The Role of Somatostatin in the Gastrointestinal Tract
Simple Summary
Abstract
1. Introduction
2. Methodology
3. Somatostatin and Its Receptors in the GI Tract
3.1. Somatostatin Production and Secretion
3.2. Somatostatin Receptors in the Gut
4. Effects of Somatostatin on Different GI Functions
4.1. Motility
4.2. Gastric Acid Secretion
4.3. Regulation of Hormone Secretion and Electrolyte Distribution
4.4. Intestinal Mucosal Barrier
5. Somatostatin and GI Diseases
5.1. Variceal Bleeding
5.2. Angiodysplasias
5.3. Gastrointestinal Neuroendocrine Tumors
5.4. Treatment and Imaging of Other GI Neoplasias
5.5. Dumping Syndrome
5.6. Refractory Diarrhea and Digestive Fistulae
5.7. Limitations of Somatostatin Analogs in Clinical Practice
6. Study Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Fleming, M.A., 2nd; Ehsan, L.; Moore, S.R.; Levin, D.E. The Enteric Nervous System and Its Emerging Role as a Therapeutic Target. Gastroenterol. Res. Pract. 2020, 2020, 8024171. [Google Scholar] [CrossRef]
- Bayliss, W.M.; Starling, E.H. The mechanism of pancreatic secretion. J. Physiol. 1902, 28, 325–353. [Google Scholar] [CrossRef] [PubMed]
- Rehfeld, J.F. Gastrointestinal hormones and their targets. Adv. Exp. Med. Biol. 2014, 817, 157–175. [Google Scholar] [CrossRef]
- Bany Bakar, R.; Reimann, F.; Gribble, F.M. The intestine as an endocrine organ and the role of gut hormones in metabolic regulation. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 784–796. [Google Scholar] [CrossRef] [PubMed]
- Corleto, V.D. Somatostatin and the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 63–68. [Google Scholar] [CrossRef]
- Cho, H.; Lim, J. The emerging role of gut hormones. Mol. Cells 2024, 47, 100126. [Google Scholar] [CrossRef] [PubMed]
- Ampofo, E.; Nalbach, L.; Menger, M.D.; Laschke, M.W. Regulatory Mechanisms of Somatostatin Expression. Int. J. Mol. Sci. 2020, 21, 4170. [Google Scholar] [CrossRef]
- Warren, T.G.; Shields, D. Expression of preprosomatostatin in heterologous cells: Biosynthesis, posttranslational processing, and secretion of mature somatostatin. Cell 1984, 39, 547–555. [Google Scholar] [CrossRef]
- Brereton, M.F.; Vergari, E.; Zhang, Q.; Clark, A. Alpha-, Delta- and PP-cells: Are They the Architectural Cornerstones of Islet Structure and Co-ordination? J. Histochem. Cytochem. 2015, 63, 575–591. [Google Scholar] [CrossRef]
- Urban-Ciecko, J.; Barth, A.L. Somatostatin-expressing neurons in cortical networks. Nat. Rev. Neurosci. 2016, 17, 401–409. [Google Scholar] [CrossRef]
- Stengel, A.; Taché, Y. Central somatostatin signaling and regulation of food intake. Ann. N. Y. Acad. Sci. 2019, 1455, 98–104. [Google Scholar] [CrossRef]
- Gonkowski, S.; Rytel, L. Somatostatin as an Active Substance in the Mammalian Enteric Nervous System. Int. J. Mol. Sci. 2019, 20, 4461. [Google Scholar] [CrossRef] [PubMed]
- Adriaenssens, A.; Lam, B.Y.; Billing, L.; Skeffington, K.; Sewing, S.; Reimann, F.; Gribble, F. A Transcriptome-Led Exploration of Molecular Mechanisms Regulating Somatostatin-Producing D-Cells in the Gastric Epithelium. Endocrinology 2015, 156, 3924–3936. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Esteras, P.; Harrison, F.A.; Brown, D. The localization of somatostatin-like immunoreactivity in the alimentary tract of the sheep with observations on the effect of an infection with the parasite Haemonchus contortus. Exp. Physiol. 1990, 75, 779–789. [Google Scholar] [CrossRef]
- Arrojo, E.D.R.; Jacob, S.; García-Prieto, C.F.; Zheng, X.; Fukuda, M.; Nhu, H.T.T.; Stelmashenko, O.; Peçanha, F.L.M.; Rodriguez-Diaz, R.; Bushong, E.; et al. Structural basis for delta cell paracrine regulation in pancreatic islets. Nat. Commun. 2019, 10, 3700. [Google Scholar] [CrossRef]
- Rorsman, P.; Huising, M.O. The somatostatin-secreting pancreatic δ-cell in health and disease. Nat. Rev. Endocrinol. 2018, 14, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Lublin, A.L.; Diehl, N.L.; Hochgeschwender, U. Isolation and characterization of the gene encoding the type 5 mouse (Mus musculus) somatostatin receptor (msst5). Gene 1997, 195, 63–66. [Google Scholar] [CrossRef]
- Rohrer, L.; Raulf, F.; Bruns, C.; Buettner, R.; Hofstaedter, F.; Schüle, R. Cloning and characterization of a fourth human somatostatin receptor. Proc. Natl. Acad. Sci. USA 1993, 90, 4196–4200. [Google Scholar] [CrossRef]
- Yamada, Y.; Post, S.R.; Wang, K.; Tager, H.S.; Bell, G.I.; Seino, S. Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc. Natl. Acad. Sci. USA 1992, 89, 251–255. [Google Scholar] [CrossRef]
- Günther, T.; Tulipano, G.; Dournaud, P.; Bousquet, C.; Csaba, Z.; Kreienkamp, H.J.; Lupp, A.; Korbonits, M.; Castaño, J.P.; Wester, H.J.; et al. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol. Rev. 2018, 70, 763–835. [Google Scholar] [CrossRef]
- Alexander, S.P.; Christopoulos, A.; Davenport, A.P.; Kelly, E.; Marrion, N.V.; Peters, J.A.; Faccenda, E.; Harding, S.D.; Pawson, A.J.; Sharman, J.L.; et al. The concise guide to pharmacology 2017/18: G protein-coupled receptors. Br. J. Pharmacol. 2017, 174, S17–S129. [Google Scholar] [CrossRef] [PubMed]
- Kraus, J.; Wöltje, M.; Schönwetter, N.; Höllt, V. Gene structure and regulation of the somatostatin receptor type 2. J. Physiol. Paris 2000, 94, 199–204. [Google Scholar] [CrossRef]
- Kimura, N.; Tomizawa, S.; Arai, K.N.; Osamura, R.Y.; Kimura, N. Characterization of 5′-flanking region of rat somatostatin receptor sst2 gene: Transcriptional regulatory elements and activation by Pitx1 and estrogen. Endocrinology 2001, 142, 1427–1441. [Google Scholar] [CrossRef]
