaquent [42]. Alluvial soil is found throughout most of the delta. The research area is located in the semi-arid soft Mediterranean bioclimatic region according to the Emberger method [43,44].
Habitats in the research area are classified according to the NATURA2000 criteria [46,47]. To determine the vegetation in different habitats, the Braun-Blanquet (1964) method was used [48]. The sampling areas in different habitats were obtained using the “minimal sample area” method of Braun-Blanquet (1964), considering the principle of the homogeneity of the dominant species, floristic composition, and ecology. The sample areas were determined as 25 and 100 m2 in aquatic habitats, 16 and 50 m2 in dune habitats, and 9 and 100 m2 in halophyte habitats. Instead of the Braun-Blanquet cover-abundance scale, the Barkman cover-abundance scale was utilised, as it is a more detailed scale and may provide more information for comparing sample areas [49].
Soil and water samples representing various associations across different seasons were collected during sampling studies conducted in 2004 and 2005. Soil samples, which were collected from the area, were analysed according to the following 12 variables: saturation%, total salt%, pH value, lime%, useful P2O5, organic matter, texture analysis, colour value, K2O, sand%, clay%, and silt%. Among the analyses, saturation% was determined by saturating the soil with distilled water and expressing the result as%. Total salt% was determined by using the Saikl Survey Staff (1951) chart by measuring the electrical conductivity in water-saturated soil with a conductivity instrument [50]. pH was determined by measuring with a digital pH meter. Lime% was determined by the Volumetric Calcimetry method. Organic matter was determined by the Walkley–Black method of Richards (1954) [50]. Beneficial P2O5 was determined from the standard scale via spectrophotometer readings using the method of Olsen et al. Beneficial K2O5 analysis was determined by Flame Photometer readings using the method of Richards (1954) [51]. Texture analysis was performed using the hydrometer method [52]. The sand%, clay%, and silt% were calculated using the results obtained. In order to determine the texture fractions in the sandy samples, sand sizing was performed using sieve analysis with 17 different particle sizes between 75,000 µ and 74 µ. The results of this analysis were evaluated according to the texture fraction scale made according to the German system [53]. According to this scale, sand sizes were divided into three groups as coarse, medium, and fine. In different seasons, water samples were collected from the temporary and permanent wetlands in the research area. On the other hand, 19 different analyses, which are colour–taste–odour value, amount of sediment, pH value, conductivity (25 °C), salt, NA, Ca+2 + Mg+2, Ca, Mg, total cation, CO3, HCO3, Cl, total anion, Na%, SAR, and RSC were carried out on the water samples collected in the research area. As a result of these analyses, the seasonal water changes of each locality were revealed. Among the physical analyses, colour was determined by using colour darkness standards prepared with a Hexachloraplatinate-Cobalt chloride solution. The odour test was performed by sense of smell immediately after sampling. The amount of sediment and turbidity was determined by looking at the condition of the sample. Among the chemical analyses, pH was measured with a digital pH meter. EC (25 °C), which is a conductivity analysis, was calculated by reading with the electrode of the conductivity device. Total salt content was calculated using the value read by the conductance device. Total hardness determination (Ca+2 + Mg+2) was performed using an Eriochramblack indicator, Ca+2 determination was performed using a Murexide and salt indicator, Cl2 determination was performed using a Potassium Chromate indicator, HCO3 determination was performed using a methyl orange indicator, and Nitrite determination was performed using a Trammosdorf indicator. CO3 determination was performed in samples with a pH value greater than 8, and a Phenolphthalein indicator was used. As a result of all these analyses, Cation sum, Anion sum, Mg, Na and Na% determination, and SAR and RSC calculations were made using the values obtained.
In the floristic evaluation of syntaxa, the following features were used: characteristics and distinctive species, dominance, frequently existing species, endemicity, threatened categories, life duration, structure, life form, floristic element, and availability. The ones that are determinative and descriptive for the association were selected and evaluated. The presence of the species forming the identified associations was found by calculating the % frequency with the Braun-Blanquet presence-constancy five-grade scale [54]. Accordingly, constant and rare species were identified in sampling areas. The identified syntaxa were then classified as similar or dissimilar to the syntaxa in other researchers’ studies. The similar ones were classified in chronological order. The dissimilar ones were identified geographically by searching first the places closest to the study area, then distant places and finally other countries. The floristic, habitat, and ecological characteristics of these new associations were compared with other associations. The similarity ratios of the new associations with other associations were calculated according to the “Sorenson similarity index”. The floristic similarity rates of these new associations ranged from 2.5% to 44.4%. Although some of the associations have high similarity rates, their characteristic and distinctive species are different, and only the dominant species are similar.
The syntaxonomic categories of the associations were determined according to Rivas-Martinez (1997) [34], Rivas-Martinez et al. (1999, 2001) [35,36], Braun-Blanquet et al. (1951) [39], and the Fransa Tela Botanica group (Assosiation, 2000) [55]. The similarity percentages of the features of floristic, soil, and water sampling areas were calculated according to three clustered methods in the fuzzy means, since there are three main habitat groups (aquatic, sand dune, and halophytic). The associations were determined both according to the result of the fuzzy means calculations and the ecological data collected from the area. Those associations obtained from the research, which have floristic and ecological differences compared to the associations listed in the literature, are considered new and presented. The new associations of the research were named according to rules indicated in the “International Code of Phytosociological Nomenclature” [56].

3. Results and Discussion

Göksu Delta SEPA is divided into three main habitat groups, which are aquatic, sand dune, and halophytic, according to the NATURA2000 habitat classification. These main habitat groups were also divided into 12 subgroups, of which 279 sample areas were surveyed. According to the kind of habitat, water and/or soil samples were collected from the sample areas where the dominating species are different. Based on the above-mentioned 12 soil analyses, similarity percentages and cluster groups were determined using the fuzzy means method according to the kind of habitat (Table 1). The fuzzy means method was utilised as a support tool for the NATURA2000 classification. The habitat groups, as determined by the NATURA2000 classification, were then overlapped with the fuzzy mean method triple clustering method. It was determined that the associations observed within these habitats were consistent with those established through the Braun-Blanquet method.
Similar to soil analysis, similarity percentages and cluster groups were determined after completing the 19 different analyses on water samples (Table 2).
According to the Braun-Blanquet method, the tables of sampling areas were prepared while in the field. After completing the analysis, the associations and syntaxonomic units were determined by taking into consideration ecological appraisals and literature data. In the final stage, 29 associations were determined where aquatic, sand dunes, and halophytic vegetation were represented by 4, 12, and 13 associations, respectively. The outcome of the research on vegetation can be seen from Table A1 given in the paper in Appendix A.

3.1. Aquatic Vegetation

In the aquatic habitats of the research area, 40 sampling areas were surveyed (Table 3). Consequently, four associations were determined in this vegetation, as one can see from Table A1.
Potamogetono pectinati-Ceratophylletum demersi (Hild & Rehnelt 1965) Passarge 1995, one of the associations detected in the in-channel habitats, is located in places where the water is deeper with a strong current than the other association detected in the canal (Figure 2a). Furthermore, the second association, Ludwigio stoloniferae-Nasturtietum officinalis ass. nov., is located in areas less exposed to water movement, where the depth is less (Figure 2b). Ludwigio stoloniferae-Nasturtietum officinalis ass. nov. has a relatively high dominant coverage rate, which varies between 80 and 100%. According to the literature review, it has been observed that the association, which consists of the dominant species Nasturtium officinale, has very different floristic and ecological compositions. That is why the similarity between the literature and the field study is only the existence of dominant species. In the in-lake vegetation, Ruppio cirrhosae-Schoenoplectetum littoralis ass. nov. association is an association (Figure 2c) that occurs only in the in-lake vegetation at depths up to 80 cm, in places with slightly basic pH, medium–high saline water (brackish), not rich in plant diversity, and 86% of which are geophytes. This association can only be seen in the lakes in which the variety of floristic composition is not so rich, of which 86% belongs to geophytes. Because of the features mentioned above, this association is different from the other associations in which dominant species are the same [9,30]. The dominant species of the Bolboscoeno maritimi var. cymos-Pragmitetum australis Borhidi & Balog 1970 association (Phragmites australis), which occurs in river and lakeside vegetation, is a Euro-Siberian floristic element common in aquatic habitats (Figure 2d).

3.2. Sand Dunes Vegetation

In the sand dune of the research area, 89 sampling areas were surveyed, and these sampling areas were grouped into 12 associations (Table 4). Nearly half of the taxa, which take place in this vegetation, are Mediterranean floristic elements. In most of the associations in the dune vegetation, endemic and rare plants are present as dominant, characteristic-distinctive, or associated species with more or less abundance. In this research, Ambrosia maritima (threatened categories EN) and endemic Onopordum boissieri (threatened categories LR(nt)) species are described as characteristic of the alliance involving Euphorbio-Ammophilion arundinaceae Br.-Bl. (1931) 1933 em. J.M. et J. Gehu 1988. The names of rare plant species and their threatened categories are as follows: Hypericum polyphyllum subsp. polyphyllum LR(nt), Arum dioscoridis var. dioscoridis VU, Bromus psammophilus CR, Cyprina gracilis EN, Zygophyllum album VU, Pancratium maritimum EN, Limonium graecum var. graecum, and Alhagi manniferae VU. Cakilo maritimae-Zygophylletum albi Çakan, Düzenli, & Karaömerlioğlu 2003, Cypero mucronati-Agropyretum juncei Kühnholtz ex Br.-Bl. 1933, Eryngio maritimi-Pancratietum maritimi Çakan, Düzenli, & Karaömerlioğlu 2003 and Ambrosio maritimae-Pancratietum maritimi ass. nov. associations were identified on the shifting coastal dunes vegetation (Figure 3a–c). The distinctive feature of the dominant-characteristic-distinctive species of the Ambrosio maritimae-Pancratietum maritimi ass. nov. association is that they are found in the EN endangered category on the northern and southern coasts of Turkey, and at the same time, their cover and abundance are high (Figure 3d). In addition, although the characteristic classes of these associations are the same (Ammophiletea), there are many representatives of the Stellerietea media class in this association. This association is common on protected plains that exist behind the shifting dune hills. It was noticed that floristic and ecological similarities between the association and the others in which dominant species are the same are low [3,9,15].
In fixed or semi-shifting sand dune vegetation, Cypero capitati-Trachomitetum veneti ssp. sarmatiense ass. nov. association’s soils are slightly salty, and since it is under the influence of wind, its quantity of organic material is low (Figure 4a). The dominant species in this association is scrub, under which there is a rich herb layer with 80% coverage. The floristic and ecological similarities between the association and the others in which the dominant species are the same are low [9]. The Echio angustifolii-Ononidetum natrix ssp. hispanicae ass. nov. association exists on the sand dune hills and plains, which are 1.5 and 2 m in height (Figure 4b). The associations that belong to this vegetation prefer basic soil the most. It was noticed that floristic and ecological similarities between the association and the others in which the dominant species are the same are low [3]. Parapholido incurvae-Thymelaeetum hirsutae ass. nov. association is identified on the flats as high as 80 cm, which is far from the effect of the sea (Figure 4c). It was noticed that the soil is sandy; however, it has the lowest sand percentage with respect to the other associations. In the association, dominant class characteristics exist, and Salicornieteae fruticosae and Stellerietea media class characteristics, where saltiness is high, are also seen. It was noticed that floristic and ecological similarities between the association and the others in which dominant species are the same are low [9].
Sorgho halepense var. halepense-Myrtetum communis ssp. communis ass. nov. association is identified abundantly in sand dune shrub vegetation (Figure 4d). This association is distributed with a high abundance and cover (85–100%), especially on sand dunes under the influence of moist winds coming from the sea. It was noticed that floristic and ecological similarities between the association and the others in which dominated species are the same are extremely low (Table 5).
In the research area concerning Polygono equisetiformis-Viticetum agni-casti ass. nov., an association was identified not only on the low flats but also on the highest (8 m) sand dunes (Figure 5a). These hills are different from other associations in that they possess tiny sands and an abundance of organic materials. Coverage is as high as 80 to 100%, and Populus euphratica constitutes the tree layer (Figure 5b). The syntax of this association is not found in previous research. The soil structure of damaged sand dune vegetation is sandy, and its size is thin and medium. The coverage of associations is as high as 95 to 100%.
The Urgino maritimi-Asphodeletum aestivi ass. nov. association is located in the areas damaged by fires (Figure 5c). It is constituted as an herb layer. The floristic composition of the area is very rich, and the number of annual plants is high, as the area offers many annual plants the opportunity to live after fire destruction. This pattern has enhanced the concentration of organic materials in the association, which extends to soils. The syntaxa of this association is not found in previous research. According to the Urgino maritimi-Asphodeletum aestivi ass. nov. association, the Verbasco sinuati-Sarcopoterietum spinosi ass. nov. association extends on less humid and more sandy soils (Figure 5d). It was noticed that floristic and ecological similarities between the association and the others in which the dominant species are the same are low [3,4,7,8,15,22].

