IL-1 Superfamily Across 400+ Species: Therapeutic Targets and Disease Implications
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Construction of the Species Tree
2.2. Preparation of Genome and Annotation Files
2.3. Identification and Phylogenetic Analysis of the IL-1s and IL-1Rs
2.4. Protein Family Clustering and Classification
2.5. Analysis of the IL-1s and IL-1Rs Variants
3. Results
3.1. Identification and Distribution of IL-1s and IL-1Rs in Animal Class
3.2. Evolutionary of IL-1s and IL-1s Across Several Groups
3.3. Main Cross-Species Characteristics of IL-1s and IL-1Rs
3.4. Key Targets of IL-1s
4. Discussion
4.1. The Ancient Origin of IL-1s and IL-1Rs
4.2. The Association of IL-1s and IL-1Rs with Diseases
4.3. Application Prospects and Limitations of Cross-Species Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boraschi, D. What Is IL-1 for? The Functions of Interleukin-1 across Evolution. Front. Immunol. 2022, 13, 872155. [Google Scholar] [CrossRef] [PubMed]
- Kaus, K.; Olson, R. Structure and Glycan-Binding Properties of the Vibrio Vulnificus Hemolysin B-Trefoil Lectin. Biophys. J. 2014, 106, 87a. [Google Scholar] [CrossRef]
- Heuck, A.P.; Tweten, R.K.; Johnson, A.E. β-Barrel Pore-Forming Toxins: Intriguing Dimorphic Proteins. Biochemistry 2001, 40, 9065–9073. [Google Scholar] [CrossRef] [PubMed]
- Murzin, A.G.; Lesk, A.M.; Chothia, C. Beta-Trefoil Fold. Patterns of Structure and Sequence in the Kunitz Inhibitors Interleukins-1 Beta and 1 Alpha and Fibroblast Growth Factors. J. Mol. Biol. 1992, 223, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. Overview of the IL-1 Family in Innate Inflammation and Acquired Immunity. Immunol. Rev. 2018, 281, 8–27. [Google Scholar] [CrossRef]
- Supino, D.; Minute, L.; Mariancini, A.; Riva, F.; Magrini, E.; Garlanda, C. Negative Regulation of the IL-1 System by IL-1R2 and IL-1R8: Relevance in Pathophysiology and Disease. Front. Immunol. 2022, 13, 804641. [Google Scholar] [CrossRef]
- Boraschi, D.; Italiani, P.; Weil, S.; Martin, M.U. The Family of the Interleukin-1 Receptors. Immunol. Rev. 2018, 281, 197–232. [Google Scholar] [CrossRef]
- Mora, J.; Schlemmer, A.; Wittig, I.; Richter, F.; Putyrski, M.; Frank, A.-C.; Han, Y.; Jung, M.; Ernst, A.; Weigert, A.; et al. Interleukin-38 Is Released from Apoptotic Cells to Limit Inflammatory Macrophage Responses. J. Mol. Cell Biol. 2016, 8, 426–438. [Google Scholar] [CrossRef]
- Storz, J.F. Causes of Molecular Convergence and Parallelism in Protein Evolution. Nat. Rev. Genet. 2016, 17, 239–250. [Google Scholar] [CrossRef]
- Gibson, M.S.; Kaiser, P.; Fife, M. The Chicken IL-1 Family: Evolution in the Context of the Studied Vertebrate Lineage. Immunogenetics 2014, 66, 427–438. [Google Scholar] [CrossRef]
- Huising, M.O.; Stet, R.J.M.; Savelkoul, H.F.J.; Verburg-van Kemenade, B.M.L. The Molecular Evolution of the Interleukin-1 Family of Cytokines; IL-18 in Teleost Fish. Dev. Comp. Immunol. 2004, 28, 395–413. [Google Scholar] [CrossRef]
- Rivers-Auty, J.; Daniels, M.J.D.; Colliver, I.; Robertson, D.L.; Brough, D. Redefining the Ancestral Origins of the Interleukin-1 Superfamily. Nat. Commun. 2018, 9, 1156. [Google Scholar] [CrossRef] [PubMed]