- Zhao, W.; Han, S.; Qiu, N.; Feng, W.; Lu, M.; Zhang, W.; Wang, M.; Zhou, Q.; Chen, S.; Xu, W.; et al. Structural insights into ligand recognition and selectivity of somatostatin receptors. Cell Res. 2022, 32, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Vitali, E.; Piccini, S.; Trivellin, G.; Smiroldo, V.; Lavezzi, E.; Zerbi, A.; Pepe, G.; Lania, A.G. The impact of SST2 trafficking and signaling in the treatment of pancreatic neuroendocrine tumors. Mol. Cell. Endocrinol. 2021, 527, 111226. [Google Scholar] [CrossRef] [PubMed]
- Denwood, G.; Tarasov, A.; Salehi, A.; Vergari, E.; Ramracheya, R.; Takahashi, H.; Nikolaev, V.O.; Seino, S.; Gribble, F.; Reimann, F.; et al. Glucose stimulates somatostatin secretion in pancreatic δ-cells by cAMP-dependent intracellular Ca(2+) release. J. Gen. Physiol. 2019, 151, 1094–1115. [Google Scholar] [CrossRef]
- Milewska-Kranc, A.; Ćwikła, J.B.; Kolasinska-Ćwikła, A. The Role of Receptor-Ligand Interaction in Somatostatin Signaling Pathways: Implications for Neuroendocrine Tumors. Cancers 2023, 16, 116. [Google Scholar] [CrossRef]
- Theodoropoulou, M.; Stalla, G.K. Somatostatin receptors: From signaling to clinical practice. Front. Neuroendocrinol. 2013, 34, 228–252. [Google Scholar] [CrossRef]
- Shastry, M.; Kayani, I.; Wild, D.; Caplin, M.; Visvikis, D.; Gacinovic, S.; Reubi, J.C.; Bomanji, J.B. Distribution pattern of 68Ga-DOTATATE in disease-free patients. Nucl. Med. Commun. 2010, 31, 1025–1032. [Google Scholar] [CrossRef]
- Sternini, C.; Wong, H.; Wu, S.V.; de Giorgio, R.; Yang, M.; Reeve, J., Jr.; Brecha, N.C.; Walsh, J.H. Somatostatin 2A receptor is expressed by enteric neurons, and by interstitial cells of Cajal and enterochromaffin-like cells of the gastrointestinal tract. J. Comp. Neurol. 1997, 386, 396–408. [Google Scholar] [CrossRef]
- Fykse, V.; Coy, D.H.; Waldum, H.L.; Sandvik, A.K. Somatostatin-receptor 2 (sst2)-mediated effects of endogenous somatostatin on exocrine and endocrine secretion of the rat stomach. Br. J. Pharmacol. 2005, 144, 416–421. [Google Scholar] [CrossRef]
- Zhao, C.-M.; Martinez, V.; Piqueras, L.; Wang, L.; Taché, Y.; Chen, D. Control of Gastric Acid Secretion in Somatostatin Receptor 2 Deficient Mice: Shift from Endocrine/Paracrine to Neurocrine Pathways. Endocrinology 2008, 149, 498–505. [Google Scholar] [CrossRef]
- Emanuilov, A.I.; Shirina, E.S.; Masliukov, P.M. Expression of Somatostatin Receptors in the Small Intestine during Postnatal Ontogenesis. Bull. Exp. Biol. Med. 2024, 178, 181–183. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, S.L.; Grunddal, K.V.; Wewer Albrechtsen, N.J.; Engelstoft, M.S.; Gabe, M.B.N.; Jensen, E.P.; Ørskov, C.; Poulsen, S.S.; Rosenkilde, M.M.; Pedersen, J.; et al. Paracrine crosstalk between intestinal L- and D-cells controls secretion of glucagon-like peptide-1 in mice. Am. J. Physiol. Endocrinol. Metab. 2019, 317, E1081–E1093. [Google Scholar] [CrossRef] [PubMed]
- Buscail, L.; Saint-Laurent, N.; Chastre, E.; Vaillant, J.C.; Gespach, C.; Capella, G.; Kalthoff, H.; Lluis, F.; Vaysse, N.; Susini, C. Loss of sst2 somatostatin receptor gene expression in human pancreatic and colorectal cancer. Cancer Res. 1996, 56, 1823–1827. [Google Scholar] [PubMed]
- Geltz, A.; Seraszek-Jaros, A.; Andrzejewska, M.; Pietras, P.; Leśniczak-Staszak, M.; Szaflarski, W.; Szmeja, J.; Kasprzak, A. Differentially Expressed Somatostatin (SST) and Its Receptors (SST1-5) in Sporadic Colorectal Cancer and Normal Colorectal Mucosa. Cancers 2024, 16, 3584. [Google Scholar] [CrossRef]
- Li, N.; Yang, Z.; Li, Q.; Yu, Z.; Chen, X.; Li, J.C.; Li, B.; Ning, S.L.; Cui, M.; Sun, J.P.; et al. Ablation of somatostatin cells leads to impaired pancreatic islet function and neonatal death in rodents. Cell Death Dis. 2018, 9, 682. [Google Scholar] [CrossRef]
- Van Tienhoven, R.; Kracht, M.J.L.; van der Slik, A.R.; Thomaidou, S.; Wolters, A.H.G.; Giepmans, B.N.G.; Riojas, J.P.R.; Nelson, M.S.; Carlotti, F.; de Koning, E.J.P.; et al. Presence of immunogenic alternatively spliced insulin gene product in human pancreatic delta cells. Diabetologia 2023, 66, 884–896. [Google Scholar] [CrossRef]
- Huang, J.L.; Pourhosseinzadeh, M.S.; Lee, S.; Krämer, N.; Guillen, J.V.; Cinque, N.H.; Aniceto, P.; Momen, A.T.; Koike, S.; Huising, M.O. Paracrine signalling by pancreatic δ cells determines the glycaemic set point in mice. Nat. Metab. 2024, 6, 61–77. [Google Scholar] [CrossRef]
- Hill, T.G.; Hill, D.J. The Importance of Intra-Islet Communication in the Function and Plasticity of the Islets of Langerhans during Health and Diabetes. Int. J. Mol. Sci. 2024, 25, 4070. [Google Scholar] [CrossRef]
- Golson, M.L. Pancreatic δ Cells: An Overlooked Cell in Focus. Adv. Anat. Embryol. Cell Biol. 2024, 239, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.L.; Herbella, F.A.M.; Patti, M.G.; Schlottmann, F. Correlation between esophageal contractility and skeletal muscle strength in healthy individuals. J. Gastrointest. Surg. 2024, 28, 1540–1542. [Google Scholar] [CrossRef] [PubMed]
- Sanders, K.M.; Koh, S.D.; Ro, S.; Ward, S.M. Regulation of gastrointestinal motility--insights from smooth muscle biology. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 633–645. [Google Scholar] [CrossRef]
- Peeters, T.L.; Janssens, J.; Vantrappen, G.R. Somatostatin and the interdigestive migrating motor complex in man. Regul. Pept. 1983, 5, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Straathof, J.W.; Tieleman, S.; Lamers, C.B.; Masclee, A.A. Effect of somatostatin on lower esophageal sphincter characteristics in man. Scand. J. Gastroenterol. 2000, 35, 910–915. [Google Scholar] [CrossRef]
- Hirsch, D.P.; Holloway, R.H.; Tytgat, G.N.; Boeckxstaens, G.E. Involvement of nitric oxide in human transient lower esophageal sphincter relaxations and esophageal primary peristalsis. Gastroenterology 1998, 115, 1374–1380. [Google Scholar] [CrossRef]