3.3. Halophytic Vegetation

A total of 150 units of sampling area were surveyed on the halophytic vegetation of the research area. According to the analysis, 13 associations have been identified (Table 6). This vegetation grows on the clay and silt soils. As the concentration of salt in the soil changed, it was noticed that the spread of dominant species was also changing. Taxa of Chlamydophora tridentata (VU), Salicornion fruticosae Br.-Bl. 1933, and Ambrosia maritima (EN) are identified as Euphorbio-Ammophilion arundinaceae Br.-Bl. (1931) 1933 em. J.M. et J. Gehu 1988 alliance characteristics. The soil structure of Limonio gmelinii-Aeluropetum littoralis (Bab. 1979) Gehu & Uslu 1989 association is a tiny fraction of sand and a moderate level of salt (Figure 6a). Limonio angustifolii-Halimionetum portulacoides ass. nov. association is quite widespread in the research area (Figure 6b). The soils of these areas contain more or less salt, silt, and clay and a high content of organic material. It was noticed that there is no association in the literature in which floristic and ecological features are significantly similar to the findings of the association in the research area [9,33]. Asterisco aquaticae-Plantaginetum coronopi ssp. commutati ass. nov. association is widespread on little salty thin sandy flatness, which had been destroyed a long time ago (Figure 6c). General coverage is as high as 90 to 100%, where herbal vegetation is abundant. The vegetation of saline temporary ponds, dominated by members of the genus Juncus, is moist, with flooded depressions or plains with fresh or saline water flooding from the bottom. It is found to possess Euro-Siberian floristic elements, where there is a decrease in salinity in the water and Mediterranean floristic elements, where salinity is increased.
Polypogon maritimus ssp. maritimus-Juncetum littoralis Çakan, Düzenli, & Karaömerlioğlu 2003 association is widespread, especially in humid depressions or freshwater inflow of areas (Figure 6d). Phragmiti australis-Juncetum maritimi Vural, Duman, & al. 1995 association is located in high halophytic depressions and the plains of groundwater (Figure 7a). Atriplici hastatae-Juncetum acuti Çakan, Düzenli, & Karaömerlioğlu 2003. Unlike the other associations of this vegetation, it is located in low-salinity or salt-free high groundwater and flooded areas (Figure 7b).
The vegetation of saline temporarily flooded plains is dominated by members of the genus, Tamarix. These areas may have a water depth of ~25–35 cm from time to time. This vegetation is generally clayey and silty, with light–moderate alkaline, very calcareous, and moderately saline soils. The Tamaricetum smyrensis Seçmen & Leblebici 1996 association has helped to identify flooded areas around lakes and ponds in the area (Table 7). Arthrocnemo fruticosii-Tamaricetum tetragynae ass. nov. association is widespread close to watery swamps, floodplains, and channels (Figure 7c). The dominant tall shrub layer is characterised by vegetation abundance and more (80–100%), and contains a herb layer that is rich underneath. There is no similarity between this unit and any association or community other than the dominant type of partnership.
Salicornio fragilis-Tamaricetum tetrandrae ass. nov. association is distributed in watery marshes or flooded areas (Figure 7d). General overlap is also very high (90–100%), and the floristic composition is very rich. Characteristics include Tamarix tetrandra, the dominant shrub, Salicornia fragilis, and Arthrocnemum glaucum, with a high abundance and cover in its lower layers. This association has low floristic and ecological similarity with other associations with the same dominant species [12].
The floristic composition of the Schoeno nigricantis-Saccharetum ravennae Çakan, Düzenli, & Karaömerlioğlu 2003 association is rich, and the overlap is high (90–100%) (Figure 8a). Unlike other saline habitats, regarding Eriantho-Schoenotum nigricantis (Pign. 1953) Gehu 1984, the soils in which the association is distributed are more sandy, 43% of which are coarse fractionated (Figure 8b). Almost half of the flora of the association consists of perennial grasses. Saline terrestrial plains are located further inland from the coast, away from the coastal influence, and have high clay and silt content.
There is a visible accumulation of salt on the surface of these areas. In this vegetation (Table 8), on the saltiest soils with low levels of available phosphorus and potassium, the Arthrocnemo-Halocnemetum strobilaceii Oberd 1952 association is found (Figure 8c). The association Salicornio europaeae-Arthrocnemetum fruticosum Çakan, Düzenli, & Karaömerlioğlu 2003 is distributed in very saline wet-humid plains in very large areas (Figure 8d).
In the Göksu Delta SEPA natural areas, vegetation was sampled and evaluated separately according to different habitats. As a result of the evaluation of 279 sampled areas, a total of 29 associations, 16 of which were new, were identified in three main habitat groups. These associations were represented by the Phragmito-Magnocaricetea, Potametea, Ammophiletea, Salicornietea fruticosae, Juncetea maritimi, and Molinio-Juncetea classes. In addition to these classes, Stellerietea media and Saginetea maritima classes are also represented as a result of the increase in species diversity and mono-recurrence species in the areas destroyed by grazing pressure and anthropogenic impacts. There are even places where sand dune vegetation is represented by the Quercetea ilicis class.
Some of the endemic and rare plants distributed in the research area could not be characteristic of any syntaxa, although they recur more than once in the synoptic table (Table 9). However, endemic Onopordum boissieri L. in the endangered category LR (nt), rare plants Ambrosia maritima L. in the endangered category EN and Chlamydophora tridentata (Delile) Ehrenb. Ex Less. in the endangered category VU were identified as the alliance characteristics of the habitat where they are distributed. Accordingly, Onopordum boissieri L. and Ambrosia maritima L. are added as new characteristic species for alliance Euphorbio-Ammophilion arundinaceae Br.-Bl. (1931) 1933 em. J.M. et J. Gehu 1988; Chlamydophora tridentata (Delile) Ehrenb. Ex Less. 1933 is added as a new characteristic species for the Salicornion fruticosae Br.-Bl. 1933 alliance.
In the research area, aquatic vegetation was represented by four associations belonging to the Phragmito-Magnocaricetea and Potametea classes. The subgroups of aquatic vegetation were also considered separately. Accordingly, in-channel vegetation was represented by two associations (one of which was new); in-lake vegetation was represented by one new association; and river and lake edge vegetation was represented by one association.
In the sand dune vegetation, the Ammophiletea Br.-Bl. & Tüxen ex Westhoff, Dijk, & Passchier 1946 class was identified with 12 associations. Among the subgroups identified in the sand dune vegetation, the most associations were found in the moving coastal sand dune vegetation (four associations—one new). Three new associations have been identified in fixed or semi-shifting sand dune vegetation, and three new associations in dune scrub vegetation. The damaged sand dune vegetation was represented by two new associations.
The halophytic vegetation was represented by 13 associations, eight of which belonged to Salicornietea fruticosae Br.-Bl. & Tüxen ex A. & O. Bolòs 1950, eight to Juncetea maritimi Br.-Bl. in Br.-Bl., Roussine & Nègre 1952, and one to Molinio-Juncetea Br.-Bl. (1931) 1947 classes. In the habitat, three associations (two of which are new) were identified in swamp vegetation. In the temporary pond subgroup, three associations were identified; in the temporary flooded flatland vegetation, five associations (two new) were identified. Halophytic terrestrial flatland vegetation was represented by two associations.
The alteration of the natural structure of the research area has been achieved through a variety of methods, including the draining of Tekfur marsh, the formulation of irrigation plans, and the allocation of drainage water to Akgöl-Paradeniz, among other actions. These modifications have resulted in a change in the water salinity of Akgöl. Nevertheless, it has been demonstrated that the region does indeed offer certain economic benefits in terms of agriculture and fisheries. Settlements, industrial facilities, pastures, and agricultural lands within the SEPA exert a direct or indirect influence on natural areas. Consequently, water, soil, and air are contaminated. The occurrence of both large and small accidental fires has been documented during the process of agricultural land acquisition or stubble burning in the designated research area. In dune areas, activities such as sand extraction, unauthorised plant removal, and cutting are carried out. Given the higher distribution of endemic and rare plant species in these habitats compared to other regions, it is imperative to enhance the frequency of inspections. In order to protect natural areas, ecotourism (e.g., bird watching, botany, and bicycle tourism) can be directed towards different applications, such as ecotourism in these areas, with a view to enabling local people to sustain their lives and earn an income.

4. Conclusions

The vegetation of the Göksu Delta RAMSAR area was classified according to habitat differences. As a result of the evaluation of 279 sampled areas, a total of 29 associations, 16 of which were new, were identified in three main vegetations. In the research area, there are associations mostly belonging to Ammophiletea, then Salicornietea fruticosae, Juncetea maritimi, Phragmito-Magnocaricetea, and least to Potametea and Molinio-Juncetea classes. In addition to these classes, Stellerietea media and Saginetea maritima classes are also represented as a result of the increase in species diversity and monotypic species in places that have been destroyed as a result of grazing pressure and anthropogenic impacts in the area. There are also places where dune vegetation is represented by the Quercetea ilicis class.
The endemic Onopordum boissieri L. is in the LR (nt) endangered category, the rare plant Ambrosia maritima L. is in the EN endangered category, and Chlamydophora tridentata (Delile) Ehrenb. Ex Less. in the VU endangered category were identified as the characteristic of the alliances of the habitats in which they are distributed. Accordingly, Onopordum boissieri L. and Ambrosia maritima L., Euphorbio-Ammophilion arundinaceae Br.-Bl. (1931) 1933 em. J.M. et J. Gehu 1988 and Chlamydophora tridentata (Delile) Ehrenb. Ex Less. to the Salicornion fruticosae Br.-Bl. 1933 was added as a new characteristic species for the alliance.
In the research area, aquatic vegetation was represented by four associations belonging to Phragmito-Magnocaricetea and Potametea classes. In the sand dune vegetation, Ammophiletea Br.-Bl. & Tüxen ex Westhoff, Dijk, & Passchier 1946 were identified with 12 associations belonging to the class. In the saline vegetation, it was represented by 13 associations. Eight of them were linked to Salicornietea fruticosae Br.-Bl. & Tüxen ex A. & O. Bolòs 1950, eight belonged to Juncetea maritimi Br.-Bl. in Br.-Bl., Roussine & Nègre 1952, and one belonged to Molinio-Juncetea Br.-Bl. (1931) 1947 classes.
The Göksu Delta generally preserved its natural characteristics until the 1980s. Since the early 1980s, the rapid increase in the number of second homes and their progress towards natural areas has been one of the most critical problems in the area. The rapid destruction and pollution of wetlands, plants, and bird breeding areas due to intensive agricultural activities in the area is one of the most important threats to the area. After the declaration of the delta as a Special Environmental Protection Area, construction has stopped; however, the activities of gaining agricultural land with fires could not be prevented. Endemic and endangered plants, especially on the coastal dunes, are in danger of extinction due to sand carrying and plant uprooting activities. The dams built on the Göksu River, which flows through the delta, are the most serious threat to sediment flow to the delta. All these are factors that may endanger the habitat and vegetation structure in the area. It is a natural area with rare ecosystems that has many important protection statuses, such as a natural site, a sensitive zone, a wildlife protection area, as well as an SEPA protection status. This area is one of the most important wetlands in Europe and shelters 12 of the 24 bird species in danger of extinction worldwide. It is also one of the 17 sea turtle breeding areas in Turkey. Twenty-nine plant associations have been identified in the area, 16 of which are new to the scientific world. Three of the endemic and rare plants have been added to the literature as alliance characteristics. In order to ensure the protection and sustainability of these associations, it is very important to monitor biodiversity in wetland ecosystems by controlling all threats in the area and regulating certain rules in terms of habitat management or conservation policy. This study is important in contributing to environmental protection and land use planning studies.
With this study, the vegetation of the area was studied in great detail, and syntaxonomic units found in different habitats were identified. The identified associations are given in Table A1 according to their main habitats and subgroups.

Funding

The research was partially financially supported by the Cukurova University Project Process Management System (FEF.2003.D10).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available upon request from the corresponding author.

Acknowledgments

I would like to express my gratitude to Deniz Ustun (Tarsus University Faculty of Engineering, Department of Computer Engineering) for his invaluable guidance and assistance with data analysis.

Conflicts of Interest

The author declares no conflicts of interest.