- Behzadi, P.; Sameer, A.S.; Nissar, S.; Banday, M.Z.; Gajdács, M.; García-Perdomo, H.A.; Akhtar, K.; Pinheiro, M.; Magnusson, P.; Sarshar, M.; et al. The Interleukin-1 (IL-1) Superfamily Cytokines and Their Single Nucleotide Polymorphisms (SNPs). J. Immunol. Res. 2022, 2022, 2054431. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, P.C.J.; Benton, M.J. Rocks and Clocks: Calibrating the Tree of Life Using Fossils and Molecules. Trends Ecol. Evol. 2007, 22, 424–431. [Google Scholar] [CrossRef]
- Gauthier, J.; Kluge, A.G.; Rowe, T. Amniote Phylogeny and the Importance of Fossils. Cladistics 1988, 4, 105–209. [Google Scholar] [CrossRef] [PubMed]
- McKusick, V.A. The Anatomy of the Human Genome: A Neo-Vesalian Basis for Medicine in the 21st Century. JAMA 2001, 286, 2289–2295. [Google Scholar] [CrossRef]
- Wang, T.; Bird, S.; Koussounadis, A.; Holland, J.W.; Carrington, A.; Zou, J.; Secombes, C.J. Identification of a Novel IL-1 Cytokine Family Member in Teleost Fish. J. Immunol. 2009, 183, 962–974. [Google Scholar] [CrossRef]
- Hedges, S.B.; Marin, J.; Suleski, M.; Paymer, M.; Kumar, S. Tree of Life Reveals Clock-like Speciation and Diversification. Mol. Biol. Evol. 2015, 32, 835–845. [Google Scholar] [CrossRef]
- Shaw, C.H.; Gao, G.; Wiens, G.D. Differential Expression and Evolution of Three Tandem, Interleukin-1 Receptor-like 1 Genes in Rainbow Trout (Oncorhynchus Mykiss). Dev. Comp. Immunol. 2018, 87, 193–203. [Google Scholar] [CrossRef]
- Galozzi, P.; Bindoli, S.; Doria, A.; Sfriso, P. The Revisited Role of Interleukin-1 Alpha and Beta in Autoimmune and Inflammatory Disorders and in Comorbidities. Autoimmun. Rev. 2021, 20, 102785. [Google Scholar] [CrossRef]
- Calabrese, L.; Fiocco, Z.; Satoh, T.K.; Peris, K.; French, L.E. Therapeutic Potential of Targeting Interleukin-1 Family Cytokines in Chronic Inflammatory Skin Diseases. Br. J. Dermatol. 2022, 186, 925–941. [Google Scholar] [CrossRef] [PubMed]
- González, L.; Rivera, K.; Andia, M.E.; Martínez Rodriguez, G. The IL-1 Family and Its Role in Atherosclerosis. Int. J. Mol. Sci. 2022, 24, 17. [Google Scholar] [CrossRef]
- Narros-Fernández, P.; Chomanahalli Basavarajappa, S.; Walsh, P.T. Interleukin-1 Family Cytokines at the Crossroads of Microbiome Regulation in Barrier Health and Disease. FEBS J. 2024, 291, 1849–1869. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Gao, D.S.; Shoush, J.; Lu, B. The IL-1 Family in Tumorigenesis and Antitumor Immunity. Semin. Cancer Biol. 2022, 86, 280–295. [Google Scholar] [CrossRef]
- Tong, Y.; Cao, Y.; Jin, T.; Huang, Z.; He, Q.; Mao, M. Role of Interleukin-1 Family in Bone Metastasis of Prostate Cancer. Front. Oncol. 2022, 12, 951167. [Google Scholar] [CrossRef]
- Landuzzi, L.; Ruzzi, F.; Pellegrini, E.; Lollini, P.-L.; Scotlandi, K.; Manara, M.C. IL-1 Family Members in Bone Sarcomas. Cells 2024, 13, 233. [Google Scholar] [CrossRef] [PubMed]
- Maculewicz, E.; Antkowiak, B.; Antkowiak, O.; Borecka, A.; Mastalerz, A.; Leońska-Duniec, A.; Humińska-Lisowska, K.; Michałowska-Sawczyn, M.; Garbacz, A.; Lorenz, K.; et al. The Interactions between Interleukin-1 Family Genes: IL1A, IL1B, IL1RN, and Obesity Parameters. BMC Genom. 2022, 23, 112. [Google Scholar] [CrossRef]
- Iznardo, H.; Puig, L. IL-1 Family Cytokines in Inflammatory Dermatoses: Pathogenetic Role and Potential Therapeutic Implications. Int. J. Mol. Sci. 2022, 23, 9479. [Google Scholar] [CrossRef]
- Wang, J.; He, M.; Li, H.; Chen, Y.; Nie, X.; Cai, Y.; Xie, R.; Li, L.; Chen, P.; Sun, Y.; et al. Soluble ST2 Is a Sensitive and Specific Biomarker for Fulminant Myocarditis. J. Am. Heart Assoc. 2022, 11, e024417. [Google Scholar] [CrossRef]