- Gu, Z.F.; Corleto, V.D.; Mantey, S.A.; Coy, D.H.; Maton, P.N.; Jensi, R.T. Somatostatin receptor subtype 3 mediates the inhibitory action of somatostatin on gastric smooth muscle cells. Am. J. Physiol. 1995, 268, G739–G748. [Google Scholar] [CrossRef]
- Okamoto, E.; Haruma, K.; Hata, J.; Tani, H.; Sumii, K.; Kajiyama, G. Effects of octreotide, a somatostatin analogue, on gastric function evaluated by real-time ultrasonography. Aliment. Pharmacol. Ther. 1997, 11, 177–184. [Google Scholar] [CrossRef]
- Abdu, F.; Hicks, G.A.; Hennig, G.; Allen, J.P.; Grundy, D. Somatostatin sst(2) receptors inhibit peristalsis in the rat and mouse jejunum. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 282, G624–G633. [Google Scholar] [CrossRef]
- Corleto, V.D.; Severi, C.; Romano, G.; Tattoli, I.; Weber, H.C.; Stridsberg, M.; Rindi, G.; Campanini, N.; Tomassoni, F.; Pagotto, U.; et al. Somatostatin receptor subtypes mediate contractility on human colonic smooth muscle cells. Neurogastroenterol Motil 2006, 18, 217–225. [Google Scholar] [CrossRef]
- Veysey, M.J.; Thomas, L.A.; Mallet, A.I.; Jenkins, P.J.; Besser, G.M.; Wass, J.A.; Murphy, G.M.; Dowling, R.H. Prolonged large bowel transit increases serum deoxycholic acid: A risk factor for octreotide induced gallstones. Gut 1999, 44, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Veal, N.; Auduberteau, H.; Lemarie, C.; Oberti, F.; Calès, P. Effects of octreotide on intestinal transit and bacterial translocation in conscious rats with portal hypertension and liver fibrosis. Dig. Dis. Sci. 2001, 46, 2367–2373. [Google Scholar] [CrossRef]
- Betesh, A.L.; Santa Ana, C.A.; Cole, J.A.; Fordtran, J.S. Is achlorhydria a cause of iron deficiency anemia? Am. J. Clin. Nutr. 2015, 102, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Waldum, H.L.; Kleveland, P.M.; Fossmark, R. Upper gastrointestinal physiology and diseases. Scand. J. Gastroenterol. 2015, 50, 649–656. [Google Scholar] [CrossRef]
- Schubert, M.L.; Rehfeld, J.F. Gastric Peptides-Gastrin and Somatostatin. Compr. Physiol. 2019, 10, 197–228. [Google Scholar] [CrossRef]
- Vuyyuru, L.; Schubert, M.L.; Harrington, L.; Arimura, A.; Makhlouf, G.M. Dual inhibitory pathways link antral somatostatin and histamine secretion in human, dog, and rat stomach. Gastroenterology 1995, 109, 1566–1574. [Google Scholar] [CrossRef] [PubMed]
- Richardson, C.T.; Walsh, J.H.; Cooper, K.A.; Feldman, M.; Fordtran, J.S. Studies on the role of cephalic-vagal stimulation in the acid secretory response to eating in normal human subjects. J. Clin. Investig. 1977, 60, 435–441. [Google Scholar] [CrossRef]
- Grandi, D.; Morini, G. Histamine H3 receptors and the gastric mucosa: A link between protection and epithelial proliferation? Curr. Anaesth. Crit. Care 2006, 17, 37–42. [Google Scholar] [CrossRef]
- Manela, F.D.; Ren, J.; Gao, J.; McGuigan, J.E.; Harty, R.F. Calcitonin gene-related peptide modulates acid-mediated regulation of somatostatin and gastrin release from rat antrum. Gastroenterology 1995, 109, 701–706. [Google Scholar] [CrossRef]
- Schubert, M.L.; Jong, M.J.; Makhlouf, G.M. Bombesin/GRP-stimulated somatostatin secretion is mediated by gastrin in the antrum and intrinsic neurons in the fundus. Am. J. Physiol. 1991, 261, G885–G889. [Google Scholar] [CrossRef]
- Wu, S.V.; Giraud, A.; Mogard, M.; Sumii, K.; Walsh, J.H. Effects of inhibition of gastric secretion on antral gastrin and somatostatin gene expression in rats. Am. J. Physiol. 1990, 258, G788–G793. [Google Scholar] [CrossRef]
- Smolka, A.J.; Schubert, M.L. Helicobacter pylori-Induced Changes in Gastric Acid Secretion and Upper Gastrointestinal Disease. Curr. Top Microbiol. Immunol. 2017, 400, 227–252. [Google Scholar] [CrossRef]
- Zaki, M.; Coudron, P.E.; McCuen, R.W.; Harrington, L.; Chu, S.; Schubert, M.L. H. pylori acutely inhibits gastric secretion by activating CGRP sensory neurons coupled to stimulation of somatostatin and inhibition of histamine secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 304, G715–G722. [Google Scholar] [CrossRef]
- Kim, D.U.; Moon, J.H.; Lee, Y.H.; Paik, S.S.; Kim, Y.; Kim, Y.J. Analysis of Somatostatin-Secreting Gastric Delta Cells according to Upper Abdominal Symptoms and Helicobacter pylori Infection in Children. Pediatr. Gastroenterol. Hepatol. Nutr. 2020, 23, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.Y.; Lew, G.M.; Lechago, J. Antral G-cell and D-cell numbers in Helicobacter pylori infection: Effect of H. pylori eradication. Gastroenterology 1993, 104, 1655–1660. [Google Scholar] [CrossRef] [PubMed]
- Park, S.M.; Lee, H.R.; Kim, J.G.; Park, J.W.; Jung, G.; Han, S.H.; Cho, J.H.; Kim, M.K. Effect of Helicobacter pylori infection on antral gastrin and somatostatin cells and on serum gastrin concentrations. Korean J. Intern. Med. 1999, 14, 15–20. [Google Scholar] [CrossRef]
- Gillen, D.; el-Omar, E.M.; Wirz, A.A.; Ardill, J.E.; McColl, K.E. The acid response to gastrin distinguishes duodenal ulcer patients from Helicobacter pylori-infected healthy subjects. Gastroenterology 1998, 114, 50–57. [Google Scholar] [CrossRef]
- Ahmed, S.; Belayneh, Y.M. Helicobacter pylori and Duodenal Ulcer: Systematic Review of Controversies in Causation. Clin. Exp. Gastroenterol. 2019, 12, 441–447. [Google Scholar] [CrossRef]
- Saha, A.; Backert, S.; Hammond, C.E.; Gooz, M.; Smolka, A.J. Helicobacter pylori CagL activates ADAM17 to induce repression of the gastric H, K-ATPase alpha subunit. Gastroenterology 2010, 139, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Lim, N.R.; Chung, W.C. Helicobacter pylori-associated Chronic Atrophic Gastritis and Progression of Gastric Carcinogenesis. Korean J. Gastroenterol. 2023, 82, 171–179. [Google Scholar] [CrossRef]