Appendix A

Table A1. Syntaxonomic units defined according to the main habitats and subgroups.
Table A1. Syntaxonomic units defined according to the main habitats and subgroups.
HabitatsClassesOrdoAllianceAssociation
Aquatic VegetationThe vegetation in the channelPotametea Klika in Klika & Novák 1941Utricularietalia Den Hartog & Segal 1964Ceratophyllion demersi Den Hartog & Segal ex Passarge 1996 Potamogetono pectinati-Ceratophylletum demersi (Hild & Rehnelt 1965) Passarge 1995
Phragmito-Magnocaricetea Klika in Klika & Novák 1941Nasturtio-Glycerietalia Piggn. 1954Glycerio-Sparganion Br. Bl. Et Sissingh in Boer 1942Ludwigio stoloniferae-Nasturtietum officinalis ass. nov.
The vegetation in the lakePhragmito-Magnocaricetea Klika in Klika & Novák 1941Phragmitetalia Koch 1926Phragmition communis Schmale 1939Ruppio cirrhosae-Schoenoplectetum littoralis ass. nov.
Vegetation of the river and lake edgesPhragmito-Magnocaricetea Klika in Klika & Novák 1941Phragmitetalia Koch 1926Phragmition communis Schmale 1939Bolboschoeno maritimi var. cymos-Phragmitetum australis Borhidi &Balogh 1970
Sand dune vegetationMoving coastal sand dune vegetationAmmophiletea Br.-Bl. & Tüxen ex Westhoff, Dijk, & Passchier 1946Euphorbio-Ammophiletalia arundinaceae Br.-Bl. (1931) 1933 em. J.M. et J. Gehu 1988Euphorbio-Ammophilion arundinaceae Br.-Bl. (1931) 1933 em. J.M. et J. Gehu 1988Cakilo maritimae-Zygophylletum albi Çakan, Düzenli, & Karaömerlioğlu 2003
Cypero mucronati-Agropyretum juncei Kühnholtz ex Br.-Bl. 1933
Eryngio maritimi-Pancratietum maritimi Çakan, Düzenli, & Karaömerlioğlu 2003
Ambrosio maritimae-Pancratietum maritimi ass. nov.
Fixed or semi-shifting sand dune vegetationAmmophiletea Br.-Bl. & Tüxen ex Westhoff, Dijk, & Passchier 1946Euphorbio-Ammophiletalia arundinaceae Br.-Bl. (1931) 1933 em. J.M. et J. Gehu 1988Euphorbio-Ammophilion arundinaceae Br.-Bl. (1931) 1933 em. J.M. et J. Gehu 1988Cypero capitati-Trachomitetum veneti ssp. sarmatiense ass. nov.
Echio angustifolii-Ononidetum natrix ssp. hispanicae ass. nov.
Parapholido incurvae-Thymelaeetum hirsutae ass. nov.
Dune scrub vegetationAmmophiletea Br.-Bl. & Tüxen ex Westhoff, Dijk, & Passchier 1946Euphorbio-Ammophiletalia arundinaceae Br.-Bl. (1931) 1933 em. J.M. et J. Gehu 1988Euphorbio-Ammophilion arundinaceae Br.-Bl. (1931) 1933 em. J.M. et J. Gehu 1988Sorgho halepense var. halepense-Myrtetum communis ssp. communis ass. nov.
Polygono equisetiformis-Viticetum agni-casti ass. nov.
Ephedro campylopodae-Populetum euphraticae ass. nov.
Damaged sand dune vegetationAmmophiletea Br.-Bl. & Tüxen ex Westhoff, Dijk, & Passchier 1946Euphorbio-Ammophiletalia arundinaceae Br.-Bl. (1931) 1933 em. J.M. et J. Gehu 1988Euphorbio-Ammophilion arundinaceae Br.-Bl. (1931) 1933 em. J.M. et J. Gehu 1988Urgino maritimi-Asphodeletum aestivi ass. nov.
Verbasco sinuati-Sarcopoterietum spinosi ass. nov.
Halophytic vegetationHalophytic vegetation of the swampSalicornietea fruticosae Br.-Bl. & Tüxen ex A. & O. Bolòs 1950Salicornietalia fruticosae Br.-Bl. 1933Salicornion fruticosae Br.-Bl. 1933Limonio angustifolii-Halimionetum portulacoides ass. nov.
Asterisco aquaticae-Plantaginetum coronopi ssp. commutati ass. nov.
Juncetea maritimi Br.-Bl. in Br.-Bl., Roussine & Nègre 1952Juncetalia maritimi Br.-Bl. 1931 em. Julve 1992 ex 1993Juncion maritimi Br.-Bl. 1931 em. Julve 1992 ex 1993Limonio gmelinii-Aeluropetum littoralis (Bab. 1979) Gehu & Uslu 1989
Halophytic vegetation of temporary pondsJuncetea maritimi Br.-Bl. in Br.-Bl., Roussine & Nègre 1952Juncetalia maritimi Br.-Bl. 1931 em. Julve 1992 ex 1993Juncion maritimi Br.-Bl. 1931 em. Julve 1992 ex 1993Polypogono maritimi ssp. maritimi-Juncetum littoralis Çakan, Düzenli, & Karaömerlioğlu 2003
Phragmiti australis-Juncetum maritimi Vural, Duman, & al. 1995
Atriplici hastatae-Juncetum acuti Çakan, Düzenli, & Karaömerlioğlu 2003
Halophytic vegetation of temporary floodplainSalicornietea fruticosae Br.-Bl. & Tüxen ex A. & O. Bolòs 1950Salicornietalia fruticosae Br.-Bl. 1933Halocnemion strobilacei Gehu & Costa 1984Tamaricetum smyrensis Seçmen & Leblebici 1996
Juncetea maritimi Br.-Bl. in Br.-Bl., Roussine & Nègre 1952Juncetalia maritimi Br.-Bl. 1931 em. Julve 1992 ex 1993Juncion maritimi Br.-Bl. 1931 em. Julve 1992 ex 1993Arthrocnemo fruticosii-Tamaricetum tetragynae ass. nov.
Salicornio fragilis-Tamaricetum tetrandrae ass. nov.
Schoeno nigricantis-Saccharetum ravennae Çakan, Düzenli, & Karaömerlioğlu 2003
Molinio-Juncetea Br.-Bl. (1931) 1947Holoschoenetalia Br.-Bl. (1931) 1947Molinio-Holoschoenion Br.-Bl. (1931) 1947Eriantho-Schoenotum nigricantis (Pign. 1953) Gehu 1984
Halophytic vegetation of terrestrial flatnessSalicornietea fruticosae Br.-Bl. & Tüxen ex A. & O. Bolòs 1950Salicornietalia fruticosae Br.-Bl. 1933Salicornion fruticosae Br.-Bl. 1933Salicornio europaeae-Arthrocnemetum fruticosum Çakan, Düzenli, & Karaömerlioğlu 2003
Halocnemion strobilacei Gehu & Costa 1984Arthrocnemo-Halocnemetum strobilaceii Oberd 1952