- Yousuf, A.J.; Mohammed, S.; Carr, L.; Yavari Ramsheh, M.; Micieli, C.; Mistry, V.; Haldar, K.; Wright, A.; Novotny, P.; Parker, S.; et al. Astegolimab, an Anti-ST2, in Chronic Obstructive Pulmonary Disease (COPD-ST2OP): A Phase 2a, Placebo-Controlled Trial. Lancet Respir. Med. 2022, 10, 469–477. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, Z.; Liu, Z. Role of IL-33-ST2 Pathway in Regulating Inflammation: Current Evidence and Future Perspectives. J. Transl. Med. 2023, 21, 902. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhou, X.; Wong, H.Y.; Ouyang, L.; Ip, F.C.F.; Chau, V.M.N.; Lau, S.-F.; Wu, W.; Wong, D.Y.K.; Seo, H.; et al. An IL1RL1 Genetic Variant Lowers Soluble ST2 Levels and the Risk Effects of APOE-Ε4 in Female Patients with Alzheimer’s Disease. Nat. Aging 2022, 2, 616–634. [Google Scholar] [CrossRef]
- Shakerian, L.; Kolahdooz, H.; Garousi, M.; Keyvani, V.; Kamal Kheder, R.; Abdulsattar Faraj, T.; Yazdanpanah, E.; Esmaeili, S.-A. IL-33/ST2 Axis in Autoimmune Disease. Cytokine 2022, 158, 156015. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Ma, M.; He, Y. Soluble ST2 in Coronary Artery Disease: Clinical Biomarkers and Treatment Guidance. Front. Cardiovasc. Med. 2022, 9, 924461. [Google Scholar] [CrossRef]
- Riccardi, M.; Myhre, P.L.; Zelniker, T.A.; Metra, M.; Januzzi, J.L.; Inciardi, R.M. Soluble ST2 in Heart Failure: A Clinical Role beyond B-Type Natriuretic Peptide. J. Cardiovasc. Dev. Dis. 2023, 10, 468. [Google Scholar] [CrossRef] [PubMed]
- Alieva, A.M.; Pinchuk, T.V.; Almazova, I.I.; Ettinger, O.A.; Valiev, R.K.; Batov, M.A.; Nikitin, I.G. Clinical Value of Blood Biomarker ST2 in Patients with Chronic Heart Failure. Cons. Medicum 2021, 23, 522–526. [Google Scholar] [CrossRef]
- García-García, M.L.; Tovilla-Zárate, C.A.; Villar-Soto, M.; Juárez-Rojop, I.E.; González-Castro, T.B.; Genis-Mendoza, A.D.; Ramos-Méndez, M.Á.; López-Nárvaez, M.L.; Saucedo-Osti, A.S.; Ruiz-Quiñones, J.A.; et al. Fluoxetine Modulates the Pro-Inflammatory Process of IL-6, IL-1β and TNF-α Levels in Individuals with Depression: A Systematic Review and Meta-Analysis. Psychiatry Res. 2022, 307, 114317. [Google Scholar] [CrossRef]
- Niklander, S.E.; Murdoch, C.; Hunter, K.D. IL-1/IL-1R Signaling in Head and Neck Cancer. Front Oral Health 2021, 2, 722676. [Google Scholar] [CrossRef]
- Gottschlich, A.; Endres, S.; Kobold, S. Therapeutic Strategies for Targeting IL-1 in Cancer. Cancers 2021, 13, 477. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A Tool for Automated Alignment Trimming in Large-Scale Phylogenetic Analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Zhang, C.; Rabiee, M.; Sayyari, E.; Mirarab, S. ASTRAL-III: Polynomial Time Species Tree Reconstruction from Partially Resolved Gene Trees. BMC Bioinf. 2018, 19, 153. [Google Scholar] [CrossRef] [PubMed]
- Dainat, J.; Hereñú, D.; Pucholt, P. AGAT: Another Gff Analysis Toolkit to Handle Annotations in Any GTF/GFF Format. Zenodo 2020. Available online: https://www.doi.org/10.5281/zenodo.3552717 (accessed on 14 May 2025). [CrossRef]