- Labenz, J.; Blum, A.L.; Bayerdörffer, E.; Meining, A.; Stolte, M.; Börsch, G. Curing Helicobacter pylori infection in patients with duodenal ulcer may provoke reflux esophagitis. Gastroenterology 1997, 112, 1442–1447. [Google Scholar] [CrossRef] [PubMed]
- Fischbach, L.A.; Nordenstedt, H.; Kramer, J.R.; Gandhi, S.; Dick-Onuoha, S.; Lewis, A.; El-Serag, H.B. The association between Barrett’s esophagus and Helicobacter pylori infection: A meta-analysis. Helicobacter 2012, 17, 163–175. [Google Scholar] [CrossRef]
- Spannagel, A.W.; Green, G.M.; Guan, D.; Liddle, R.A.; Faull, K.; Reeve, J.R., Jr. Purification and characterization of a luminal cholecystokinin-releasing factor from rat intestinal secretion. Proc. Natl. Acad. Sci. USA 1996, 93, 4415–4420. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.G.; Wu, H.; Cai, Z.Z. Dose-dependent effect of ghrelin on gastric emptying in rats and the related mechanism of action. Kaohsiung J. Med. Sci. 2016, 32, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, K.C.; Maxwell, V.; Chuang, C.N.; Wong, H.C.; Soll, A.H.; Walsh, J.H. Somatostatin is released in response to cholecystokinin by activation of type A CCK receptors. Peptides 1994, 15, 223–227. [Google Scholar] [CrossRef]
- Lankisch, P.G.; Fölsch, U.R.; Köstering, H.; Creutzfeldt, W. Inhibition by somatostatin of pancreatic juice and enzyme secretion and gallbladder contraction induced by secretin, cholecystokinin-pancreozymin and carbachol administration. Z. Gastroenterol. Verh. 1976, 10, 51–55. [Google Scholar]
- Herzig, K.H.; Louie, D.S.; Owyang, C. Somatostatin inhibits CCK release by inhibiting secretion and action of CCK-releasing peptide. Am. J. Physiol. 1994, 266, G1156–G1161. [Google Scholar] [CrossRef]
- Miyasaka, K.; Masuda, M.; Kanai, S.; Ohta, M.; Suzuki, S.; Tateishi, K.; Funakoshi, A. Inhibitory effects of octreotide on luminal cholecystokinin-releasing factor, plasma cholecystokinin, and pancreatic secretion in conscious rats. Pancreas 2002, 24, 269–275. [Google Scholar] [CrossRef]
- Katsourakis, A.; Oikonomou, L.; Chatzitheoklitos, E.; Noussios, G.; Pitiakoudis, M.; Polychronidis, A.; Simopoulos, K.; Sioga, A. The role of somatostatin in 67 consecutive pancreatectomies: A randomized clinical trial. Clin. Exp. Gastroenterol. 2010, 3, 179–183. [Google Scholar] [CrossRef]
- Batterham, R.L.; Cohen, M.A.; Ellis, S.M.; Le Roux, C.W.; Withers, D.J.; Frost, G.S.; Ghatei, M.A.; Bloom, S.R. Inhibition of food intake in obese subjects by peptide YY3-36. N. Engl. J. Med. 2003, 349, 941–948. [Google Scholar] [CrossRef]
- Vu, M.K.; Van Oostayen, J.A.; Biemond, I.; Masclee, A.A. Effect of somatostatin on postprandial gallbladder relaxation. Clin. Physiol. 2001, 21, 25–31. [Google Scholar] [CrossRef]
- Fung, L.; Pokol-Daniel, S.; Greenberg, G.R. Cholecystokinin type A receptors mediate intestinal fat-induced inhibition of acid secretion through somatostatin-14 in dogs. Endocrinology 1994, 134, 2376–2382. [Google Scholar] [CrossRef] [PubMed]
- Rigamonti, A.E.; Cella, S.G.; Bonomo, S.M.; Mancia, G.; Grassi, G.; Perotti, M.; Agosti, F.; Sartorio, A.; Müller, E.E.; Pincelli, A.I. Effect of somatostatin infusion on peptide YY secretion: Studies in the acute and recovery phase of anorexia nervosa and in obesity. Eur. J. Endocrinol. 2011, 165, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, G.; Samson, S.L.; Sun, Y. Ghrelin: Much more than a hunger hormone. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Stengel, A.; Taché, Y. Activation of somatostatin 2 receptors in the brain and the periphery induces opposite changes in circulating ghrelin levels: Functional implications. Front. Endocrinol. 2012, 3, 178. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J. The GLP-1 journey: From discovery science to therapeutic impact. J. Clin. Investig. 2024, 134. [Google Scholar] [CrossRef] [PubMed]
- Ørgaard, A.; Holst, J.J. The role of somatostatin in GLP-1-induced inhibition of glucagon secretion in mice. Diabetologia 2017, 60, 1731–1739. [Google Scholar] [CrossRef]
- Xie, X.; Geng, C.; Li, X.; Liao, J.; Li, Y.; Guo, Y.; Wang, C. Roles of gastrointestinal polypeptides in intestinal barrier regulation. Peptides 2022, 151, 170753. [Google Scholar] [CrossRef]
- Cooke, H.J.; Wang, Y.Z.; Wray, D.; O’Dorisio, M.S.; Woltering, E.A.; Coy, D.H.; Murphy, W.A.; Christofi, F.L.; Gosh, P.; O’Dorisio, T.M. A multi-tyrosinated sst1/2 receptor preferring somatostatin agonist inhibits reflex and immune-mediated secretion in the guinea pig colon. Regul. Pept. 2003, 114, 51–60. [Google Scholar] [CrossRef]
- Warhurst, G.; Turnberg, L.A.; Higgs, N.B.; Tonge, A.; Grundy, J.; Fogg, K.E. Multiple G-protein-dependent pathways mediate the antisecretory effects of somatostatin and clonidine in the HT29-19A colonic cell line. J. Clin. Investig. 1993, 92, 603–611. [Google Scholar] [CrossRef]
- Szilagyi, A.; Shrier, I. Systematic review: The use of somatostatin or octreotide in refractory diarrhoea. Aliment Pharmacol Ther 2001, 15, 1889–1897. [Google Scholar] [CrossRef]
- Wang, C.; Xu, H.; Chen, H.; Li, J.; Zhang, B.; Tang, C.; Ghishan, F.K. Somatostatin stimulates intestinal NHE8 expression via p38 MAPK pathway. Am. J. Physiol. Cell Physiol. 2011, 300, C375–C382. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cai, L.; Xu, H.; Geng, C.; Lu, J.; Tao, L.; Sun, D.; Ghishan, F.K.; Wang, C. Somatostatin regulates NHE8 protein expression via the ERK1/2 MAPK pathway in DSS-induced colitis mice. Am. J. Physiol. Gastrointest. Liver. Physiol. 2016, 311, G954–G963. [Google Scholar] [CrossRef] [PubMed]