References

  1. Akman, Y.; Düzenli, A.; Güney, K. Biyocoğrafya; Palme: Ankara, Türkiye, 2005; p. 449. [Google Scholar]
  2. Akman, Y. Türkiye Orman Vejetasyonu; Ankara University Press: Ankara, Türkiye, 1995; p. 450. [Google Scholar]
  3. Uslu, T. A Plant Ecological and Sociological Research on the Dune and Maquis Vegetation between Mersin and Silifke. Communications 1977, 21, 60. [Google Scholar]
  4. Gehu, J.M.; Uslu, T.; Costa, M. Aport a la Connaissance Phytosociologique du Littoral Sud de la Turquie Mediterraneenne. Colloq. Phytosociol. 1989, 19, 591–622. [Google Scholar]
  5. Gürkan, F.; Zorlu, F.; Kavruk, S.A.; Menengiç, M.; Yildirim, N.; Erdoğan, B.; Direk, Y.; Buluş, B.; Sarigül, B. Göksu Deltası Özel Çevre Koruma Bölgesi Yönetim Planı; TC. Çevre Bak; ÖÇKK Başkanlığı-DHKD: Ankara, Türkiye, 1999. [Google Scholar]
  6. Greuter, W.; Mcneill, J.; Barrie, F.R.; Burdet, H.-M.; Demoulin, V.; Filgueiras, T.S.; Nicolson, D.H.; Silva, P.C.; Skog, J.E.; Trehane, P.; et al. International Code of Botanical Nomenclature (St Louis Code); Regnum Vegetabile 138; Koeltz Scientific Books: Königstein, Gremany, 2000; ISBN 3-904144-22-7. [Google Scholar]
  7. Bekat, L.; Seçmen, Ö. The Phytoecological and Sociological Investigations on the Akdağ-Karaburun (İzmir). J. Fac. Sci. Ege Uni. 1984, 7, 103–110. [Google Scholar]
  8. Bekat, L.; Seçmen, Ö. Vegetation in der Umgebung Von Foça, Aliağa und Çandarlı. J. Fac. Sci. Ege Uni. 1988, 10, 5–26. [Google Scholar]
  9. Çakan, H.; Düzenli, A.; Karaömerlioğlu, D. Çukurova Deltası (Yumurtalık Lagünü, Akyatan, Ağyatan ve Tuz Gölü) Vejetasyonunun Araştırılması; TÜBİTAK: Ankara, Türkiye, 2003; TBAG-1793. [Google Scholar]
  10. Çetik, A.R. Sorgun (Manavgat), Kemer, Lara (Antalya) ve Kavaklı (Finike) Kumullarının Fitososyolojik ve Fitoekolojik Yönden İncelenmesi. Atatürk Üni. Fen-Ed. Fak. Fen Dergisi 1982, 1, 331–359. [Google Scholar]
  11. Gehu, J.M.; Uslu, T. Donněes Sur la Věgětation Littorale de la Turquie du Nord-Ouest. Phytocoenologia 1989, 17, 449–505. [Google Scholar] [CrossRef]
  12. Hamzaoğlu, E.; Aksoy, A. Sultansazlığı Bataklığı Halofitik Toplulukları Üzerine Fitososyolojik Bir Çalışma (İç Anadolu-Kayseri). Ekoloji Dergisi 2006, 15, 8–15. [Google Scholar]
  13. Kavak, S. Burnaz Kumullarının (Adana) Flora ve Vejetasyonu. Master’s Thesis, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, Türkiye, 2006. [Google Scholar]
  14. Kilinç, M.; Karaer, F.; Özen, F. Karadeniz Bölgesinin Sahil Kesiminde Yayılış Gösteren Maki Vejetasyonu Üzerinde Floristik ve Fitososyolojik Bir Araştırma. In Proceedings of the XI. Ulusal Biyoloji Kongresi, Fırat Üniversitesi, Elazığ, Türkiye, 24–27 June 1992; pp. 213–232. [Google Scholar]
  15. Kilinç, M.; Karaer, F. The Vegetation of Sinop Peninsula. Turk. J. Bot. 1995, 19, 107–124. [Google Scholar]
  16. Küçüködük, M. Beyşehir Gölünün Flora ve Vejetasyonunun İncelenmesi. Ph.D. Thesis, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya, Türkiye, 1987; p. 123. [Google Scholar]
  17. Öner, M.; Oflas, S.; Oğuz, G. İzmir Civarında Bulunan Turtes, Zeytineli Limanı, Oğlananası Gölü, Belevi Drenaj Kanalı, Belevi Gerisindeki Göl Mevkii, Pamucak ve Tusan Oteli Civarında Vejetasyon Gelişimi; Ege Üniversitesi Matbaası: İzmir, Türkiye, 1973; Volume 160, pp. 1–20. [Google Scholar]
  18. Öner, M.; Oflas, S.; Oğuz, G. İzmir Civarında Bulunan Karagöl, Çamaltı, Bayraklı, Kalabak, Eğri Limanı, Urla İçmelerinde Vejetasyon Gelişimi; Ege Üniversitesi Matbaası: İzmir, Türkiye, 1973; Volume 159, pp. 1–22. [Google Scholar]
  19. Özkanca, R. Orta Karadeniz Bölgesi Kıyı Kumullarının Vejetasyonu Üzerinde Fitososyolojik Bir Araştırma. Masters’s Thesis, Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, İzmir, Türkiye, 1989. [Google Scholar]
  20. Özen, F.; Kilinç, M. Alaçam-Gerze ve Boyabat-Durağan Arasında Kalan Bölgenin Vejetasyonu. Turk. J. Bot. 1995, 19, 65–86. [Google Scholar]
  21. Seçmen, Ö. Gökçeada ve Bozcaada Adalarının Flora ve Vejetasyonu; TÜBİTAK: İzmir, Türkiye, 1977; TBAG-211. [Google Scholar]
  22. Seçmen, Ö.; Leblebici, E. Gökçeada ve Bozcaada Adalarının Flora ve Vejetasyonu. Bitki Der. 1978, 5, 195–367. [Google Scholar]
  23. Seçmen, Ö.; Leblebici, E. Türkiye’nin Bazı Bataklık ve Göllerinin Vejetasyonu; TÜBİTAK VII. Bilim Kong.: Aydın, Türkiye, 1980; pp. 665–673. [Google Scholar]
  24. Seçmen, Ö.; Leblebici, E. Ege Bölgesi-İç Anadolu Batısı ve Akdeniz Bölgesi’nin Batısında (B1, B2, B3, C1, C2, C3) Bulunan Göl ve Bataklıkların Flora ve Vejetasyonu; TÜBİTAK: İzmir, Türkiye, 1982; TBAG-407. [Google Scholar]
  25. Seçmen, Ö.; Leblebici, E. Aquatic Flora of Western Anatolia. Willdenowia 1984, 14, 165–178. [Google Scholar]
  26. Seçmen, Ö.; Leblebici, E. Trakya, Batı ve Orta Karadeniz, İç Anadolu ile Doğu Akdeniz Bölgesinde Bulunan (A1-5, B4-5, C4-5) Göl ve Bataklıkların Flora ve Vejetasyonu; TÜBİTAK: İzmir, Türkiye, 1987; TBAG-654. [Google Scholar]
  27. Seçmen, Ö.; Leblebici, E. Aquatic and Marshy Vegetation of Thrace. Tr. J. Bot. 1991, 15, 142–165. [Google Scholar]
  28. Seçmen, Ö.; Leblebici, E. Doğu Karadeniz, İç Anadolu Doğusu ve Güneydoğu Anadolu Bölgesi’nin Batısında (A6-9, B6, C6) Bulunan Göl ve Bataklıkların Flora ve Vejetasyonu; TÜBİTAK: İzmir, Türkiye, 1992; TBAG-892. [Google Scholar]
  29. Seçmen, Ö.; Leblebici, E. The Comparision of Lake Vegetations of Thrace. In Proceedings of the XII. Ulusal Biyoloji Kongresi, Edirne, Türkiye, 6 July–8 July 1994; pp. 109–112. [Google Scholar]
  30. Seçmen, Ö.; Leblebici, E. The Vegetation Cover of Marmara Region Wetlands. J. Bot. 1996, 20, 171–188. [Google Scholar] [CrossRef]
  31. Seçmen, Ö.; Gemici, Y.; Bekat, L.; Görk, G. İzmir Yöresi Frigana Vejetasyonunun Bitki Sosyolojisi Yönünden Araştırılması. Doğa Tr Bio. Der. 1986, 10, 197–205. [Google Scholar]
  32. Yurdakulol, E. Konya Ovasındaki Çorak Bataklıklar Vejetasyonunun Bitki Sosyolojisi Yönünden Araştırılması. Bitki 1974, 1, 257–277. [Google Scholar]
  33. Yurdakulol, E.; Öncel, I.; Demirörs, M.; Yildiz, A.; Keleş, Y. Ecological and Syntaxonomic Investigation of Salt Marshes Vegetation in the Vicinity of Burdur and Acigöl (Denizli-Turkey). Ecol. Medit. 1996, 22, 51–61. [Google Scholar] [CrossRef]
  34. Rivas-Martinez, S. Syntaxonomical Synopsis of The North America Natural Potential Vegetation Communities, I (Compendio sintaxonómico de la vegetación natural potencial de Norteamérica, I). Itinera Geobotánica 1997, 10, 5–148. [Google Scholar]
  35. Rivas-Martinez, S.; Sánchez-Mata, D.; Costa, M. North American Boreal and Western Temperate Forest Vegetation (Syntaxonomical Synopsis of The Potential Natural Plant Communities of North America, II). Itinera Geobotanica 1999, 12, 5–316. [Google Scholar]
  36. Rivas-Martinez, S.; Fernández-González, F.; Loidi, J.; Lousã, M.; Penas, A. Syntaxonomical Checklist of Vascular Plant Communities of Spain and Portugal to Association Level. Itinera Geobotanica 2001, 14, 5–341. [Google Scholar]
  37. Pafumi, E.; Angiolini, C.; Bacaro, G.; Fanfarillo, E.; Fiaschi, T.; Rocchini, D.; Sarmati, S.; Torresani, M.; Feilhauer, H.; Maccherini, S. Fuzzy Approaches Provide Improved Spatial Detection of Coastal Dune EU Habitats. Ecol. Inform. 2025, 86, 1–14. [Google Scholar] [CrossRef]
  38. Barve, S.; Webster, J.M.; Chandra, R. Reef-Insight: A Framework for Reef Habitat Mapping with Clustering Methods Using Remote Sensing. Information 2023, 2, 1–16. [Google Scholar] [CrossRef]
  39. Braun-Blanquet, J. Pflanzensoziologie: Grundzüge der Vegetationskunde, 2nd ed.; Springer: Vienna, Austria, 1951. [Google Scholar]
  40. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
  41. Davis, P.H. Flora of Turkey and the East Aegean Islands; Edinburgh University Press: Edinburgh, UK, 1988; Volumes 1–10, C:1-10. [Google Scholar]
  42. Uygun, N.; Dinç, U.; Şekeroğlu, E.; Yeğingil, İ.; Uzun, G.; Kornoşor, S.; Düzenli, A.; Gültekin, E.; Şenol, S.; Biçici, M.; et al. Göksu Deltası’nın Biyolojik Zenginliğinin (Flora ve Fauna) Tespiti ile Ekolojik Peyzaj ve Optimal Arazi Kullanım Planlaması. Cilt I; T.C. Çevre Bakanlığı Özel Çevre Kurumu Başkanlığı: Adana, Türkiye, 1994; Proje no:09.G.92/03. [Google Scholar]
  43. Akman, Y. İklim ve Biyoiklim; Kariyer Matbaacılık Ltd. Şti.: Ankara, Türkiye, 1999; p. 350. [Google Scholar]
  44. Öztürk, M.; Pirdal, M.; Özdemir, F. Bitki Ekolojisi Uygulamalar; Ege Üniversitesi Matbaası: İzmir, Türkiye, 1997; p. 129. [Google Scholar]
  45. Google Earth. 2025. Available online: https://www.google.com.tr/maps/@36.3334061,33.8202931,43240m/data=!3m1!1e3?entry=ttu&g_ep=EgoyMDI1MDYwNC4wIKXMDSoASAFQAw%3D%3D (accessed on 9 March 2025).
  46. European Comission, 2003-2011. NATURA2000, Interpretation Manual Of European Union Habitats-Eur 25; Nature and Biodiversity Series, No. 126; European Comission: Brussels, Belgium, 2025. [Google Scholar]
  47. Yilmaz, K.T.; Çakan, H.; Düzenli, A.; Karaömerlioğlu, D. A Case Study on Baseline Data Inventory for Coastal Zone Management: Habitat Classification in the Göksu Delta SPA/Turkey. In Proceedings of the X. European Ecological Congress, Kuşadası, İzmir, Turkey, 8–13 November 2005; p. 269. [Google Scholar]
  48. Braun-Blanquet, J. Pflanzensoziologie; Springer: Berlin, Germany, 1964; p. 866. [Google Scholar]
  49. Parolly, G. Towards Common Standards in Phytosociological Papers Submitted to the Turkish Journal of Botany: A Letter from the Editor. Turk. J Bot. 2003, 27, 163–165. [Google Scholar]
  50. Soil Survey Staff. Soil Survey Manual; Handbook No. 18; USDA: Washington, DC, USA, 1951; p. 503.
  51. Richards, L.A. Diagnosis and Improvement of Saline Alkali Soils; Agriculture, Handbook 60: Washington, DC, USA, 1954; p. 154. [Google Scholar]
  52. Boşgelmez, A.; Boşgelmez, I.I.; Savaşçi, S.; Pasli, N. Ekoloji-II Toprak; Başkent Klişe Mat.: Ankara, Türkiye, 2001; p. 1054. [Google Scholar]