- Pertea, G.; Pertea, M. GFF Utilities: GffRead and GffCompare. F1000Research 2020, 9, 304. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The Protein Families Database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Eddy, S.R. Accelerated Profile HMM Searches. PLOS Comput. Biol. 2011, 7, e1002195. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Almeida, L.V.; Reis-Cunha, J.L.; Bartholomeu, D.C. Dgfr: An R Package to Assess Sequence Diversity of Gene Families. BMC Bioinform. 2024, 25, 207. [Google Scholar] [CrossRef]
- Yu, G.; Smith, D.K.; Zhu, H.; Guan, Y.; Lam, T.T.-Y. Ggtree: An r Package for Visualization and Annotation of Phylogenetic Trees with Their Covariates and Other Associated Data. Methods Ecol. Evol. 2017, 8, 28–36. [Google Scholar] [CrossRef]
- Xu, S.; Dai, Z.; Guo, P.; Fu, X.; Liu, S.; Zhou, L.; Tang, W.; Feng, T.; Chen, M.; Zhan, L.; et al. ggtreeExtra: Compact Visualization of Richly Annotated Phylogenetic Data. Mol. Biol. Evol. 2021, 38, 4039–4042. [Google Scholar] [CrossRef]
- Wilkins, D. Gggenes: Draw Gene Arrow Maps in “Ggplot2”; CRAN: Windhoek, Namibia, 2023. [Google Scholar]
- Bodenhofer, U.; Bonatesta, E.; Horejš-Kainrath, C.; Hochreiter, S. Msa: An R Package for Multiple Sequence Alignment. Bioinformatics 2015, 31, 3997–3999. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: A Multiple Sequence Alignment Method with Reduced Time and Space Complexity. BMC Bioinf. 2004, 5, 113. [Google Scholar] [CrossRef] [PubMed]
- Crooks, G.E.; Hon, G.; Chandonia, J.-M.; Brenner, S.E. WebLogo: A Sequence Logo Generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef]
- Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.; Verkuil, R.; Kabeli, O.; Shmueli, Y.; et al. Evolutionary-Scale Prediction of Atomic-Level Protein Structure with a Language Model. Science 2023, 379, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shine, M.; Pyle, A.M.; Zhang, Y. US-Align: Universal Structure Alignments of Proteins, Nucleic Acids, and Macromolecular Complexes. Nat. Methods 2022, 19, 1109–1115. [Google Scholar] [CrossRef]
- Meng, E.C.; Goddard, T.D.; Pettersen, E.F.; Couch, G.S.; Pearson, Z.J.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Tools for Structure Building and Analysis. Protein Sci. Publ. Protein Soc. 2023, 32, e4792. [Google Scholar] [CrossRef]
- Freigang, J.; Proba, K.; Leder, L.; Diederichs, K.; Sonderegger, P.; Welte, W. The Crystal Structure of the Ligand Binding Module of Axonin-1/TAG-1 Suggests a Zipper Mechanism for Neural Cell Adhesion. Cell 2000, 101, 425–433. [Google Scholar] [CrossRef]
- Radons, J.; Dove, S.; Neumann, D.; Altmann, R.; Botzki, A.; Martin, M.U.; Falk, W. The Interleukin 1 (IL-1) Receptor Accessory Protein Toll/IL-1 Receptor Domain: Analysis of Putative Interaction Sites in Vitro Mutagenesis and Molecular Modeling. J. Biol. Chem. 2003, 278, 49145–49153. [Google Scholar] [CrossRef]
- Liu, X.; Hammel, M.; He, Y.; Tainer, J.A.; Jeng, U.-S.; Zhang, L.; Wang, S.; Wang, X. Structural Insights into the Interaction of IL-33 with Its Receptors. Proc. Natl. Acad. Sci. USA 2013, 110, 14918–14923. [Google Scholar] [CrossRef]
- Apte, R.N.; Voronov, E. Is Interleukin-1 a Good or Bad “guy” in Tumor Immunobiology and Immunotherapy? Immunol. Rev. 2008, 222, 222–241. [Google Scholar] [CrossRef]
- Kwak, A.; Lee, Y.; Kim, H.; Kim, S. Intracellular Interleukin (IL)-1 Family Cytokine Processing Enzyme. Arch. Pharm. Res. 2016, 39, 1556–1564. [Google Scholar] [CrossRef]