- Vancamelbeke, M.; Vermeire, S. The intestinal barrier: A fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Li, X.; Geng, C.; Li, Y.; Wang, C. Somatostatin stimulates colonic MUC2 expression through SSTR5-Notch-Hes1 signaling pathway. Biochem. Biophys. Res. Commun. 2020, 521, 1070–1076. [Google Scholar] [CrossRef]
- Lee, J.B.; Werbowetski-Ogilvie, T.E.; Lee, J.H.; McIntyre, B.A.; Schnerch, A.; Hong, S.H.; Park, I.H.; Daley, G.Q.; Bernstein, I.D.; Bhatia, M. Notch-HES1 signaling axis controls hemato-endothelial fate decisions of human embryonic and induced pluripotent stem cells. Blood 2013, 122, 1162–1173. [Google Scholar] [CrossRef]
- Moonwiriyakit, A.; Pathomthongtaweechai, N.; Steinhagen, P.R.; Chantawichitwong, P.; Satianrapapong, W.; Pongkorpsakol, P. Tight junctions: From molecules to gastrointestinal diseases. Tissue Barriers 2023, 11, 2077620. [Google Scholar] [CrossRef]
- Vockel, M.; Breitenbach, U.; Kreienkamp, H.J.; Brandner, J.M. Somatostatin regulates tight junction function and composition in human keratinocytes. Exp. Dermatol. 2010, 19, 888–894. [Google Scholar] [CrossRef]
- Basivireddy, J.; Somvanshi, R.K.; Romero, I.A.; Weksler, B.B.; Couraud, P.O.; Oger, J.; Kumar, U. Somatostatin preserved blood brain barrier against cytokine induced alterations: Possible role in multiple sclerosis. Biochem. Pharmacol. 2013, 86, 497–507. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Geng, C.; Guo, Y.; Wang, C. Somatostatin receptor 5 is critical for protecting intestinal barrier function in vivo and in vitro. Mol. Cell. Endocrinol. 2021, 535, 111390. [Google Scholar] [CrossRef]
- Cai, L.; Li, X.; Geng, C.; Lei, X.; Wang, C. Molecular mechanisms of somatostatin-mediated intestinal epithelial barrier function restoration by upregulating claudin-4 in mice with DSS-induced colitis. Am. J. Physiol. Cell Physiol. 2018, 315, C527–C536. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Q.; Xu, H.; Tao, L.; Lu, J.; Cai, L.; Wang, C. Somatostatin regulates tight junction proteins expression in colitis mice. Int. J. Clin. Exp. Pathol. 2014, 7, 2153–2162. [Google Scholar]
- Casnici, C.; Lattuada, D.; Crotta, K.; Truzzi, M.C.; Corradini, C.; Ingegnoli, F.; Tonna, N.; Bianco, F.; Marelli, O. Anti-inflammatory Effect of Somatostatin Analogue Octreotide on Rheumatoid Arthritis Synoviocytes. Inflammation 2018, 41, 1648–1660. [Google Scholar] [CrossRef]
- Börzsei, R.; Borbély, É.; Kántás, B.; Hudhud, L.; Horváth, Á.; Szőke, É.; Hetényi, C.; Helyes, Z.; Pintér, E. The heptapeptide somatostatin analogue TT-232 exerts analgesic and anti-inflammatory actions via SST(4) receptor activation: In silico, in vitro and in vivo evidence in mice. Biochem. Pharmacol. 2023, 209, 115419. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, J.; Louro, B.; Martins, R.S.T.; Canario, A.V.M. Somatostatin 3 loss of function impairs the innate immune response to intestinal inflammation. Aquac. Fish. 2021, 6, 548–557. [Google Scholar] [CrossRef]
- El-Salhy, M.; Hatlebakk, J.G. Changes in enteroendocrine and immune cells following colitis induction by TNBS in rats. Mol. Med. Rep. 2016, 14, 4967–4974. [Google Scholar] [CrossRef] [PubMed]
- Peluso, G.; Petillo, O.; Melone, M.A.; Mazzarella, G.; Ranieri, M.; Tajana, G.F. Modulation of cytokine production in activated human monocytes by somatostatin. Neuropeptides 1996, 30, 443–451. [Google Scholar] [CrossRef]
- Chowers, Y.; Cahalon, L.; Lahav, M.; Schor, H.; Tal, R.; Bar-Meir, S.; Levite, M. Somatostatin through its specific receptor inhibits spontaneous and TNF-alpha- and bacteria-induced IL-8 and IL-1 beta secretion from intestinal epithelial cells. J. Immunol. 2000, 165, 2955–2961. [Google Scholar] [CrossRef]
- Wu, H.; Liu, L.; Tan, Q.; Wang, C.; Guo, M.; Xie, Y.; Tang, C. Somatostatin limits intestinal ischemia-reperfusion injury in macaques via suppression of TLR4-NF-kappaB cytokine pathway. J. Gastrointest. Surg. 2009, 13, 983–993. [Google Scholar] [CrossRef]
- Liu, L.; Tan, Q.; Hu, B.; Wu, H.; Wang, C.; Liu, R.; Tang, C. Somatostatin Improved B Cells Mature in Macaques during Intestinal Ischemia-Reperfusion. PLoS ONE 2015, 10, e0133692. [Google Scholar] [CrossRef]
- Levite, M. Neuropeptides, by direct interaction with T cells, induce cytokine secretion and break the commitment to a distinct T helper phenotype. Proc. Natl. Acad. Sci. USA 1998, 95, 12544–12549. [Google Scholar] [CrossRef]
- De Herder, W.W.; Lamberts, S.W. Somatostatin and somatostatin analogues: Diagnostic and therapeutic uses. Curr. Opin. Oncol. 2002, 14, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Haris, B.; Saraswathi, S.; Hussain, K. Somatostatin analogues for the treatment of hyperinsulinaemic hypoglycaemia. Ther Adv Endocrinol. Metab. 2020, 11, 2042018820965068. [Google Scholar] [CrossRef]
- Allam, J.; De Melo, S.; Feagins, L.A.; Agrawal, D.; Malespin, M.; Shuja, A.; Lara, L.F.; Rockey, D.C. Comparison of 24 vs 72-hr octreotide infusion in acute esophageal variceal hemorrhage—A multi-center, randomized clinical trial. Am. J. Med. Sci. 2025, 369, 71–76. [Google Scholar] [CrossRef]
- Gralnek, I.M.; Camus Duboc, M.; Garcia-Pagan, J.C.; Fuccio, L.; Karstensen, J.G.; Hucl, T.; Jovanovic, I.; Awadie, H.; Hernandez-Gea, V.; Tantau, M.; et al. Endoscopic diagnosis and management of esophagogastric variceal hemorrhage: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 2022, 54, 1094–1120. [Google Scholar] [CrossRef]
- Huaringa-Marcelo, J.; Huaman, M.R.; Brañez-Condorena, A.; Villacorta-Landeo, P.; Pinto-Ruiz, D.F.; Urday-Ipanaqué, D.; García-Gomero, D.; Montes-Teves, P.; Lozano Miranda, A. Vasoactive Agents for the Management of Acute Variceal Bleeding: A Systematic Review and Meta-analysis. J. Gastrointestin. Liver Dis. 2021, 30, 110–121. [Google Scholar] [CrossRef]