  53. Özbek, H.; Kaya, Z.; Gök, M.; Kaptan, H. Toprak Bilimi; Ç.Ü. Ziraat Fak. Ofset ve Teksir Atölyesi: Adana, Türkiye, 1995; Volume 135-16, p. 816. [Google Scholar]
  54. Kilinç, M. Bitki Sosyolojisi; Palme Yayincilik: Ankara, Türkiye, 2005; p. 284. [Google Scholar]
  55. Association Tela Botanica. Flore et végétation de la France, CATMINAT, Tela Botanica, Le réseau de la botanique francophone, Phytosociologie, Le réseau des Botanistes Francophones 2000. Available online: http://www.tela-botanica.org (accessed on 9 March 2025).
  56. Theurillat, J.P.; Willner, W.; Fernández-González, F.; Bültmann, H.; Čarni, A.; Gigante, D.; Mucina, L.; Weber, H. International Code of Phytosociological Nomenclature. 4th edition. Appl. Veg. Sci. 2021, 24, e12491. [Google Scholar] [CrossRef]
Figure 1. Location of the research area in the Turkey grid system map and a satellite image of the research area [45].
Figure 1. Location of the research area in the Turkey grid system map and a satellite image of the research area [45].
Biology 14 00710 g001
Figure 2. General view of the associations in the aquatic vegetation: (a) Potamogetono pectinati-Ceratophylletum demersi (Hild & Rehnelt 1965) Passarge 1995, (b) Ludwigio stoloniferae-Nasturtietum officinalis ass. nov., (c) Ruppio cirrhosae-Schoenoplectetum littoralis ass. nov., (d) Bolboscoeno maritimi var. cymos-Pragmitetum australis Borhidi & Balog 1970.
Figure 2. General view of the associations in the aquatic vegetation: (a) Potamogetono pectinati-Ceratophylletum demersi (Hild & Rehnelt 1965) Passarge 1995, (b) Ludwigio stoloniferae-Nasturtietum officinalis ass. nov., (c) Ruppio cirrhosae-Schoenoplectetum littoralis ass. nov., (d) Bolboscoeno maritimi var. cymos-Pragmitetum australis Borhidi & Balog 1970.
Biology 14 00710 g002
Figure 3. General view of the associations in sand dune vegetation I: (a) Cakilo maritimae-Zygophylletum albi Çakan, Düzenli, & Karaömerlioğlu 2003, (b) Cypero mucronati-Agropyretum juncei Kühnholtz ex Br.-Bl. 1933, (c) Eryngio maritimi-Pancratietum maritimi Çakan, Düzenli, & Karaömerlioğlu 2003, (d) Ambrosio maritimae-Pancratietum maritimi ass. nov.
Figure 3. General view of the associations in sand dune vegetation I: (a) Cakilo maritimae-Zygophylletum albi Çakan, Düzenli, & Karaömerlioğlu 2003, (b) Cypero mucronati-Agropyretum juncei Kühnholtz ex Br.-Bl. 1933, (c) Eryngio maritimi-Pancratietum maritimi Çakan, Düzenli, & Karaömerlioğlu 2003, (d) Ambrosio maritimae-Pancratietum maritimi ass. nov.
Biology 14 00710 g003
Figure 4. General view of the associations in sand dune vegetation II: (a) Cypero capitati-Trachomitetum veneti ssp. sarmatiense ass. nov., (b) Echio angustifolii-Ononidetum natrix ssp. hispanicae ass. nov., (c) Parapholido incurvae-Thymelaeetum hirsutae ass. nov., (d) Sorgho halepense var. halepense-Myrtetum communis ssp. communis ass. nov.
Figure 4. General view of the associations in sand dune vegetation II: (a) Cypero capitati-Trachomitetum veneti ssp. sarmatiense ass. nov., (b) Echio angustifolii-Ononidetum natrix ssp. hispanicae ass. nov., (c) Parapholido incurvae-Thymelaeetum hirsutae ass. nov., (d) Sorgho halepense var. halepense-Myrtetum communis ssp. communis ass. nov.
Biology 14 00710 g004
Figure 5. General view of the associations in sand dune vegetation III: (a) Polygono equisetiformis-Viticetum agni-casti ass. nov. (b) Ephedro campylopodae-Populetum euphraticae ass. nov., (c) Urgino maritimi-Asphodeletum aestivi ass. nov., (d) Verbasco sinuati-Sarcopoterietum spinosi ass. nov.
Figure 5. General view of the associations in sand dune vegetation III: (a) Polygono equisetiformis-Viticetum agni-casti ass. nov. (b) Ephedro campylopodae-Populetum euphraticae ass. nov., (c) Urgino maritimi-Asphodeletum aestivi ass. nov., (d) Verbasco sinuati-Sarcopoterietum spinosi ass. nov.
Biology 14 00710 g005
Figure 6. General view of the associations in the halophytic vegetation I: (a) Limonio gmelinii-Aeluropetum littoralis (Bab. 1979) Gehu & Uslu 1989, (b) Limonio angustifolii-Halimionetum portulacoides ass. nov., (c) Asterisco aquaticae-Plantaginetum coronopi ssp. commutati ass. nov., (d) Polypogon maritimus ssp. maritimus-Juncetum littoralis Çakan, Düzenli, & Karaömerlioğlu 2003.
Figure 6. General view of the associations in the halophytic vegetation I: (a) Limonio gmelinii-Aeluropetum littoralis (Bab. 1979) Gehu & Uslu 1989, (b) Limonio angustifolii-Halimionetum portulacoides ass. nov., (c) Asterisco aquaticae-Plantaginetum coronopi ssp. commutati ass. nov., (d) Polypogon maritimus ssp. maritimus-Juncetum littoralis Çakan, Düzenli, & Karaömerlioğlu 2003.
Biology 14 00710 g006
Figure 7. General view of the associations in the halophytic vegetation II: (a) Phragmiti australis-Juncetum maritimi Vural, Duman, & al. 1995, (b) Atriplici hastatae-Juncetum acuti Çakan, Düzenli, & Karaömerlioğlu 2003, (c) Arthrocnemo fruticosii-Tamaricetum tetragynae ass. nov., (d) Salicornio fragilis-Tamaricetum tetrandrae ass. nov.
Figure 7. General view of the associations in the halophytic vegetation II: (a) Phragmiti australis-Juncetum maritimi Vural, Duman, & al. 1995, (b) Atriplici hastatae-Juncetum acuti Çakan, Düzenli, & Karaömerlioğlu 2003, (c) Arthrocnemo fruticosii-Tamaricetum tetragynae ass. nov., (d) Salicornio fragilis-Tamaricetum tetrandrae ass. nov.
Biology 14 00710 g007
Figure 8. General view of the associations in the halophytic vegetation III: (a) Schoeno nigricantis-Saccharetum ravennae Çakan, Düzenli, & Karaömerlioğlu 2003, (b) Eriantho-Schoenotum nigricantis (Pign. 1953) Gehu 1984, (c) Arthrocnemo-Halocnemetum strobilaceii Oberd 1952, (d) Salicornio europaeae-Arthrocnemetum fruticosum Çakan, Düzenli, & Karaömerlioğlu 2003.
Figure 8. General view of the associations in the halophytic vegetation III: (a) Schoeno nigricantis-Saccharetum ravennae Çakan, Düzenli, & Karaömerlioğlu 2003, (b) Eriantho-Schoenotum nigricantis (Pign. 1953) Gehu 1984, (c) Arthrocnemo-Halocnemetum strobilaceii Oberd 1952, (d) Salicornio europaeae-Arthrocnemetum fruticosum Çakan, Düzenli, & Karaömerlioğlu 2003.
Biology 14 00710 g008
Table 1. Similarity ratios of soil samples according to habitats by the fuzzy means 3 clustering method.
Table 1. Similarity ratios of soil samples according to habitats by the fuzzy means 3 clustering method.
Habitat TypesAssociation NameClusters
123
Halophytic Swamp Limonio gmelinii-Aeluropetum littoralis (Bab. 1979) Gehu & Uslu 19890.490.280.23
Limonio angustifolii-Halimionetum portulacoides ass. nov.0.860.100.04
Asterisco aquaticae-Plantaginetum coronopi ssp. commutati ass. nov.0.230.050.71
Temporary pondsPolypogono maritimi ssp. maritimi-Juncetum littoralis Çakan, Düzenli, & Karaömerlioğlu 20030.020.010.98
Phragmiti australis-Juncetum maritimi Vural, Duman, & al. 19950.070.900.02
Atriplici hastatae-Juncetum acuti Çakan, Düzenli, & Karaömerlioğlu 20030.630.100.27
Temporary flood plainTamaricetum smyrensis Seçmen & Leblebici 19960.800.140.06
Arthrocnemo fruticosii-Tamaricetum tetragynae ass. nov.0.920.050.03
Salicornio fragilis-Tamaricetum tetrandrae ass. nov.0.840.080.07
Schoeno nigricantis-Saccharetum ravennae Çakan, Düzenli, & Karaömerlioğlu 20030.010.000.99
Eriantho-Schoenotum nigricantis (Pign. 1953) Gehu 19840.020.010.97
Terrestrial flatnessSalicornio europaeae-Arthrocnemetum fruticosum Çakan, Düzenli, & Karaömerlioğlu 20030.740.130.13
Arthrocnemo-Halocnemetum strobilaceii Oberd 19520.930.050.03
AquaticThe river and lake edgesBolboschoeno maritimi var. cymos-Phragmitetum australis Borhidi & Balogh 19700.110.850.04
Sand Dune Moving coastal sand dune Cypero mucronati-Agropyretum juncei Kühnholtz ex Br.-Bl. 19330.030.010.96
Cakilo maritimae-Zygophylletum albi Çakan, Düzenli, & Karaömerlioğlu 20030.220.070.72
Eryngio maritimi-Pancratietum maritimi Çakan, Düzenli, & Karaömerlioğlu 20030.250.070.68
Ambrosio maritimae-Pancratietum maritimi ass. nov.0.250.070.68
Fixed or semi-shifting sand dune Parapholido incurvae-Thymelaeetum hirsutae ass. nov.0.100.020.87
Cypero capitati-Trachomitetum veneti ssp. sarmatiense ass. nov.0.110.040.85
Echio angustifolii-Ononidetum natrix ssp. hispanicae ass. nov.0.030.010.95
Dune scrub Sorgho halepense var. halepense-Myrtetum communis ssp. communis ass. nov.0.120.050.83
Polygono equisetiformis-Viticetum agni-casti ass. nov.0.280.070.66
Ephedro campylopodae-Populetum euphraticae ass. nov.0.080.030.90
Damaged sand dune Urgino maritimi-Asphodeletum aestivi ass. nov.0.050.010.94
Verbasco sinuati-Sarcopoterietum spinosi ass. nov.0.070.020.92
Table 2. Similarity ratios of water samples according to aquatic habitats by the fuzzy means 3 clustering method.
Table 2. Similarity ratios of water samples according to aquatic habitats by the fuzzy means 3 clustering method.
Aquatic Habitat TypesAssociation NameWinter
Clusters
Spring
Clusters
Summer
Clusters
Autumn
Clusters
123123123123
In the channelLudwigio stoloniferae-Nasturtietum officinalis ass. nov.0.000.001.000.000.001.000.000.001.000.000.001.00
0.000.001.000.000.001.000.000.001.000.000.001.00
Potamogetono pectinati-Ceratophylletum demersi (Hild & Rehnelt 1965) Passarge 19950.000.001.000.000.001.000.000.001.000.000.001.00
0.000.001.000.000.001.000.000.001.000.000.001.00
In the lakeRuppio cirrhosae-Schoenoplectetum litoralis ass. nov.0.970.010.020.000.010.990.000.020.980.020.000.97
0.370.030.600.000.020.980.000.100.890.990.010.01
The river and lake edgesBolboschoeno maritimi var. cymos-Phragmitetum australis Borhidi & Balogh 19700.000.001.000.000.001.000.000.020.980.000.001.00
0.970.010.020.000.010.990.000.020.980.020.000.97
Table 3. Aquatic vegetation types, associations, sample area number, sample area size, altitude, sampling time, and GPS coordinates.
Table 3. Aquatic vegetation types, associations, sample area number, sample area size, altitude, sampling time, and GPS coordinates.