- El Kasmi, F.; Chung, E.-H.; Anderson, R.G.; Li, J.; Wan, L.; Eitas, T.K.; Gao, Z.; Dangl, J.L. Signaling from the Plasma-Membrane Localized Plant Immune Receptor RPM1 Requires Self-Association of the Full-Length Protein. Proc. Natl. Acad. Sci. USA 2017, 114, E7385–E7394. [Google Scholar] [CrossRef] [PubMed]
- Carta, S.; Lavieri, R.; Rubartelli, A. Different Members of the IL-1 Family Come Out in Different Ways: DAMPs vs. Cytokines? Front. Immunol. 2013, 4, 123. [Google Scholar] [CrossRef]
- Gosavi, S.; Whitford, P.C.; Jennings, P.A.; Onuchic, J.N. Extracting Function from a Beta-Trefoil Folding Motif. Proc. Natl. Acad. Sci. USA 2008, 105, 10384–10389. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-S.; Chen, W.-T.; Lee, L.-H.; Chen, Y.-W.; Chang, S.-Y.; Lyu, P.-C.; Yin, H.-S. Structural and Functional Comparison of Cytokine Interleukin-1 Beta from Chicken and Human. Mol. Immunol. 2011, 48, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Kimura, R.; Aumpuchin, P.; Hamaue, S.; Shimomura, T.; Kikuchi, T. Analyses of the Folding Sites of Irregular β-Trefoil Fold Proteins through Sequence-Based Techniques and Gō-Model Simulations. BMC Mol. Cell Biol. 2020, 21, 28. [Google Scholar] [CrossRef]
- Bird, S.; Zou, J.; Wang, T.; Munday, B.; Cunningham, C.; Secombes, C.J. Evolution of Interleukin-1β. Cytokine Growth Factor Rev. 2002, 13, 483–502. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Zhu, L.; Huang, C.; Chen, W.; Ling, Z.; Zhu, S.; Feng, X.; Yi, C.; Gu, W.; et al. Thrombin Cleaves IL-33 and Modulates IL-33-activated Allergic Lung Inflammation. Allergy 2022, 77, 2104–2120. [Google Scholar] [CrossRef]
- Wellens, R.; Tapia, V.S.; Seoane, P.I.; Bennett, H.; Adamson, A.; Coutts, G.; Rivers-Auty, J.; Lowe, M.; Green, J.P.; Lopez-Castejon, G.; et al. Proximity Labelling of Pro-Interleukin-1α Reveals Evolutionary Conserved Nuclear Interactions. Nat. Commun. 2024, 15, 6750. [Google Scholar] [CrossRef]
- Miller, D.K.; Calaycay, J.R.; Chapman, K.T.; Howard, A.D.; Kostura, M.J.; Molineaux, S.M.; Thornberry, N.A. The IL-1 Beta Converting Enzyme as a Therapeutic Target. Ann. N. Y. Acad. Sci. 1993, 696, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Fantuzzi, G.; Dinarello, C.A. Interleukin-18 and Interleukin-1 Beta: Two Cytokine Substrates for ICE (Caspase-1). J. Clin. Immunol. 1999, 19, 1–11. [Google Scholar] [CrossRef]
- Koussounadis, A.; Ritchie, D.; Kemp, G.; Secombes, C. Analysis of Fish IL-1β and Derived Peptide Sequences Indicates Conserved Structures with Species-Specific IL-1 Receptor Binding: Implications for Pharmacological Design. Curr. Pharm. Des. 2004, 10, 3857–3871. [Google Scholar] [CrossRef]
- Young, L.J.; Harrison, G.A. Molecular Characterization of Interleukin-1Beta in the Tammar Wallaby (Macropus Eugenii). J. Vet. Med. Sci. 2010, 72, 1521–1526. [Google Scholar] [CrossRef] [PubMed]
- Luís, J.P.; Simões, C.J.V.; Brito, R.M.M. The Therapeutic Prospects of Targeting IL-1R1 for the Modulation of Neuroinflammation in Central Nervous System Disorders. Int. J. Mol. Sci. 2022, 23, 1731. [Google Scholar] [CrossRef] [PubMed]
- Hasel De Carvalho, E.; Bartok, E.; Stölting, H.; Bajoghli, B.; Leptin, M. Revisiting the Origin of Interleukin 1 in Anamniotes and Sub-Functionalization of Interleukin 1 in Amniotes. Open Biol. 2022, 12, 220049. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, L.; Qi, J.; Zhang, N.; Zhang, L.; Yao, S.; Wu, Y.; Jiang, B.; Wang, Z.; Yuan, H.; et al. Discovery and Analysis of Invertebrate IgVJ-C2 Structure from Amphioxus Provides Insight into the Evolution of the Ig Superfamily. J. Immunol. 2018, 200, 2869–2881. [Google Scholar] [CrossRef]