- Goltstein, L.; Grooteman, K.V.; Rocco, A.; Holleran, G.; Frago, S.; Salgueiro, P.S.; Aparicio, T.; Scaglione, G.; Chetcuti Zammit, S.; Prados-Manzano, R.; et al. Effectiveness and predictors of response to somatostatin analogues in patients with gastrointestinal angiodysplasias: A systematic review and individual patient data meta-analysis. Lancet Gastroenterol. Hepatol. 2021, 6, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Goltstein, L.; Grooteman, K.V.; Bernts, L.H.P.; Scheffer, R.C.H.; Laheij, R.J.F.; Gilissen, L.P.L.; Schrauwen, R.W.M.; Talstra, N.C.; Zuur, A.T.; Braat, H.; et al. Standard of Care Versus Octreotide in Angiodysplasia-Related Bleeding (the OCEAN Study): A Multicenter Randomized Controlled Trial. Gastroenterology 2024, 166, 690–703. [Google Scholar] [CrossRef]
- Rinke, A.; Müller, H.H.; Schade-Brittinger, C.; Klose, K.J.; Barth, P.; Wied, M.; Mayer, C.; Aminossadati, B.; Pape, U.F.; Bläker, M.; et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: A report from the PROMID Study Group. J. Clin. Oncol. 2009, 27, 4656–4663. [Google Scholar] [CrossRef] [PubMed]
- Caplin, M.E.; Pavel, M.; Ćwikła, J.B.; Phan, A.T.; Raderer, M.; Sedláčková, E.; Cadiot, G.; Wolin, E.M.; Capdevila, J.; Wall, L.; et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 2014, 371, 224–233. [Google Scholar] [CrossRef]
- Caplin, M.E.; Pavel, M.; Ćwikła, J.B.; Phan, A.T.; Raderer, M.; Sedláčková, E.; Cadiot, G.; Wolin, E.M.; Capdevila, J.; Wall, L.; et al. Anti-tumour effects of lanreotide for pancreatic and intestinal neuroendocrine tumours: The CLARINET open-label extension study. Endocr. Relat. Cancer 2016, 23, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Alexandraki, K.I.; Angelousi, A.; Chatzellis, E.; Chrisoulidou, A.; Kalogeris, N.; Kanakis, G.; Savvidis, C.; Vassiliadi, D.; Spyroglou, A.; Kostopoulos, G.; et al. The Role of Somatostatin Analogues in the Control of Diarrhea and Flushing as Markers of Carcinoid Syndrome: A Systematic Review and Meta-Analysis. J. Pers. Med. 2023, 13, 304. [Google Scholar] [CrossRef] [PubMed]
- Deppen, S.A.; Blume, J.; Bobbey, A.J.; Shah, C.; Graham, M.M.; Lee, P.; Delbeke, D.; Walker, R.C. 68Ga-DOTATATE Compared with 111In-DTPA-Octreotide and Conventional Imaging for Pulmonary and Gastroenteropancreatic Neuroendocrine Tumors: A Systematic Review and Meta-Analysis. J. Nucl. Med. 2016, 57, 872–878. [Google Scholar] [CrossRef]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 Trial of (177) Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef]
- Becx, M.N.; Minczeles, N.S.; Brabander, T.; de Herder, W.W.; Nonnekens, J.; Hofland, J. A Clinical Guide to Peptide Receptor Radionuclide Therapy with (177)Lu-DOTATATE in Neuroendocrine Tumor Patients. Cancers 2022, 14, 5792. [Google Scholar] [CrossRef]
- Leiszter, K.; Sipos, F.; Galamb, O.; Krenács, T.; Veres, G.; Wichmann, B.; Fűri, I.; Kalmár, A.; Patai, Á.V.; Tóth, K.; et al. Promoter hypermethylation-related reduced somatostatin production promotes uncontrolled cell proliferation in colorectal cancer. PLoS ONE 2015, 10, e0118332. [Google Scholar] [CrossRef] [PubMed]
- Colucci, R.; Blandizzi, C.; Ghisu, N.; Florio, T.; Del Tacca, M. Somatostatin inhibits colon cancer cell growth through cyclooxygenase-2 downregulation. Br. J. Pharmacol. 2008, 155, 198–209. [Google Scholar] [CrossRef]
- Kostenich, G.; Oron-Herman, M.; Kimel, S.; Livnah, N.; Tsarfaty, I.; Orenstein, A. Diagnostic targeting of colon cancer using a novel fluorescent somatostatin conjugate in a mouse xenograft model. Int. J. Cancer 2008, 122, 2044–2049. [Google Scholar] [CrossRef]
- Hopman, W.P.; Wolberink, R.G.; Lamers, C.B.; Van Tongeren, J.H. Treatment of the dumping syndrome with the somatostatin analogue SMS 201-995. Ann. Surg. 1988, 207, 155–159. [Google Scholar] [CrossRef]
- Sato, D.; Morino, K.; Ohashi, N.; Ueda, E.; Ikeda, K.; Yamamoto, H.; Ugi, S.; Yamamoto, H.; Araki, S.; Maegawa, H. Octreotide improves early dumping syndrome potentially through incretins: A case report. Endocr. J. 2013, 60, 847–853. [Google Scholar] [CrossRef]
- Primrose, J.N.; Johnston, D. Somatostatin analogue SMS 201-995 (octreotide) as a possible solution to the dumping syndrome after gastrectomy or vagotomy. Br. J. Surg. 1989, 76, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Arts, J.; Caenepeel, P.; Bisschops, R.; Dewulf, D.; Holvoet, L.; Piessevaux, H.; Bourgeois, S.; Sifrim, D.; Janssens, J.; Tack, J. Efficacy of the long-acting repeatable formulation of the somatostatin analogue octreotide in postoperative dumping. Clin. Gastroenterol. Hepatol. 2009, 7, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Didden, P.; Penning, C.; Masclee, A.A. Octreotide therapy in dumping syndrome: Analysis of long-term results. Aliment. Pharmacol. Ther. 2006, 24, 1367–1375. [Google Scholar] [CrossRef]
- Tack, J.; Aberle, J.; Arts, J.; Laville, M.; Oppert, J.M.; Bender, G.; Bhoyrul, S.; McLaughlin, T.; Yoshikawa, T.; Vella, A.; et al. Safety and efficacy of pasireotide in dumping syndrome-results from a phase 2, multicentre study. Aliment. Pharmacol. Ther. 2018, 47, 1661–1672. [Google Scholar] [CrossRef]
- Wauters, L.; Arts, J.; Caenepeel, P.; Holvoet, L.; Tack, J.; Bisschops, R.; Vanuytsel, T. Efficacy and safety of lanreotide in postoperative dumping syndrome: A Phase II randomised and placebo-controlled study. United Eur. Gastroenterol. J. 2019, 7, 1064–1072. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.; Pellat, A.; Antoni, G.; Agostini, H.; Labeyrie, C.; Adams, D.; Carbonnel, F. Somatostatin analogues for refractory diarrhoea in familial amyloid polyneuropathy. PLoS ONE 2018, 13, e0201869. [Google Scholar] [CrossRef]