Vegetation TypesAssociationsSample Area NumberSample Area SizeAltitudeSampling TimeGPS CoordinatesSample Area Number Sample Area SizeAltitudeSampling TimeGPS Coordinates
Aquatic VegetationThe vegetation in the channelPotamogetono pectinati-Ceratophylletum demersi (Hild & Rehnelt 1965) Passarge 1995361 0 m24.07.2004N: 36°19′931″363 0 m24.07.2004N: 36°20′292″
25 m2E: 33°56′224″50 m2E: 34°56′159″
347 0 m23.07.2004N: 36°20′336″652 0 m17.05.2005N: 36°20′355″
25 m2E: 34°04′558″50 m2E: 33°58′103″
274 0 m20.07.2004N: 36°23′654″348 0 m23.07.2004N: 36°20′338″
50 m2E: 34°03′163″50 m2E: 34°04′560″
Ludwigio stoloniferae-Nasturtietum officinalis ass. nov.270 0 m20.07.2004N: 36°23′660″278 0 m20.07.2004N: 36°23′836″
50 m2E: 34°03′196″100 m2E: 34°03′967″
271 0 m20.07.2004N: 36°23′650″317 0 m22.07.2004N: 36°22′600″
50 m2E: 34°03′142″100 m2E: 34°02′577″
273 0 m20.07.2004N: 36°23′658″279 0 m20.07.2004N: 36°23′838″
50 m2E: 34°03′204″100 m2E: 34°04′010″
The vegetation in the lakeRuppio cirrhosae-Schoenoplectetum litoralis ass. nov.584 0 m15.05.2005N: 36°18′641″686 0 m19.05.2005N: 36°17′970″
25 m2E: 34°03′690″25 m2E: 33°56′252″
623 0 m16.05.2005N: 36°18′655″659 0 m18.05.2005N: 36°17′980″
25 m2E: 33°58′447″100 m2E: 34°02′688″
531 0 m13.05.2005N: 36°19′490″688 0 m19.05.2005N: 36°17′315″
50 m2E: 34°04′398″100 m2E: 33°56′876″
678 0 m19.05.2005N: 36°17′904″523 0 m13.05.2005N: 36°19′810″
25 m2E: 33°57′928″100 m2E: 34°04′535″
680 0 m19.05.2005N: 36°17′903″
25 m2E: 33°58′447″
Vegetation of the river and lake edgesBolboschoeno maritimi var. cymos-Phragmitetum australis Borhidi & Balogh 1970649 0 m17.05.2005N: 36°20′067″685 0 m19.05.2005N: 36°18′440″
36 m2E: 33°57′051″36 m2E: 33°56′902″
681 0 m19.05.2005N: 36°17′958″679 0 m19.05.2005N: 36°17′912″
36 m2E: 33°58′605″36 m2E: 33°58′152″
372 0 m24.07.2004N: 36°16′972″684 0 m19.05.2005N: 36°18′206″
36 m2E: 33°57′165″36 m2E: 33°57′738″
529 10 cm13.05.2005N: 36°19′541″578 0 m15.05.2005N: 36°18′558″
36 m2E: 34°04′477″64 m2E: 34°03′635″
57 30 m10.06.2004N: 36°17′855″657 0 m18.05.2005N: 36°18′099″
36 m2E: 33°55′664″64 m2E: 34°02′717″
648 0 m17.05.2005N: 36°19′106″539 10 cm13.05.2005N: 36°19′333″
36 m2E: 33°56′804″36 m2E: 34°04′369″
64 0 m11.06.2004N: 36°17′822″607 0 m16.05.2005N: 36°18′868″
36 m2E: 33°55′652″64 m2E: 33°57′263″
350 0 m23.07.2004N: 36°20′300″677 0 m19.05.2005N: 36°17′400″
36 m2E: 34°04′539″36 m2E: 33°58′020″
344 0 m23.07.2004N: 36°20′272″40 0 m22.05.2004N: 36°17′906″
64 m2E: 34°04′455″36 m2E: 33°55′621″
609 0 m16.05.2005N: 36°18′860″
36 m2E: 33°57′407″
Table 4. Sand dunes vegetation types I, associations, sample area number, sample area size, altitude, sampling time and GPS coordinates.
Table 4. Sand dunes vegetation types I, associations, sample area number, sample area size, altitude, sampling time and GPS coordinates.
Vegetation TypesAssociationsSample Area NumberSample Area SizeAltitudeSampling TimeGPS CoordinatesSample Area Number Sample Area SizeAltitudeSampling TimeGPS Coordinates
Sand dune vegetationMoving coastal sand dune vegetationCakilo maritimae-Zygophylletum albi Çakan, Düzenli & Cakilo maritimae-Zygophylletum albi Çakan, Düzenli, & Karaömerlioğlu 2003180 0 m14.07.2004N: 36°17′354″168 0 m13.07.2004N: 36°17′243″
16 m2E: 33°56′189″16 m2E: 33°56′235″
166 0 m13.07.2004N: 36°17′068″507 40–50 cm29.04.2005N: 36°18′094″
16 m2E: 33°56′507″16 m2E: 34°01′351″
Cypero mucronati-Agropyretum juncei Kühnholtz ex Br.-Bl. 1933 188 0–20 cm15.07.2004N: 36°16′689″194 0 m15.07.2004N: 36°16′282″
25 m2E: 33°56′669″25 m2E: 33°57′340″
221 30 cm16.07.2004N: 36°15′841″219 30 cm16.07.2004N: 36°15′770″
25 m2E: 33°58′277″25 m2E: 33°58′424″
218 60 cm16.07.2004N: 36°15′772″223 20 cm16.07.2004N: 36°15′787″
25 m2E: 33°58′429″25 m2E: 33°58′481″
198 20 cm15.07.2004N: 36°16′504″190 30 cm15.07.2004N: 36°16′459″
25 m2E: 33°57′255″25 m2E: 33°56′855″
222 20 cm16.07.2004N: 36°15′790″189 0–20 cm15.07.2004N: 36°16′643″
25 m2E: 33°58′454″25 m2E: 33°56′695″
220 50 cm16.07.2004N: 36°15′827″191 50 cm15.07.2004N: 36°16′432″
25 m2E: 33°58′352″25 m2E: 33°56′864″
Eryngio maritimi-Pancratietum maritimi Çakan, Düzenli, & Karaömerlioğlu 2003 303 50 cm21.07.2004N: 36°21′714″299 30 cm21.07.2004N: 36°21′557″
25 m2E: 34°04′663″25 m2E: 34°04′674″
184 20 cm14.07.2004N: 36°16′952″302 30 cm21.07.2004N: 36°21′691″
25 m2E: 33°56′532″25 m2E: 34°04′666″
563 70 cm14.05.2005N: 36°18′119″187 0–20 cm15.07.2004N: 36°16′700″
25 m2E: 34°03′187″25 m2E: 33°56′708″
300 30 cm21.07.2004N: 36°21′575″565 30 cm14.05.2005N: 36°18′195″
25 m2E: 34°04′679″25 m2E: 34°03′252″
Ambrosio maritimae-Pancratietum maritimi ass. nov. 505 1 m29.04.2005N: 36°18′115″570 60 cm14.05.2005N: 36°18′362″
25 m2E: 34°01′315″25 m2E: 34°03′291″
510 1 m29.04.2005N: 36°18′140″514 60 cm29.04.2005N: 36°18′195″
25 m2E: 34°01′550″25 m2E: 34°01′645″
577 30 cm15.05.2005N: 36°18′523″484 80 cm28.04.2005N: 36°18′099″
25 m2E: 34°03′638″25 m2E: 34°01′254″
516 1 m29.04.2005N: 36°18′152″
25 m2E: 34°01′679″
Fixed or semi-shifting sand dune vegetationCypero capitati-Trachomitetum veneti ssp. sarmatiense ass. nov. 562 20 cm14.05.2005N: 36°18′149″286 0 m20.07.2004N: 36°22′334″
25 m2E: 34°03′135″25 m2E: 34°04′638″
12 0 m20.05.2004N: 36°18′049″306 1 m21.07.2004N: 36°21′843″
16 m2E: 33°55′399″16 m2E: 34°04′640″
307 50 cm21.07.2004N: 36°21′986″287 0 m20.07.2004N: 36°22′369″
25 m2E: 34°04′636″16 m2E: 34°04′634″
304 80 cm21.07.2004N: 36°21′792″305 1 m21.07.2004N: 36°21′836″
16 m2E: 34°04′652″16 m2E: 34°04′645″
Echio angustifolii-Ononidetum natrix ssp. hispanicae ass. nov. 481 1 m28.04.2005N: 36°18′096″386 50 cm23.04.2005N: 36°16′895″
16 m2E: 34°01′228″25 m2E: 33°57′288″
441 0 m25.04.2005N: 36°17′059″385 50 cm23/4/2005/N: 36°16′959″
16 m2E: 33°58′735″16 m2E: 33°57′251″
24 80 cm21.05.2004N: 36°18′067″208 60 cm15.07.2004N: 36°16′629″
25 m2E: 33°53′493″16 m2E: 33°57′211″
211 60 cm15.07.2004N: 36°16′488″308 1 m21.07.2004N: 36°22′017″
16 m2E: 33°57′580″16 m2E: 34°04′579″
558 40 cm14.05.2005N: 36°18′141″312 1 m21.07.2004N: 36°21′959″
16 m2E: 34°03′092″16 m2E: 34°04′450″
282 1.5 m20.07.2004N: 36°22′331″284 2 m20.07.2004N: 36°22′319″
16 m2E: 34°04′467″16 m2E: 34°04′532″
203 70 cm15.07.2004N: 36°16′683″
16 m2E: 33°57′206″
Parapholido incurvae-Thymelaeetum hirsutae ass. nov. 405 40 cm24.04.2005N: 36°16′919″165 30 cm13.07.2004N: 36°16′900″
16 m2E: 33°58′544″16 m2E: 33°56′657″
404 40 cm24.04.2005N: 36°16′911″167 80 cm13.07.2004N: 36°17′228″
16 m2E: 33°58′534″25 m2E: 33°56′318″
482 70 cm28.04.2005N: 36°18′096″181 30 cm14.07.2004N: 36°17′100″
25 m2E: 34°01′213″25 m2E: 33°56′097″
107 0 m15.06.2004N: 36°17′490″
16 m2E: 33°56′048″
Table 5. Sand dune vegetation type II: associations, sample area number, sample area size, altitude, sampling time and GPS coordinates.
Table 5. Sand dune vegetation type II: associations, sample area number, sample area size, altitude, sampling time and GPS coordinates.
Vegetation TypesAssociationsSample Area NumberSample Area SizeAltitudeSampling TimeGPS CoordinatesSample Area NumberSample Area SizeAltitudeSampling TimeGPS Coordinates
Sand dune vegetationDune scrub vegetationSorgho halepense var. halepense-Myrtetum communis ssp.69 50 cm11.06.2004N: 36°17′737″87 2 m13.06.2004N: 36°17′622″
36 m2E: 33°56′037″36 m2E: 33°55′966″
148 50 cm12.07.2004N: 36°17′052″44 3 m22.05.2004N: 36°17′879″
36 m2E: 33°56′782″36 m2E: 33°55′655″
70 0 m11.06.2004N: 36°17′750″98 80 cm13.06.2004N: 36°17′612″
16 m2E: 33°56′017″16 m2E: 33°56′000″
113 1 m15.06.2004N: 36°17′575″
16 m2E: 33°56′202″
Polygono equisetiformis-Viticetum agni-casti ass. nov. birliği48 0 m29.05.2004N: 36°17′893″43 1.5 m22.05.2004N: 36°17′880″
16 m2E: 33°55′518″16 m2E: 33°55′648″
68 0 m11.06.2004N: 36°17′805″201 8 m15.07.2004N: 36°16′658″
25 m2E: 33°55′678″25 m2E: 33°57′215″
147 1 m12.07.2004N: 36°17′088″
25 m2E: 33°56′763″
Ephedro campylopodae-Populetum euphraticae ass. nov.92 1 m13.06.2004N: 36°17′684″309 2 m21.07.2004N: 36°21′996″
50 m2E: 33°56′047″50 m2E: 34°04′550″
136 30 cm16.06.2004N: 36°17′350″163 50 cm13.07.2004N: 36°16′828″
25 m2E: 33°56′375″25 m2E: 33°57′125″
91 1 m13.06.2004N: 36°17′703″311 7.5 m21.07.2004N: 36°21′978″
25 m2E: 33°56′015″50 m2E: 34°04′482″
140 3 m17.06.2004N: 36°17′321″310 8 m21.07.2004N: 36°21′980″
50 m2E: 33°56′568″50 m2E: 34°04′520″
313 1.5 m21.07.2004N: 36°21′939″
50 m2E: 34°04′525″
Damaged sand dune vegetationUrgino maritimi-Asphodeletum aestivi ass. nov.406 10 cm24.04.2005N: 36°16′913″402 30 cm24.04.2005N: 36°16′906″
25 m2E: 33°58′494″16 m2E: 33°58′492″
401 30 cm24.04.2005N: 36°16′904″
16 m2E: 33°58′498″
Verbasco sinuati-Sarcopoterietum spinosi ass. nov.486 50 cm28.04.2005N: 36°18′135″75 80 cm12.06.2004N: 36°17′824″
25 m2E: 34°01′287″16 m2E: 33°55′720″
106 80 cm15.06.2004N: 36°17′544″54 0 m20.05.2004N: 36°17′860″
16 m2E: 33°56′077″16 m2E: 33°55′613″
38 1 m22.05.2004N: 36°17′974″50 50 cm29.05.2004N: 36°17′900″
16 m2E: 33°55′580″16 m2E: 33°55′536″
197 0 m15.07.2004N: 36°16′481″96 1 m13.06.2004N: 36°17′629″
25 m2E: 33°57′430″16 m2E: 33°56′014″
84 0 m13.06.2004N: 36°17′683″123 1 m16.06.2004N: 36°17′515″
25 m2E: 33°55′862″16 m2E: 33°56′200″
Table 6. Halophytic vegetation types I: associations, sample area number, sample area size, altitude, sampling time, and GPS coordinates.
Table 6. Halophytic vegetation types I: associations, sample area number, sample area size, altitude, sampling time, and GPS coordinates.
Vegetation TypesAssociationsSample Area NumberSample Area SizeAltitudeSampling TimeGPS CoordinatesSample Area NumberSample Area SizeAltitudeSampling TimeGPS Coordinates
Halophytic vegetationHalophytic vegetation of the swampLimonio gmelinii-Aeluropetum littoralis (Bab. 1979) Gehu & Uslu 1989102 0 m14.06.2004N: 36°17′625″146 0 m17.06.2004N: 36°17′246″
9 m2E: 33°56′132″9 m2E: 33°56′529″
121 0 m16.06.2004N: 36°17′540″145 0 m17.06.2004N: 36°17′209″
9 m2E: 33°56′277″9 m2E: 33°56′564″
Limonio angustifolii-Halimionetum portulacoides ass. nov.446 10 cm26.04.2005N: 36°17′135″423 5 cm25.04.2005N: 36°16′994″
25 m2E: 33°57′786″25 m2E: 33°58′482″