- Hibino, T.; Loza-Coll, M.; Messier, C.; Majeske, A.J.; Cohen, A.H.; Terwilliger, D.P.; Buckley, K.M.; Brockton, V.; Nair, S.V.; Berney, K.; et al. The Immune Gene Repertoire Encoded in the Purple Sea Urchin Genome. Dev. Biol. 2006, 300, 349–365. [Google Scholar] [CrossRef]
- Beck, G.; Ellis, T.W.; Truong, N. Characterization of an IL-1 Receptor from Asterias Forbesi Coelomocytes. Cell. Immunol. 2000, 203, 66–73. [Google Scholar] [CrossRef]
- Rast, J.P.; Messier-Solek, C. Marine Invertebrate Genome Sequences and Our Evolving Understanding of Animal Immunity. Biol. Bull. 2008, 214, 274–283. [Google Scholar] [CrossRef]
- Boraschi, D.; Lucchesi, D.; Hainzl, S.; Leitner, M.; Maier, E.; Mangelberger, D.; Oostingh, G.J.; Pfaller, T.; Pixner, C.; Posselt, G.; et al. IL-37: A New Anti-Inflammatory Cytokine of the IL-1 Family. Eur. Cytokine Netw. 2011, 22, 127–147. [Google Scholar] [CrossRef] [PubMed]
- Stenerson, M.; Dufendach, K.; Aksentijevich, I.; Brady, J.; Austin, J.; Reed, A.M. The First Reported Case of Compound Heterozygous IL1RN Mutations Causing Deficiency of the Interleukin-1 Receptor Antagonist. Arthritis Rheum. 2011, 63, 4018–4022. [Google Scholar] [CrossRef] [PubMed]
- Aksentijevich, I.; Masters, S.L.; Ferguson, P.J.; Dancey, P.; Frenkel, J.; van Royen-Kerkhoff, A.; Laxer, R.; Tedgård, U.; Cowen, E.W.; Pham, T.-H.; et al. An Autoinflammatory Disease with Deficiency of the Interleukin-1-Receptor Antagonist. N. Engl. J. Med. 2009, 360, 2426–2437. [Google Scholar] [CrossRef] [PubMed]
- Kopf, M.; Bachmann, M.F.; Marsland, B.J. Averting Inflammation by Targeting the Cytokine Environment. Nat. Rev. Drug Discov. 2010, 9, 703–718. [Google Scholar] [CrossRef]
- Nouri Barkestani, M.; Naserian, S.; Khoddam, F.; Shamdani, S.; Bambai, B. Optimization of IL-1RA Structure to Achieve a Smaller Protein with a Higher Affinity to Its Receptor. Sci. Rep. 2022, 12, 7483. [Google Scholar] [CrossRef]
- Huang, B.; Coventry, B.; Borowska, M.T.; Arhontoulis, D.C.; Exposit, M.; Abedi, M.; Jude, K.M.; Halabiya, S.F.; Allen, A.; Cordray, C.; et al. De Novo Design of Miniprotein Antagonists of Cytokine Storm Inducers. Nat. Commun. 2024, 15, 7064. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Li, D.; Luo, K.; Chen, B.; Hao, T.; Li, X.; Guo, D.; Dong, Y.; Ning, Y. IL-1 Superfamily Across 400+ Species: Therapeutic Targets and Disease Implications. Biology 2025, 14, 561. https://doi.org/10.3390/biology14050561
Wang W, Li D, Luo K, Chen B, Hao T, Li X, Guo D, Dong Y, Ning Y. IL-1 Superfamily Across 400+ Species: Therapeutic Targets and Disease Implications. Biology. 2025; 14(5):561. https://doi.org/10.3390/biology14050561
Chicago/Turabian StyleWang, Weibin, Dawei Li, Kaiyong Luo, Baozheng Chen, Tingting Hao, Xuzhen Li, Dazhong Guo, Yang Dong, and Ya Ning. 2025. "IL-1 Superfamily Across 400+ Species: Therapeutic Targets and Disease Implications" Biology 14, no. 5: 561. https://doi.org/10.3390/biology14050561
APA StyleWang, W., Li, D., Luo, K., Chen, B., Hao, T., Li, X., Guo, D., Dong, Y., & Ning, Y. (2025). IL-1 Superfamily Across 400+ Species: Therapeutic Targets and Disease Implications. Biology, 14(5), 561. https://doi.org/10.3390/biology14050561