- Smid, W.M.; Dullaart, R.P. Octreotide for medullary thyroid carcinoma associated diarrhoea. Neth. J. Med. 1992, 40, 240–243. [Google Scholar]
- Rompen, I.F.; Merz, D.C.; Alhalabi, K.T.; Klotz, R.; Kalkum, E.; Pausch, T.M.; Strothmann, H.; Probst, P. Perioperative Drug Treatment in Pancreatic Surgery-A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 1750. [Google Scholar] [CrossRef]
- Lederhuber, H.; Massey, L.H.; Kantola, V.E.; Siddiqui, M.R.S.; Sayers, A.E.; McDermott, F.D.; Daniels, I.R.; Smart, N.J. Clinical management of high-output stoma: A systematic literature review and meta-analysis. Tech. Coloproctol. 2023, 27, 1139–1154. [Google Scholar] [CrossRef]
- Coughlin, S.; Roth, L.; Lurati, G.; Faulhaber, M. Somatostatin analogues for the treatment of enterocutaneous fistulas: A systematic review and meta-analysis. World J. Surg. 2012, 36, 1016–1029. [Google Scholar] [CrossRef]
- Garcia-Tsao, G.; Abraldes, J.G.; Berzigotti, A.; Bosch, J. Portal hypertensive bleeding in cirrhosis: Risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the study of liver diseases. Hepatology 2017, 65, 310–335. [Google Scholar] [CrossRef]
- Reynaert, H.; van Rossen, E.; Uyama, N.; Chatterjee, N.; Kumar, U.; Urbain, D.; Geerts, A. Expression of somatostatin receptors in splanchnic blood vessels of normal and cirrhotic rats. Liver Int. 2007, 27, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.C.; Balster, D.A.; Gebhardt, B.M.; O’Dorisio, T.M.; O’Dorisio, M.S.; Espenan, G.D.; Drouant, G.J.; Woltering, E.A. Growing vascular endothelial cells express somatostatin subtype 2 receptors. Br. J. Cancer 2001, 85, 266–272. [Google Scholar] [CrossRef]
- Ryabov, V.V.; Trusov, A.A.; Kercheva, M.A.; Gombozhapova, A.E.; Ilyushenkova, J.N.; Stepanov, I.V.; Fadeev, M.V.; Syrkina, A.G.; Sazonova, S.I. Somatostatin Receptor Type 2 as a Potential Marker of Local Myocardial Inflammation in Myocardial Infarction: Morphologic Data on Distribution in Infarcted and Normal Human Myocardium. Biomedicines 2024, 12, 2178. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Porras, M.; Cárdenas-Salas, J.; Álvarez-Escolá, C. Somatostatin Analogs in Clinical Practice: A Review. Int. J. Mol. Sci. 2020, 21, 1682. [Google Scholar] [CrossRef] [PubMed]
- Holleran, G.; Hall, B.; Hussey, M.; McNamara, D. Small bowel angiodysplasia and novel disease associations: A cohort study. Scand. J. Gastroenterol. 2013, 48, 433–438. [Google Scholar] [CrossRef]
- Triantafyllou, K.; Gkolfakis, P.; Gralnek, I.M.; Oakland, K.; Manes, G.; Radaelli, F.; Awadie, H.; Camus Duboc, M.; Christodoulou, D.; Fedorov, E.; et al. Diagnosis and management of acute lower gastrointestinal bleeding: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 2021, 53, 850–868. [Google Scholar] [CrossRef]
- May, A.; Färber, M.; Aschmoneit, I.; Pohl, J.; Manner, H.; Lotterer, E.; Möschler, O.; Kunz, J.; Gossner, L.; Mönkemüller, K.; et al. Prospective multicenter trial comparing push-and-pull enteroscopy with the single- and double-balloon techniques in patients with small-bowel disorders. Am. J. Gastroenterol. 2010, 105, 575–581. [Google Scholar] [CrossRef]
- Holleran, G.; Hall, B.; Breslin, N.; McNamara, D. Long-acting somatostatin analogues provide significant beneficial effect in patients with refractory small bowel angiodysplasia: Results from a proof of concept open label mono-centre trial. United Eur. Gastroenterol. J. 2016, 4, 70–76. [Google Scholar] [CrossRef]
- Wolin, E.M. The expanding role of somatostatin analogs in the management of neuroendocrine tumors. Gastrointest. Cancer Res. 2012, 5, 161–168. [Google Scholar]
- Stueven, A.K.; Kayser, A.; Wetz, C.; Amthauer, H.; Wree, A.; Tacke, F.; Wiedenmann, B.; Roderburg, C.; Jann, H. Somatostatin Analogues in the Treatment of Neuroendocrine Tumors: Past, Present and Future. Int. J. Mol. Sci. 2019, 20, 3049. [Google Scholar] [CrossRef]
- Pavel, M.; Öberg, K.; Falconi, M.; Krenning, E.P.; Sundin, A.; Perren, A.; Berruti, A. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 844–860. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Suz, P.; Reljic, T.; Are, A.C.; Kumar, A.; Powers, B.; Strosberg, J.; Denbo, J.W.; Fleming, J.B.; Anaya, D.A. Perioperative Carcinoid Crisis: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 2966. [Google Scholar] [CrossRef] [PubMed]
- Pencharz, D.; Gnanasegaran, G.; Navalkissoor, S. Theranostics in neuroendocrine tumours: Somatostatin receptor imaging and therapy. Br. J. Radiol. 2018, 91, 20180108. [Google Scholar] [CrossRef]
- Chalabi, M.; Duluc, C.; Caron, P.; Vezzosi, D.; Guillermet-Guibert, J.; Pyronnet, S.; Bousquet, C. Somatostatin analogs: Does pharmacology impact antitumor efficacy? Trends Endocrinol. Metab. 2014, 25, 115–127. [Google Scholar] [CrossRef]
- Reynaert, H.; Colle, I. Treatment of Advanced Hepatocellular Carcinoma with Somatostatin Analogues: A Review of the Literature. Int. J. Mol. Sci. 2019, 20, 4811. [Google Scholar] [CrossRef] [PubMed]
- Dolan, J.T.; Miltenburg, D.M.; Granchi, T.S.; Miller, C.C., 3rd; Brunicardi, F.C. Treatment of metastatic breast cancer with somatostatin analogues—A meta-analysis. Ann. Surg. Oncol. 2001, 8, 227–233. [Google Scholar] [CrossRef]
- Kouroumalis, E.; Tsomidis, I.; Voumvouraki, A. Is There a Place for Somatostatin Analogues for the Systemic Treatment of Hepatocellular Carcinoma in the Immunotherapy Era? Livers 2022, 2, 315–335. [Google Scholar] [CrossRef]
- Kasprzak, A. Somatostatin and Its Receptor System in Colorectal Cancer. Biomedicines 2021, 9, 1743. [Google Scholar] [CrossRef] [PubMed]
- Raggi, C.C.; Cianchi, F.; Valanzano, R.; Smith, M.C.; Serio, M.; Maggi, M.; Orlando, C. Prognostic value of somatostatin receptor subtype 2 expression in colorectal cancer. Regul. Pept. 2005, 132, 23–26. [Google Scholar] [CrossRef]
- Kumar, U. Somatostatin and Somatostatin Receptors in Tumour Biology. Int. J. Mol. Sci. 2023, 25, 436. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, R.M.; Moertel, C.G.; Wieand, H.S.; Krook, J.E.; Schutt, A.J.; Veeder, M.H.; Mailliard, J.A.; Dalton, R.J. A phase III evaluation of a somatostatin analogue (octreotide) in the treatment of patients with asymptomatic advanced colon carcinoma. North Central Cancer Treatment Group and the Mayo Clinic. Cancer 1995, 76, 961–966. [Google Scholar] [CrossRef]
- Cascinu, S.; Del Ferro, E.; Catalano, G. A randomised trial of octreotide vs best supportive care only in advanced gastrointestinal cancer patients refractory to chemotherapy. Br. J. Cancer 1995, 71, 97–101. [Google Scholar] [CrossRef]
- Kasprzak, A.; Geltz, A. The State-of-the-Art Mechanisms and Antitumor Effects of Somatostatin in Colorectal Cancer: A Review. Biomedicines 2024, 12, 578. [Google Scholar] [CrossRef]
- Herlin, G.; Ideström, L.; Lundell, L.; Aspelin, P.; Axelsson, R. Feasibility of imaging esophageal cancer with labeled somatostatin analogue. Int. J. Mol. Imaging 2011, 2011, 279345. [Google Scholar] [CrossRef] [PubMed]
- Liepe, K.; Becker, A. (99m) Tc-Hynic-TOC imaging in the diagnostic of neuroendocrine tumors. World J. Nucl. Med. 2018, 17, 151–156. [Google Scholar] [CrossRef]
- Masclee, G.M.C.; Masclee, A.A.M. Dumping Syndrome: Pragmatic Treatment Options and Experimental Approaches for Improving Clinical Outcomes. Clin. Exp. Gastroenterol. 2023, 16, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Anandavadivelan, P.; Wikman, A.; Malberg, K.; Martin, L.; Rosenlund, H.; Rueb, C.; Johar, A.; Lagergren, P. Prevalence and intensity of dumping symptoms and their association with health-related quality of life following surgery for oesophageal cancer. Clin. Nutr. 2021, 40, 1233–1240. [Google Scholar] [CrossRef]
- Lamberti, G.; Faggiano, A.; Brighi, N.; Tafuto, S.; Ibrahim, T.; Brizzi, M.P.; Pusceddu, S.; Albertelli, M.; Massironi, S.; Panzuto, F.; et al. Nonconventional Doses of Somatostatin Analogs in Patients With Progressing Well-Differentiated Neuroendocrine Tumor. J. Clin. Endocrinol. Metab. 2020, 105, 194–200. [Google Scholar] [CrossRef]
- Haffejee, A.A. Surgical management of high output enterocutaneous fistulae: A 24-year experience. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Grasso, L.F.S.; Auriemma, R.S.; Rosario, P.; Colao, A. Adverse events associated with somatostatin analogs in acromegaly. Expert Opin. Drug Saf. 2015, 14, 1213–1226. [Google Scholar] [CrossRef] [PubMed]
- Śliwińska-Mossoń, M.; Veselý, M.; Milnerowicz, H. The clinical significance of somatostatin in pancreatic diseases. Ann. Endocrinol. 2014, 75, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Daunt, M.; Dale, O.; Smith, P.A. Somatostatin Inhibits Oxidative Respiration in Pancreatic β-Cells. Endocrinology 2006, 147, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- Vergès, B. Effects of anti-somatostatin agents on glucose metabolism. Diabetes Metab. 2017, 43, 411–415. [Google Scholar] [CrossRef]
- Shen, M.; Wang, M.; He, W.; He, M.; Qiao, N.; Ma, Z.; Ye, Z.; Zhang, Q.; Zhang, Y.; Yang, Y.; et al. Impact of Long-Acting Somatostatin Analogues on Glucose Metabolism in Acromegaly: A Hospital-Based Study. Int. J. Endocrinol. 2018, 2018, 3015854. [Google Scholar] [CrossRef]
Medical Condition | SSTAs Effect | Mechanism of Action | On-Label | Studies |
---|---|---|---|---|
Variceal bleeding | Bleeding cessation | Vasoconstriction, portal venous and variceal pressure reduction | Yes | [114,115,116] |
GI angiodysplasias | Reduced bleeding rates and transfusion requirements | Platelet aggregation, reduction in intestinal blood flow, down-regulation of VEGF | No | [117,118] |
GI NETs | PFS, symptom management, tumor signaling | Reduced hormone secretion, interaction with SSTRs and tumor detection, possibility of PPRT | Yes | [119,120,121,122,123,124,125] |
Colorectal cancer | Tumor reduction, tumor signaling | Anti-inflammatory effects, reduced angiogenesis, cell apoptosis, reduced cell proliferation, interaction with SSTRs and tumor detection | No | [126,127,128] |
Dumping syndrome | Symptom control, especially in early phase | Slower gastric emptying, slower transit through the small intestine and changes in hormone and electrolyte distribution | No | [129,130,131,132,133,134,135] |
Refractory diarrhea | Symptom control | Altered GI motility, reduced exocrine pancreatic secretion | No | [136,137] |
Digestive fistulae | Fistula closing | Reduced GI exocrine secretion, altered GI motility | No | [138,139,140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papantoniou, K.; Aggeletopoulou, I.; Pastras, P.; Triantos, C. The Role of Somatostatin in the Gastrointestinal Tract. Biology 2025, 14, 558. https://doi.org/10.3390/biology14050558
Papantoniou K, Aggeletopoulou I, Pastras P, Triantos C. The Role of Somatostatin in the Gastrointestinal Tract. Biology. 2025; 14(5):558. https://doi.org/10.3390/biology14050558
Chicago/Turabian StylePapantoniou, Konstantinos, Ioanna Aggeletopoulou, Ploutarchos Pastras, and Christos Triantos. 2025. "The Role of Somatostatin in the Gastrointestinal Tract" Biology 14, no. 5: 558. https://doi.org/10.3390/biology14050558
APA StylePapantoniou, K., Aggeletopoulou, I., Pastras, P., & Triantos, C. (2025). The Role of Somatostatin in the Gastrointestinal Tract. Biology, 14(5), 558. https://doi.org/10.3390/biology14050558