246 0 m17.07.2004N: 36°17′101″501 0 m28.04.2005N: 36°18′663″
16 m2E: 33°57′563″16 m2E: 34°01′698″
411 10 cm24.04.2005N: 36°16′920″502 0 m28.04.2005N: 36°18′673″
16 m2E: 33°58′523″25 m2E: 34°01′727″
250 0 m17.07.2004N: 36°17′159″503 0 m28.04.2005N: 36°18′675″
25 m2E: 33°57′817″16 m2E: 34°01′735″
444 10 m25.04.2005N: 36°17′107″254 0 m19.07.2004N: 36°16′643″
25 m2E: 33°58′696″16 m2E: 33°58′477″
447 10 cm26.04.2005N: 36°17′147″255 0 m19.07.2004N: 36°18′683″
16 m2E: 33°57′810″25 m2E: 33°58′476″
267 0 m19.07.2004N: 36°17′757″438 0 m25.04.2005N: 36°17′050″
16 m2E: 33°58′725″25 m2E: 33°58′670″
259 0 m19.07.2004N: 36°16′975″696 20 cm20.05.2005N: 36°18′483″
16 m2E: 33°59′467″25 m2E: 34°02′513″
420 0 m24.04.2005N: 36°16′957″695 20 cm20.05.2005N: 36°18′452″
25 m2E: 33°58′465″25 m2E: 34°02′559″
Asterisco aquaticae-Plantaginetum coronopi ssp. commutati ass. nov. 384 40 cm23.04.2005N: 36°16′961″414 10 cm.24.04.2005N: 36°16′941″
16 m2E: 33°57′227″16 m2E: 33°58′558″
450 10 cm26.04.2005N: 36°17′211″382 60 cm23.04.2005N: 36°16′934″
25 m2E: 33°57′966″16 m2E: 33°57′236″
399 40 cm23.04.2005N: 36°16′995″421 10 cm25.04.2005N: 36°17′017″
16 m2E: 33°57′375″16 m2E: 33°58′469″
425 10 cm25.04.2005N: 36°17′023″398 40 cm23.04.2005N: 36°17′034″
25 m2E: 33°58′506″16 m2E: 33°57′412″
426 10 cm25.04.2005N: 36°17′014″383 40 cm23.04.2005N: 36°16′949″
16 m2E: 33°58′486″16 m2E: 33°57′231″
430 10 cm25.04.2005N: 36°17′053″437 10 cm25.04.2005N: 36°17′048″
25 m2E: 33°58′565″25 m2E: 33°58′658″
385 50 cm23.04.2005N: 36°16′959″
16 m2E: 33°57′251″
Halophytic vegetation of temporary pondsPolypogono maritimi ssp. maritimi-Juncetum littoralis Çakan, Düzenli, & Karaömerlioğlu 2003662 10 cm18.05.2004N: 36°18′008″150 0 m12.07.2004N: 36°17′096″
25 m2E: 34°02′773″16 m2E: 33°56′671″
132 0 m16.06.2004N: 36°17′404″10 0 m20.05.2004N: 36°18′021″
16 m2E: 33°56′336″16 m2E: 33°55′375″
144 0 m17.06.2004N: 36°17′223″515 0 m29.04.2005N: 36°18′205″
16 m2E: 33°56′566″16 m2E: 34°01′664″
288 0 m20.07.2004N: 36°22′378″108 0 m15.06.2004N: 36°17′470″
25 m2E: 34°04′581″16 m2E: 33°55′071″
470 10 cm27.04.2005N: 36°18′800″47 0 m22.05.2004N: 36°17′923″
16 m2E: 34°00′469″16 m2E: 33°55′555″
Phragmiti australis-Juncetum maritimi Vural, Duman, & al. 1995557 0 m14.05.2005N: 36°18′097″569 0 m14.05.2005N: 36°18′348″
16 m2E: 34°03′077″36 m2E: 34°03′235″
596 0 m15.05.2005N: 36°19′185″527 10 cm13.05.2005N: 36°19′873″
36 m2E: 34°04′347″16 m2E: 34°04′447″
663 0 m18.05.2005N: 36°17′900″622 0 m16.05.2005N: 36°18′695″
25 m2E: 34°02′750″36 m2E: 33°58′451″
588 0 m15.05.2005N: 36°18′732″580 0 m15.05.2005N: 36°18′571″
25 m2E: 34°03′926″36 m2E: 34°03′673″
550 10 cm14.05.2005N: 36°17′974″597 0 m15.05.2005N: 36°19′175″
16 m2E: 34°02′980″16 m2E: 34°04′176″
Atriplici hastatae-Juncetum acuti Çakan, Düzenli, & Karaömerlioğlu 2003603 0 m16.05.2005N: 36°19′096″469 5 cm27.04.2005N: 36°18′803″
25 m2E: 33°57′336″25 m2E: 34°00′435″
618 0 m16.05.2005N: 36°19′049″534 10 cm13.05.2005N: 36°19′755″
16 m2E: 33°58′053″16 m2E: 34°04′253″
504 0 m28.04.2005N: 36°19′894″468 10 cm27.04.2005N: 36°18′822″
25 m2E: 34°00′280″25 m2E: 34°00′413″
626 0 m16.05.2005N: 36°21′236″615 0 m16.05.2005N: 36°18′972″
36 m2E: 34°03′703″36 m2E: 33°57′890″
487 0 m28.04.2005N: 36°18′117″691 50 cm20.05.2005N: 36°18′590″
36 m2E: 34°01′236″16 m2E: 34°02′566″
Table 7. Halophytic vegetation type II: associations, sample area number, sample area size, altitude, sampling time, and GPS coordinates.
Table 7. Halophytic vegetation type II: associations, sample area number, sample area size, altitude, sampling time, and GPS coordinates.
Vegetation TypesAssociationsSample Area NumberSample Area SizeAltitudeSampling TimeGPS CoordinatesSample Area NumberSample Area SizeAltitudeSampling TimeGPS Coordinates
Halophytic vegetationHalophytic vegetation of temporary floodplainTamaricetum smyrensis Seçmen & Leblebici 1996676 0 m18.05.2005N: 36°18′208″538 10 cm13.05.2005N: 36°19′355″
25 m2E: 34°02′346″25 m2E: 34°04′305″
525 45 cm13.05.2005N: 36°19′810″544 60 cm13.05.2005N: 36°19′606″
16 m2E: 34°04′525″16 m2E: 34°04′566″
520 10 cm13.05.2005N: 36°19′666″705 0 m20.05.2005N: 36°19′050″
25 m2E: 34°04′384″25 m2E: 34°02′279″
Arthrocnemo fruticosii-Tamaricetum tetragynae ass. nov.25 0 m21.05.2004N: 36°18′108″340 0 m23.07.2004N: 36°20′345″
36 m2E: 33°55′513″64 m2E: 34°04′386″
633 20 cm17.05.2005N: 36°18′121″541 40 cm13.05.2005N: 36°19′471″
64 m2E: 33°57′646″64 m2E: 34°04′525″
354 50 cm23.07.2004N: 36°20′371″646 0 m17.05.2005N: 36°18′471″
64 m2E: 34°04′569″36 m2E: 33°57′461″
298 0 m21.07.2004N: 36°21′844″264 0 m19.07.2004N: 36°17′435″
36 m2E: 34°04′323″36 m2E: 33°58′505″
364 0 m24.07.2004N: 36°20′292″328 20 cm22.07.2004N: 36°20′287″
36 m2E: 33°56′159″64 m2E: 34°04′719″
555 0 m14.05.2005N: 36°18′066″330 0 m22.07.2004N: 36°20′220″
36 m2E: 34°03′120″64 m2E: 34°04′651″
266 0 m19.07.2004N: 36°17′644″329 1 m22.07.2004N: 36°20′218″
36 m2E: 33°58′483″64 m2E: 34°04′712″
631 0 m17.05.2005N: 36°18′135″243 0 m17.07.2004N: 36°16′933″
64 m2E: 33°57′742″64 m2E: 33°57′550″
Salicornio fragilis-Tamaricetum tetrandrae ass. nov.702 50 cm20.05.2005N: 36°18′841″654 0 m18.05.2005N: 36°18′192″
100 m2E: 34°01′993″100 m2E: 34°02′677″
608 30 cm16.05.2005N: 36°18′869″655 0 m18.05.2005N: 36°18′131″
50 m2E: 33°57′268″100 m2E: 34°02′701″
698 10 cm20.05.2005N: 36°18′567″598 30 cm15.05.2005N: 36°19′242″
100 m2E: 34°01′499″50 m2E: 34°04′209″
703 20 cm20.05.2005N: 36°18′872″697 0 m20.05.2005N: 36°18′524″
100 m2E: 34°02′014″100 m2E: 34°02′541″
341 0 m23.07.2004N: 36°20′318″689 0 m19.05.2005N: 36°17′267″
50 m2E: 34°04′306″100 m2E: 33°57′866″
353 30 cm23.07.2004N: 36°20′334″690 30 cm20.05.2005N: 36°18′582″
50 m2E: 34°04′578″50 m2E: 34°02′552″
66 0 m11.06.2004N: 36°17′807″658 0 m18.05.2005N: 36°18′020″
50 m2E: 33°55′659″100 m2E: 34°02′672″
154 30 cm13.07.2004N: 36°16′974″155 0 m13.07.2004N: 36°17′051″
50 m2E: 33°56′656″50 m2E: 33°56′845″
653 0 m18.05.2005N: 36°18′231″629 0 m17.05.2005N: 36°18′063″
50 m2E: 34°02′691″50 m2E: 33°57′073″
Schoeno nigricantis-Saccharetum ravennae Çakan, Düzenli, & Karaömerlioğlu 2023209 0 m15.07.2004N: 36°16′467″37 0 m22.05.2004N: 36°17′931″
25 m2E: 33°57′251″25 m2E: 33°55′550″
314 0 m21.07.2004N: 36°21′909″315 0 m21.07.2004N: 36°21′887″
25 m2E: 34°04′537″25 m2E: 34°04′507″
159 0 m13.07.2004N: 36°16′937″202 0 m15.07.2004N: 36°16′666″
25 m2E: 33°56′748″25 m2E: 33°57′213″
Eriantho-Schoenotum nigricantis (Pign. 1953) Gehu 1984110 30 cm15.06.2004N: 36°17′515″45 1 m22.05.2004N: 36°17′852″
16 m2E: 33°56′114″16 m2E: 33°55′601″
77 0 m12.06.2004N: 36°17′860″36 0 m22.05.2004N: 36°17′921″
25 m2E: 33°55′744″16 m2E: 33°55′493″
86 0 m13.06.2004N: 36°17′556″30 0 m21.05.2004N: 36°17′979″
25 m2E: 33°55′942″16 m2E: 33°55′469″
127 0 m16.06.2004N: 36°17′421″
16 m2E: 33°56′153″
Table 8. Halophytic vegetation type III, associations, sample area number, sample area size, altitude, sampling time, and GPS coordinates.
Table 8. Halophytic vegetation type III, associations, sample area number, sample area size, altitude, sampling time, and GPS coordinates.
Vegetation TypesAssociationsSample Area NumberSample Area SizeAltitudeSampling TimeGPS CoordinatesSample Area NumberSample Area SizeAltitudeSampling TimeGPS Coordinates
Halophytic vegetationHalophytic vegetation of terrestrial flatnessSalicornio europaeae-Arthrocnemetum fruticosum Çakan, Düzenli, & Karaömerlioğlu 2023241 0 m17.07.2004N: 36°17′041″532 10 cm13.05.2005N: 36°19′463″
16 m2E: 33°57′516″36 m2E: 34°04′354″
242 0 m17.07.2004N: 36°17′014″638 0 m17.05.2005N: 36°18′323″
16 m2E: 33°57′485″36 m2E: 33°57′907″
642 40 cm17.05.2005N: 36°18′591″251 0 m17.07.2004N: 36°17′330″
16 m2E: 33°57′713″16 m2E: 33°58′168″
474 0 m27.04.2005N: 36°19′094″326 0 m22.07.2004N: 36°20′471″
16 m2E: 34°00′375″16 m2E: 34°04′670″
476 30 cm27.04.2005N: 36°19′088″324 0 m22.07.2004N: 36°20′681″
36 m2E: 34°00′403″36 m2E: 34°04′673″
268 0 m19.07.2004N: 36°17′733″256 0 m19.07.2004N: 36°16′653″
16 m2E: 33°58′803″16 m2E: 33°58′539″
323 0 m22.07.2004N: 36°20′646″496 10 cm28.04.2005N: 36°18′709″
36 m2E: 34°04′651″16 m2E: 34°01′113″
252 0 m17.07.2004N: 36°17′335″213 0 m16.07.2004N: 36°16′343″
16 m2E: 33°58′196″16 m2E: 33°57′782″
245 0 m17.07.2004N: 36°16′995″620 0 m16.05.2005N: 36°18′915″
16 m2E: 33°57′569″16 m2E: 33°58′250″
214 20 cm16.07.2004N: 36°16′378″673 0 m18.05.2005N: 36°18′032″
16 m2E: 33°57′798″16 m2E: 34°02′468″
322 0 m22.07.2004N: 36°20′712″
16 m2E: 34°04′718″
Arthrocnemo-Halocnemetum strobilaceii Oberd 1952216 40 cm16.07.2004N: 36°16′416″261 0 m19.07.2004N: 36°17′209″
25 m2E: 33°58′041″16 m2E: 33°58′680″
248 0 m17.07.2004N: 36°17′056″196 0 m15.07.2004N: 36°16′457″
16 m2E: 33°57′575″16 m2E: 33°57′424″
498 0 m28.04.2005N: 36°18′563″262 0 m19.07.2004N: 36°17′449″
16 m2E: 34°01′104″16 m2E: 33°58′632″
239 20 cm17.07.2004N: 36°16′807″260 0 m19.07.2004N: 36°17′243″
16 m2E: 33°57′421″16 m2E: 33°58′748″
478 40 cm27.04.2005N: 36°19′131″672 0 m18.05.2005N: 36°18′009″
25 m2E: 34°00′469″16 m2E: 34°02′463″
229 0 m16.04.2004N: 36°16′479″
16 m2E: 33°59′111″
Table 9. Synoptic table of vegetation according to habitats.
Table 9. Synoptic table of vegetation according to habitats.
Sand Dunes VegetationHalophytic VegetationAquatic Vegetation
Number of Sample Area4128781375947596310418138310101061618678211156691995
Number of Species919214143617718773583655068639297273344556245628636440445545373811207302629
Ammophiletea Br.-Bl. & Tüxen ex Westhoff, Dijk & Passchier 1946
Crepis foetida subsp. foetida V IIII IIIIIIIIIIVII II II IIII
Bromus rigidus II IIIIIIIIIIIIIIIIIII I II I
Centaurium pulchellum I IIIIII IIII III III IIIIII I
Centaurium erythraea subsp. rumelicum IIII I I I I IIVI I
Xanthium strumarium subsp. cavanillesii IIII IVI IIIII I I I I
Bromus psamophilus I I IIII III I I I III
Blackstonia perfoliata subsp. perfoliata I II I I I II I
Salsola kali IV III I II I
Medicago littoralis var. littoralis II I I I I II
Salsola ruthenica III I II II
Medicago marina II II I
Euphorbia peplus var. peplus I I II
Maresia nana II I
Eryngium creticum II I
Alhagi mannifera I I
Euphorbio-Ammophiletalia arundinaceae Br.-Bl. (1931) 1933 em. J.M. et J. Gehu 1988
Vulpia fasciculata V IIIIVIIIIIIIIIII II I III I
Trifolium purpureum var. purpureum III II I V IIV V II
Euphorbio-Ammophilion arundinaceae Br.-Bl. (1931) 1933 em. J.M. et J. Gehu 1988
Silene kotschyi var. maritima III IIIIII IIIIIIII III
Onopordum boissieri I I IIIII
Medicago minima var. minima I I
Euphorbia peplis II II
Cakilo maritimae-Zygophylletum albi Çakan, Düzenli & Karaömerlioğlu 2003
Zygophyllum albumVVII I II I I I
Cakile maritima I
Cypero mucronati-Agropyretum juncei Kühnholtz ex Br.-Bl. 1933
Eryngium maritimum IIIIV II I I
Elymus farctus subsp. bessarabicus var. bessarabicus VII II I
Sporobolus virginicusIVIIIIIII I IIIIII II I IV III II I
Euphorbia paraliasIIVIII I II I
Eryngio maritimi-Pancratietum maritimi Çakan, Düzenli & Karaömerlioğlu 2003
Pancratium maritimumIIVVVIVIII IIII I
Ipomoea stolonifera IV III
Otanthus maritimus II
Ambrosio maritimae-Pancratietum maritimi ass. nov.
Ambrosia maritima VIIIII IIIIIIIII IIII II I I IIII
Cypero capitati-Trachomitetum veneti ssp. sarmatiense ass. nov.
Trachomitum venetum subsp. sarmatiense V I I II
Cyperus capitatus IV IVII III III
Echio angustifolii-Ononidetum natrix ssp. hispanicae ass. nov.
Ononis natrix subsp. hispanica IVIVIVIVIIIIIIIIIIIVII II I
Echium angustifolium IIIIVIIIIII IIIVII II II
Parapholido incurvae-Thymelaeetum hirsutae ass. nov.
Thymelaea hirsuta I V I I
Parapholis incurva IIII IV IIII I IIVI IVIVIIVI IIIIIII IIIIIIVIV
Bromus rubens III V IIII IV II
Helianthemum stipulatum society
Helianthemum stipulatum V IIII II
Imperata cylindrica var. cylindrica-Trisetaria loeflingiana society
Imperata cylindrica var. cylindrica II I VI I II I II I
Trisetaria loeflingiana III I II I III III II IIIIIIIIII III
Inula viscosa society
Inula viscosa IIII IIIVIIIIII II VIIIII I
Sorgho halepense var. halepense-Myrtetum communis ssp. communis ass. nov.
Myrtus communis subsp. communis I VI III I
Sorghum halepense var. halepense VI II I I IIV I
Polygono equisetiformis-Viticetum agni-casti ass. nov.
Vitex agnus-castus IIIIIVIIIII II II
Polygonum equisetiforme II IIIIIIIIII IIIIIVIVIIIIVIVIII IIIIIVI II IIIIIIIII II
Ephedro campylopodae-Populetum euphraticae ass. nov.
Populus euphratica V
Ephedra campylopoda III IIII
Nerium oleander-Polypogon maritimus var. maritimus society
Polypogon maritimus subsp. maritimus IIIVIIIIIV I I II IIII IIIVIVII I IIII
Nerium oleander I IIIIIIIIV II
Urgino maritimi-Asphodeletum aestivi ass. nov.
Asphodelus aestivus IIII VIIIIIIIVIV II I I
Urginea maritima III I VI
Plantago cretica II V
Verbasco sinuati-Sarcopoterietum spinosi ass. nov.
Sarcopoterium spinosum III IIIIIIIIVIIIIII V IIII
Verbascum sinuatum var. sinuatum IIIIIIIIIIIIIIIIIIIIVIV II
Allium junceum subsp. tridentatum I
Salicornietea fruticosae Br.-Bl. & Tüxen ex A. & O. Bolòs 1950
Rostraria cristata var. cristata IIIIIII IIIIIII VIII IIIIIIVIII IIIIIIIIII
Suaeda prostrata subsp. prostrata II I II I IIIIIIIIIII IIII I I I
Spergularia salina I I I IIII I
Triglochin bulbosa subsp. barrelieri II I II
Carex divisa I
Petrosimonia brachiata I
Salicornion fruticosae Br.-Bl. 1933
Chlamydophora tridentata IIII V I III
Halopeplis amplexicaulis II
Limonio angustifolii-Halimionetum portulacoides ass. nov.
Halimione portulacoides I VIIIIIIIVIIVIVIVIV IIIVIIIV
Limonium angustifolium I IIIIVIIIIVII IIIIIIIIIIIIIIIII
Hordeum murinum subsp. murinum I II III I VIIIV IV II IIIIIIIIIIIII
Asterisco aquaticae-Plantaginetum coronopi ssp. commutati ass. nov.
Plantago coronopus subsp. commutata II I IIV IVVIVI IIIIII IIIIVII
Asteriscus aquaticus II V IV V
Gynandriris sisyrinchium II IIV V I
Inula crithmoides-Limonium graecum var. graecum society
Limonium graecum var. graecumIVI III I I II III I
Inula crithmoidesIVII I I V IIIVIIIVIIIII IIII I
Limonium virgatum-Carthamus tenuis ssp. tenuis society
Limonium virgatum I I II IIIIV II I I I
Carthamus tenuis subsp. tenuis IV
Salicornio europaeae-Arthrocnemetum fruticosum Çakan, Düzenli & Karaömerlioğlu 2003
Arthrocnemum fruticosum IIIII IV IIV IIIIVI IIVIVI I
Halocnemion strobilacei Gehu & Costa 1984
Tamaricetum smyrensis Seçmen & Leblebici 1996
Tamarix smyrensis V II II
Salsola soda I II II I III I
Arthrocnemo-Halocnemetum strobilaceii Oberd 1952
Halocnemum strobilaceum I IIV
Sphenopus divaricatus III IVI I III
Arthrocnemion glauci Rivas-Martínez & Costa 1984
Cakile maritimaII I I II I
Elymus farctus subsp. bessarabicus var. striatulus I I II
Cynodon dactylon var. villosus I
Arthrocnemum glaucum society
Arthrocnemum glaucum III II IIII IIV
Juncetea maritimi Br.-Bl. in Br.-Bl., Roussine & Nègre 1952
Spergularia bocconii II I IIII II II III
Puccinellia distans subsp. distans I III I
Carex extensa III
Elymus elongatus subsp. ponticus I I
Juncetalia maritimi Br.-Bl. 1931 em. Julve 1992 ex 1993
Juncion maritimi Br.-Bl. 1931 em. Julve 1992 ex 1993
Melilotus alba I IIII IIIIIV II II II
Saccharum ravennae I IIII IIIIIV II II II
Lotus corniculatus var. tenuifolius I I III III I I IVII I
Isolepis cernua I I II
Limonio gmelinii-Aeluropetum littoralis (Bab. 1979) Gehu & Uslu 1989
Aeluropus littoralis IVIII I IIIIIIIIII III II I
Cressa cretica IVIIIIIIIV II I I
Polypogono maritimi ssp. maritimi-Juncetum littoralis Çakan, Düzenli & Karaömerlioğlu 2003
Juncus littoralis III I II V IVIIIIII I
Phragmiti australis-Juncetum maritimi Vural, Duman & al 1995
Juncus maritimus I I I VIIVIII I III
Atriplici hastatae-Juncetum acuti Çakan, Düzenli & Karaömerlioğlu 2003
Juncus acutus I IIVIIII II II
Atriplex hastata II II I II I
Aster subulatus I I IIIIIIIII II I
Spergularia maritima I II I
Arthrocnemo fruticosii-Tamaricetum tetragynae ass. nov.
Tamarix tetragyna I V
Salicornio fragilis-Tamaricetum tetrandrae ass. nov.
Tamarix tetrandra I V I I
Salicornia fragilis II IIIIIIIIIII I II I
Schoeno nigricantis-Saccharetum ravennae Çakan, Düzenli & Karaömerlioğlu 2003
Saccharum ravennae IIII I V
Tamarix parviflora-Limonium angustifolium society
Tamarix parviflora V I
Phragmito-Magnocaricetea Klika in Klika & Novák 1941
Lythrum salicaria I III II
Lycopus europaeus III II
Bolboschoenus maritimus subsp maritimus I I
Cyperus longus I
Eleocharis palustris I
Nasturtio-Glycerietalia Piggn. 1954
Glycerio-Sparganion Br. Bl. Et Sissingh in Boer 1942
Ludwigio stoloniferae-Nasturtietum officinalis ass. nov.
Nasturtium officinale IV I
Ludwigia stolonifera IV I
Phragmition communis Schmale 1939
Paspalum paspalodes I IIIII
Cyperus serotinus I
Ruppio cirrhosae-Schoenoplectetum litoralis ass. nov
Schoenoplectus litoralis II II I IIIIVII II
Ruppia cirrhosa IIII
Bolboscoeno maritimi var. cymos-Phragmitetum australis Boridi &Balog 1970
Phragmites australis I I I IIIV IVIIIIVIIIVIIIV IIIII VIIIVVVV
Bolboschoenus maritimus var. cymosus I VI IIIIIIIIIIIIIIIII III IIIIVIIII
Typha angustifolia-Juncellus laevigatus society
Typha angustifolia III I IVIII IV
Juncellus laevigatus I I I III
Typha domingensis-Juncus pygmaeus society
Typha domingensis I I V
Juncus pygmaeus II I IIIII I I IIII III II
Potametea Klika in Klika & Novák 1941
Potamogeton panormitanus IIIII
Potamogeton crispus I
Potamogetono pectinati-Ceratophylletum demersi (Hild & Rehnelt 1965) Passarge 1995
Ceratophyllum demersum VIII II
Potamogeton pectinatus VIII III
Potamogeton nodosus II III
Molinio-Juncetea Br.-Bl. (1931) 1947
Holoschoenetalia Br.-Bl. (1931) 1947
Salicornia europaeaII III II IIII IIIIII IIII I I
Molinio-Holoschoenion Br.-Bl. (1931) 1947
Scirpoides holoschoenus I IIIIIIIIIIIIII IV I VIIIII I
Eriantho-Schoenotum nigricantis (Pign. 1953) Gehu 1984
Schoenus nigricans II I I IVI
Plantago maritimaIV II I I I I I I I III
Stellarietea mediae Tüxen, Lohmeyer & Preising ex von Rochow 1951
Digitaria sanguinalis IIII II IIIIIIVI I I II IIII II I
Anagallis arvensis var. caerulea III II IIII I III IIIV II I II
Lagurus ovatus IIIIIIIIIIIIII VIIIIIIIII V I I
Bromus tectorum IIIIIIIII IIIIIIII I II
Brassica tournefortii I I I IIIIIII I I
Crepis foetida subsp. commutata II IIII I I I I I
Senecio vulgaris III IV III
Anagallis arvensis var. arvensis I I II II I I
Panicum repens I II I
Rhamnus oleoides subsp. graecus VI II I
Sonchus oleraceus I I I
Raphanus raphanistrum IV I
Cardaria draba I I
Capsella bursa-pastoris I
Lamium amplexicaule I
Sisymbrietalia officinalis J. Tüxen in Lohmeyer & al. 1962 em. Rivas-Martínez, Báscones, T.E. Díaz, Fernández-González & Loidi 1991
Crepis vesicaria IIIIII II I III IIIII VI I I III
Geranium molle subsp. molle I I I II
Hordeion leporini Br.-Bl. in Br.-Bl., Gajewski, Wraber & Walas 1936 corr. O. Bolòs 1962
Plantago lagopus II I II IIIV IV VI III I
Chrysanthemum coronarium I I
Laguro ovati-Bromion rigidi Gahu et Gehu Franck 1985
Silene colorata III IV II
Saginetea maritimae Westhoff, Van Leeuwen & Adriani 1962
Bupleurum orientale I IIIII IIIII IIII
Catapodium rigidum subsp. rigidum var. rigidum IV IIVIIIIIIIIIII II I I
Crypsis faktorovskyi I I I I
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Boz, D. Vegetation Analysis of Wetland Ecosystems in Southern Turkey Using the Fuzzy Means Method. Biology 2025, 14, 710. https://doi.org/10.3390/biology14060710

AMA Style

Boz D. Vegetation Analysis of Wetland Ecosystems in Southern Turkey Using the Fuzzy Means Method. Biology. 2025; 14(6):710. https://doi.org/10.3390/biology14060710

Chicago/Turabian Style

Boz, Deniz. 2025. "Vegetation Analysis of Wetland Ecosystems in Southern Turkey Using the Fuzzy Means Method" Biology 14, no. 6: 710. https://doi.org/10.3390/biology14060710

APA Style

Boz, D. (2025). Vegetation Analysis of Wetland Ecosystems in Southern Turkey Using the Fuzzy Means Method. Biology, 14(6), 710. https://doi.org/10.3390/biology14060710

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop