Enhancing Crop Nitrogen Efficiency: The Role of Mixed Nitrate and Ammonium Supply in Plant Growth and Development
Simple Summary
Abstract
1. Introduction
2. Mixed NO3− and NH4+ Improve Plant Nitrogen Efficiency by Enhancing Nitrogen Absorption
2.1. NO3− and NH4+ Uptake Under Mixed NO3− and NH4+ Supply
2.2. Root Morphology Under Mixed NO3− and NH4+ Supply
3. Mixed NO3− and NH4+ Improve N Availability by Regulating N Assimilation Rate
4. Mixed Supply of NO3− and NH4+ Enhances Carbon Availability by Promoting Carbon Synthesis and Metabolism
4.1. Photosynthetic Rate
4.2. Carbohydrate Metabolism
5. Phytohormone Synthesis and Signaling Mediated by Interaction of NO3− and NH4+ Supply
6. Conclusions and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jiao, X.Q.; Lyu, Y.; Wu, X.; Li, H.; Cheng, L.; Zhang, C.; Yuan, L.; Jiang, R.; Jiang, B.; Rengel, Z. Grain production versus resource and environmental costs: Towards increasing sustainability of nutrient use in China. J. Exp. Bot. 2016, 67, 4935–4949. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Forde, B.G. Regulation of Arabidopsis root development by nitrate availability. J. Exp. Bot. 2000, 51, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Mi, G.; Chen, F.; Zhang, F. Physiological Basis and Genetic Improvement of Crop Nutrient Efficiency; China Agricultural University Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Caicedo, J.; von Wirén, N.; Arce, O.; Gijzen, H.J. Effect of total ammonia nitrogen concentration and pH on growth rates of duckweed (Spirodela polyrrhiza). Water Res. 2000, 34, 3829–3835. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Stewart, B.A. Responses of crop plants to ammonium and nitrate N. Adv. Agron. 2013, 118, 205–397. [Google Scholar]
- Cox, W.J.; Reisenauer, H.M. Growth and ion uptake by wheat supplied nitrogen as nitrate, or ammonium, or both. Plant Soil. 1973, 38, 363–380. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, L.; Meng, X.; Neelam, A.; Yang, J.; Zhang, M. Effect of nitrate/ammonium ratios on growth, root morphology and nutrient elements uptake of watermelon (Citrullus lanatus) Seedlings. J. Plant Nutr. 2014, 37, 1859–1872. [Google Scholar]
- George, J.; Holtham, L.; Sabermanesh, K.; Heuer, S.; Tester, M.; Plett, D.; Garnett, T. Small amounts of ammonium (NH4+) can increase growth of maize (Zea mays L.). J. Plant Nutr Soil Sci. 2016, 179, 717–725. [Google Scholar] [CrossRef]
- Xu, Z.; Qin, L.; Shui, Y.; Han, P.; Liao, X.; Hu, X.; Xie, L.; Yu, C.; Zhang, X.; Liao, X. Effects of different nitrogen form and ratio on growth and nutrient uptake of different sesame cultivars. Chin. J. Oil Crop Sci. 2017, 39, 204–212. [Google Scholar]
- Wang, P.; Wang, Z.; Sun, X.; Mu, X.; Chen, F.; Yuan, L.; Mi, G. Interaction effect of nitrogen form and planting density on plant growth and nutrient uptake in maize seedlings. J. Integr. Agric. 2019, 17, 60345–60347. [Google Scholar] [CrossRef]
- Wang, P.; Wang, C.; Wang, X.; Wu, Y.; Zhang, Y.; Sun, Y.; Shi, Y.; Mi, G. Increasing nitrogen absorption and assimilation ability under mixed NO3− and NH4+ supply is a driver to promote growth of maize seedlings. J. Integr. Agric. 2023, 22, 1896–1908. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, Y.; Liu, Z.; Cai, M.; Pan, H.; Zhang, Q. Different responses of Lagerstroemia indica to varied supplies of ammonium and nitrate. Sci. Hortic. 2024, 329, 113001. [Google Scholar] [CrossRef]
- Miao, Y.; Li, S.; Fu, Y.; Wang, Z.; Xu, X.; Luo, L. Characteristics of ammonium N and nitrate N accumulation in dryland soil in relation with wheat yield. Chin. J. Appl. Ecol. 2014, 25, 1013–1021. [Google Scholar]
- Zhu, Z.; Yu, M.; Chen, Y.; Guo, Q.; Zhang, L.; Shi, H.; Liu, L. Effects of ammonium to nitrate ratio on growth, nitrogen metabolism, photosynthetic efficiency and bioactive phytochemical production of Prunella vulgaris. Pharm. Biol. 2014, 52, 1518–1525. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, Z.; Pan, Q.; Sun, X.; Chen, H.; Chen, F.; Yuan, L.; Mi, G. Increased biomass accumulation in maize grown in mixed nitrogen supply is mediated by auxin synthesis. J. Exp. Bot. 2019, 70, 1859–1873. [Google Scholar] [CrossRef]
- Wang, P.; Yang, L.; Sun, X.; Shi, W.; Dong, R.; Wu, Y.; Mi, G. Lateral root elongation in maize is related to auxin synthesis and transportation mediated by N metabolism under a mixed NO3−and NH4+ supply. J. Integr. Agric. 2024, 23, 1048–1060. [Google Scholar] [CrossRef]
- Schrader, L.E.; Domska, D.; Jung, P.E.; Peterson, L.A. Uptake and assimilation of ammonium-N and nitrate-N and their influence on the growth of corn (Zea mays L.). Agron. J. 1972, 64, 690–695. [Google Scholar] [CrossRef]
- Peng, Z.D. Effects of Different Nitrogen Forms and Mulching Methods on Nitrogen Metabolism and Yield Formation in Spring Maize; Gansu Agricultural University: Lanzhou, China, 2018. [Google Scholar]
- Li, C.C. Regulatory Effects of Nitrogen Form Ratios on Nitrogen Utilization and Yield in Maize Under Full Film Double-Ridge Sowing; Gansu Agricultural University: Lanzhou, China, 2017. [Google Scholar]
- Schortemeyer, M.; Feil, B. Root morphology of maize under homogeneous or spatially separated supply of ammonium and nitrate at three concentration ratios. J. Plant Nutr. 1996, 19, 1089–1097. [Google Scholar] [CrossRef]
- Mohamed, E.; Wilcox, G.E. Plant species response to ammonium-nitrate concentration ratios. J. Plant Nutr. 1990, 13, 1017–1029. [Google Scholar]
- Gashaw, L.; Mugwira, L. Ammonium-N and nitrate-N effects on the growth and mineral compositions of triticale, wheat, and rye 1. Agron. J. 1981, 73, 47–51. [Google Scholar] [CrossRef]
- Ali, A.; Tucker, T.C.; Thompson, T.L.; Salim, M. Effects of salinity and mixed ammonium and nitrate nutrition on the growth and nitrogen utilization of barley. J. Agron. Crop Sci. 2001, 186, 223–228. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, Y.; Shen, Q. Effects of increased nitrate nutrition on ammonium uptake and growth of rice seedlings of different genotypes. Acta Pedol. Sin. 2005, 42, 260–265. (In Chinese) [Google Scholar]
- Guo, S.; Zhou, Y.; Shen, Q.; Zhang, F. Effect of ammonium and nitrate nutrition on some physiological processes in higher plants-growth, photosynthesis, photorespiration, and water relations. Plant Biol. 2007, 9, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Duan, Y.; Shen, Q. Screening of physiological indices for response of rice to nitrate. Acta Pedol. Sin. 2004, 4, 571–576. (In Chinese) [Google Scholar]
- Song, N.; Guo, S.W.; Shen, Q. Effects of different nitrogen forms and water stress on water absorption, photosynthesis, and growth of rice seedlings. Acta Bot. Sin. 2007, 24, 477–483. (In Chinese) [Google Scholar]
- Imsande, J. Nitrate-ammonium ratio required for pH homeostasis in hydroponically grown soybean. J. Exp. Bot. 1986, 37, 341–347. [Google Scholar] [CrossRef]
- Li, K.; Guo, Y.Q.; Liu, C.N.; Lu, X.; Liao, H. Effects of ammonium-nitrate ratio on growth and nodulation in soybean. Chin. J. Oil Crop Sci. 2014, 36, 349–356. [Google Scholar]
- Chen, L.; Zhu, Y.L.; Yang, L.F.; Wang, C. Effects of different nitrogen form ratios on growth, seed antioxidant enzyme activity, and reactive oxygen metabolism in vegetable soybean. J. Plant Nutr. Fert. 2010, 16, 768–772. [Google Scholar]
- Bernardo, L.M.; Clark, R.B.; Maranville, J.W. Nitrate/ammonium ratio effects on nutrient solution pH, dry matter yield, and nitrogen uptake of sorghum. J. Plant Nutr. 1984, 7, 1389–1400. [Google Scholar] [CrossRef]
- Tang, G.J.; Gao, C.L.; Jiang, S.D.; Zhang, Y.; Zhou, X.X.; Li, Y.P.; Xu, T.Y. Effects of nitrogen forms and ratios on nitrogen use efficiency and quality of flue-cured tobacco. Hunan Agric. Sci. 2014, 16, 21–23. [Google Scholar]
- Liu, S.L.; Hua, D.L.; Jie, X.L.; Lei, G.H.; Zhang, H.T.; Liu, F.; Zhu, J.F. Effects of different ammonium/nitrate ratios in nutrient solutions on tobacco mineral nutrient absorption and accumulation. Soil Bull. 2010, 41, 1423–1427. [Google Scholar]
- Matt, P.; Geiger, M.; Walch, L.P.; Engels, C.; Krapp, A.; Stitt, M. Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium nitrate. Plant Cell Environ. 2001, 24, 1119–1137. [Google Scholar] [CrossRef]
- Geiger, M.; Haake, V.; Ludewig, F.; Sonnewald, U.; Stitt, M. The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant Cell Environ. 1999, 22, 1177–1199. [Google Scholar] [CrossRef]
- Tabatabaei, J.S.; Yusefi, M.; Hajiloo, J. Effects of shading and NO3−: NH4+ ratio on the yield, quality and N metabolism in strawberry. Sci. Hortic. 2008, 116, 264–272. [Google Scholar] [CrossRef]
- Taghavi, T.S.; Babalar, M.; Ebadi, A.; Ebrahimzadeh, H.; Asgari, M.A. Effects of nitrate to ammonium ratio on yield and nitrogen metabolism of strawberry (Fragaria xananassa cv. selva). Int. J. Agric. Biol. 2004, 6, 994–997. [Google Scholar]
- Francesco, S.; Antonio, E.; Angelo, S.; Pietro, S. Influence of nitrogen form on yield and nitrate content of subirrigated early potato. J. Sci. Food Agric. 2004, 84, 1428–1432. [Google Scholar]
- Dobránszki, J.; Tábori, K.M. Influence of nitrogen supply of potato plantlets on in vitro tuberization pattern under inductive and non-inductive conditions. Potato Res. 2010, 53, 121–127. [Google Scholar] [CrossRef]
- Lu, Y.L. Molecular Physiological Mechanisms of Ammonium-Nitrate Nutrition Affecting Tomato Seedling Growth and Nitrogen Metabolism; Nanjing Agricultural University: Nanjing, China, 2009. [Google Scholar]
- Li, W.; Wang, Y.; Okamoto, M.; Crawford, N.M.; Siddiqi, M.Y.; Glass, A.D. Dissection of the AtNRT2.1:AtNRT2.2inducible high-affinity nitrate transporter gene cluster. Plant Physiol. 2007, 143, 425–433. [Google Scholar] [CrossRef]
- Borrero, C.; Trillas, M.I.; Delgado, A.; Avilés, M. Effect of ammonium/nitrate ratio in nutrient solution on control of Fusarium wilt of tomato by Trichoderma asperellum T34. Plant Pathol. 2012, 61, 132–139. [Google Scholar] [CrossRef]
- Liu, G.; Du, Q.; Li, J. Interactive effects of nitrate-ammonium ratios and temperatures on growth, photosynthesis, and nitrogen metabolism of tomato seedlings. Sci. Hortic. 2017, 214, 41–50. [Google Scholar] [CrossRef]
- Flores, P.; Carvajal, M.; Cerdá, A.; Martínez, V. Salinity and ammonium/nitrate interactions on tomato plant development, nutrition, and metabolites. J. Plant Nutr. 2001, 24, 1561–1573. [Google Scholar] [CrossRef]
- Hu, L.; Liao, W.; Dawuda, M.; Yu, J.; Lv, J. Appropriate NH4+: NO3− ratio improves low light tolerance of mini Chinese cabbage seedlings. BMC Plant Biol. 2017, 17, 22. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Luo, J.; Shen, Q. Effect of NH4+-N/NO3−-N ratios on growth and some physiological parameters of Chinese cabbage cultivars. Pedosphere 2005, 15, 310–318. [Google Scholar]
- Bao, L.; Dong, J.L.; Li, X.; Duan, Z.Q. Effects of elevated CO2 concentration and nitrogen supply on the photosynthetic pigments of cucumber leaves. Soil 2016, 48, 653–660. [Google Scholar]
- Wang, J.F.; Dong, C.X.; Shen, Q. Effects of different nitrogen forms on the content of free amino acids and related enzyme activities in spinach. J. Plant Nutr. Fertil. 2007, 13, 664–670. (In Chinese) [Google Scholar]
- Zhang, Y.; Xu, X.; Lin, X.; Zhang, Y.; Du, S.; Li, G. Effects of nitrogen forms on nitrate and oxalate accumulation in the edible part of spinach. J. Plant Nutr. Fert. 2006, 2, 2227–2232. (In Chinese) [Google Scholar]
- Yang, Y.; Zheng, Q.L.; Pei, C.G.; Zhai, H. Effects of different nitrate-ammonium ratios on growth and nitrogen nutrition in Chardonnay grape seedlings. J. Plant Nutr. Fert. 2010, 16, 370–375. [Google Scholar]
- Lv, W.X.; Hui, Z.M. Effects of different nitrogen forms on the fruit quality of “Cabernet Sauvignon” grape. North Hortic. 2012, 14, 5–8. [Google Scholar]
- Gamiely, S.; Randle, W.; Mills, H.; Smittle, D.; Banna, G. Onion plant growth, bulb quality, and water uptake following ammonium and nitrate nutrition. Hortscience 1991, 26, 1061–1063. [Google Scholar] [CrossRef]
- King, J.; Gay, A.; Sylvester-Bradley, R.; Bingham, I.; Foulkes, J.; Gregory, P.; Robinson, D. Modelling cereal root systems for water and nitrogen capture: Towards an economic optimum. Ann. Bot. 2003, 91, 383–390. [Google Scholar] [CrossRef]
- Mi, G.; Chen, F.; Chun, L.; Guo, Y.F.; Tian, Q.; Zhang, F. Biological characteristics of nitrogen efficient maize genotypes. J. Plant Nutr. Fert. 2007, 13, 155–159. [Google Scholar]
- Mi, G.; Chen, F.; Wu, Q.; Lai, N.; Yuan, L.; Zhang, F. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Sci. China (Life Sci.) 2010, 53, 1369–1373. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.P. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 2013, 112, 347–357. [Google Scholar] [CrossRef]
- Ren, W.; Zhao, L.; Liang, J.; Wang, L.; Chen, L.; Li, P.; Liu, Z.; Li, X.; Zhang, Z.; Li, J.; et al. Genome-wide dissection of changes in maize root system architecture during modern breeding. Nat. Plants 2022, 8, 1408–1422. [Google Scholar] [CrossRef]
- Mi, G.; Chen, F.; Yuan, L.; Zhang, F. Ideotype root system architecture for maize to achieve high yield and resource use efficiency in intensive cropping systems. Adv. Agron. 2016, 139, 73–97. [Google Scholar]
- Plett, D.; Toubia, J.; Garnett, T.; Tester, M.; Kaiser, B.N.; Baumann, U. Dichotomy in the NRT gene families of dicots and grass species. PLoS ONE 2010, 5, e15289. [Google Scholar] [CrossRef]
- Gu, R.; Duan, F.; An, X.; Zhang, F.; Von Wirén, N.; Yuan, L. Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.). Plant Cell Physiol. 2013, 54, 1515–1524. [Google Scholar] [CrossRef]
- Hui, J.; Liu, Z.; Duan, F.; Zhao, Y.; Li, X.; An, X.; Wu, X.; Yuan, L. Ammonium-dependent regulation of ammonium transporter ZmAMT1s expression conferred by glutamine levels in roots of maize. J. Integr. Agric. 2022, 21, 2413–2421. [Google Scholar] [CrossRef]
- Kronzucker, H.J.; Glass, A.D.; Yaeesh, S.M. Inhibition of nitrate uptake by ammonium in barley. Analysis of component fluxes. Plant Physiol. 1999, 120, 283–292. [Google Scholar] [CrossRef]
- Dong, C.; Lu, Y.; Zhu, Y.; Zhou, Y.; Xu, Y.; Shen, Q. Effect of homogeneous and heterogeneous supply of nitrate and ammonium on nitrogen uptake and distribution in tomato seedlings. Plant Growth Regul. 2012, 68, 271–280. [Google Scholar] [CrossRef]
- Feil, B. Growth and ammonium: Nitrate uptake ratio of spring wheat cultivars under a homogeneous and a spatially separated supply of ammonium and nitrate. J. Plant Nutr. 1994, 17, 717–728. [Google Scholar] [CrossRef]
- Bar-Tal, A.; Aloni, B.; Karni, L.; Rosenberg, R. Nitrogen nutrition of greenhouse pepper. II. Effects of nitrogen concentration and NO3−: NH4+ ratio on growth, transpiration, and nutrient uptake. HortScience 2001, 36, 1252–1259. [Google Scholar] [CrossRef]
- Kronzucker, H.J.; Siddiqi, M.Y.; Glass, A.D.; Kirk, G.J. Nitrate-ammonium synergism in rice. A subcellular flux analysis. Plant Physiol. 1999, 119, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Cerezo, M.; Tillard, P.; Muños, S.; Daniel-Vedele, F.; Gojon, A. Major alterations of the regulation of root NO3− uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant Physiol. 2001, 127, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Babourina, O.; Voltchanskii, K.; Mcgann, B.; Newman, I.; Rengel, Z. Nitrate supply affects ammonium transport in canola roots. J. Exp. Bot. 2007, 58, 651–658. [Google Scholar] [CrossRef]
- Wirth, J.; Chopin, F.; Santoni, V.; Viennois, G.; Tillard, P.; Krapp, A.; Lejay, L.; Daniel-Vedele, F.; Gojon, A. Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. J. Biol. Chem. 2007, 282, 23541–23552. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Qin, J.; He, F.; Li, H.; Liu, T.; Polle, A.; Peng, C.; Luo, Z. Net fluxes of ammonium and nitrate in association with H+ fluxes in fine roots of Populus popularis. Planta 2013, 237, 919–931. [Google Scholar] [CrossRef]
- Flynn, K.J.; Fasham, M.J.R.; Hipkin, C.R. Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton. Philos. Trans. R. Soc. B: Biol. Sci. 1997, 352, 1361–1372. [Google Scholar] [CrossRef]
- Nazoa, P.; Vidmar, J.J.; Tranbarger, T.J.; Mouline, K.; Damiani, I.; Tillard, P.; Zhuo, D.; Glass, A.D.; Touraine, B. Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: Responses to nitrate, amino acids and developmental stage. Plant Mol. Biol. 2003, 52, 689–703. [Google Scholar] [CrossRef]
- Zhuo, D.; Okamoto, M.; Vidmar, J.J.; Glass, A.D. Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana. Plant J. 1999, 17, 563–568. [Google Scholar] [CrossRef]
- Zhong, Y.; Yan, W.; Chen, J.; Shangguan, Z. Net ammonium and nitrate fluxes in wheat roots under different environmental conditions as assessed by scanning ion-selective electrode technique. Sci. Rep. 2014, 4, 7223. [Google Scholar] [CrossRef]
- Lanquar, V.; Loqué, D.; Hörmann, F.; Yuan, L.; Bohner, A.; Engelsberger, W.; Lalonde, S.; Schulze, W.; Von, W.; Frommer, W. Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis. Plant Signal Behav. 2010, 21, 3610–3622. [Google Scholar]
- Hachiya, T.; Sakakibara, H. Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. J. Exp. Bot. 2017, 68, 2501–2512. [Google Scholar] [CrossRef] [PubMed]
- Coskun, D.; Britto, D.; Li, M.; Becker, A.; Kronzucker, H. Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3−/NH4+ toxicity in plant roots. Plant Physiol. 2013, 163, 1859–1867. [Google Scholar] [CrossRef]
- Li, G.; Tillard, P.; Gojon, A.; Maurel, C. Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1. Plant Cell Physiol. 2016, 57, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.P. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. New Phytol. 2019, 223, 548–564. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.P. Rightsizing root phenotypes for drought resistance. J. Exp. Bot. 2018, 69, 3279–3292. [Google Scholar] [CrossRef]
- Uga, Y.; Sugimoto, K.; Ogawa, S.; Rane, J.; Ishitani, M.; Hara, N.; Kitomi, Y.; Inukai, Y.; Ono, K.; Kanno, N.; et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 2013, 459, 1097–1102. [Google Scholar] [CrossRef]
- Liu, Y.; Lai, N.; Gao, K.; Chen, F.; Yuan, L.; Mi, G. Ammonium inhibits primary root growth by reducing the length of meristem and elongation zone and decreasing elemental expansion rate in the root apex in Arabidopsis thaliana. PLoS ONE 2013, 8, e61031. [Google Scholar] [CrossRef]
- Giehl, R.F.H.; von Wirén, N. Root nutrient foraging. Plant Physiol. 2014, 166, 509–517. [Google Scholar] [CrossRef]
- Jia, Z.; von Wirén, N. Signaling pathways underlying nitrogen-dependent changes in root system architecture: From model to crop species. J. Exp. Bot. 2020, 71, 4393–4404. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Giehl, R.F.H.; von Wirén, N. Nutrient-hormone relations: Driving root plasticity in plants. Mol. Plant. 2022, 15, 86–103. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Hochholdinger, F.; Li, C. Plasticity of lateral root branching in maize. Front. Plant Sci. 2019, 10, 363. [Google Scholar] [CrossRef]
- Zhang, H.; Jennings, A.; Barlow, P.; Forde, B. Dual pathways for regulation of root branching by nitrate. Proc. Natl. Acad. Sci. USA 1999, 96, 6529–6534. [Google Scholar] [CrossRef]
- Zhang, H.; Rong, H.; Pilbeam, D. Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana. J. Exp. Bot. 2007, 58, 2329–2338. [Google Scholar] [CrossRef]
- Lima, J.E.; Kojima, S.; Takahashi, H.; von Wirén, N. Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-dependent manner. Plant Cell 2010, 22, 3621–3633. [Google Scholar] [CrossRef] [PubMed]
- Meier, M.; Liu, Y.; Lay-Pruitt, K.S.; Takahashi, H.; von Wirén, N. Auxin-mediated root branching is determined by the form of available nitrogen. Nat. Plants 2020, 6, 1136–1145. [Google Scholar] [CrossRef]
- Oaks, A.; Poulle, M.; Goodfellow, V.; Cass, L.; Deising, H. The role of nitrate and ammonium ions and light on the induction of nitrate reductase in maize leaves. Plant Physiol. 1988, 88, 1067–1072. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Lewis, C.; Noctor, G.; Causton, D.; Foyer, C. Regulation of assimilate partitioning in leaves. Funct. Plant Biol. 2000, 27, 507–519. [Google Scholar] [CrossRef]
- Golvano, M.P.; Felipe, M.R.; Cintas, A.M. Influence of nitrogen sources on chloroplast development in wheat seedlings. Physiol. Plant. 1982, 56, 353–360. [Google Scholar] [CrossRef]
- Ikeda, M.; Kusano, T.; Koga, N. Carbon skeletons for amide synthesis during ammonium nutrition in tomato and wheat roots. Soil Sci. Plant Nutr. 2004, 50, 141–147. [Google Scholar] [CrossRef]
- Horchani, F.; Hajri, R.; Aschi-Smiti, S. Effect of ammonium or nitrate nutrition on photosynthesis, growth, and nitrogen assimilation in tomato plants. J. Plant Nutr. Soil Sci. 2010, 173, 610–617. [Google Scholar] [CrossRef]
- Høgh-Jensen, H.; Schjoerring, J.K. Interactions between white clover and ryegrass under contrasting nitrogen availability: N2 fixation, N fertilizer recovery, N transfer and water use efficiency. Plant Soil 1997, 197, 187–199. [Google Scholar] [CrossRef]
- Raab, T.K.; Terry, N. Nitrogen source regulation of growth and photosynthesis in Beta vulgaris L. Plant Physiol. 1994, 105, 1159–1166. [Google Scholar] [CrossRef]
- Hecht, U.; Mohr, H. Factors controlling nitrate and ammonium accumulation in mustard (Sinapis alba) seedlings. Physiol. Plant. 1990, 78, 379–387. [Google Scholar] [CrossRef]
- Claussen, W.; Lenz, F. Effect of ammonium or nitrate nutrition on netphotosynthesis, growth, and activity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry. Plant Soil. 1999, 208, 95–102. [Google Scholar] [CrossRef]
- Arias-Baldrich, C.; Osa, C.D.L.; Bosch, N.; Ruiz-Ballesta, I.; Monreal, J.A.; García-Mauriño, S. Enzymatic activity, gene expression and posttranslational modifications of photosynthetic and nonphotosynthetic phosphoenolpyruvate carboxylase in ammonium-stressed sorghum plants. J. Plant Physiol. 2017, 214, 39–47. [Google Scholar] [CrossRef]
- Alencar, V.; Lobo, A.; Carvalho, F.; Silveira, J. High ammonium supply impairs photosynthetic efficiency in rice exposed to excess light. Photosynth. Res. 2019, 140, 321–335. [Google Scholar] [CrossRef]
- Pasqualini, S.; Ederli, L.; Piccioni, C.; Batini, P.; Bellucci, M.; Arcioni, S.; Antonielli, M. Metabolic regulation and gene expression of root phosphoenolpyruvate carboxylase by different nitrogen sources. Plant Cell Environ. 2001, 24, 439–447. [Google Scholar] [CrossRef]
- Hachiya, T.; Watanabe, C.; Fujimoto, M.; Ishikawa, T.; Takahara, K.; Kawaiyamada, M.; Uchimiya, H.; Uesono, Y.; Terashima, I.; Noguchi, K. Nitrate addition alleviates ammonium toxicity without lessening ammonium accumulation, organic acid depletion and inorganic cation depletion in Arabidopsis thaliana shoots. Plant Cell Physiol. 2012, 3, 577–591. [Google Scholar] [CrossRef]
- Masakapalli, S.K.; Kruger, N.J.; Ratcliffe, R.G. The metabolic flux phenotype of heterotrophic Arabidopsis cells reveals a complex response to changes in nitrogen supply. Plant J. 2013, 74, 569–582. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Yanagisawa, S. Characterization of metabolic states of Arabidopsis thaliana under diverse carbon and nitrogen nutrient conditions via targeted metabolomic analysis. Plant Cell Physiol. 2014, 55, 306–319. [Google Scholar] [CrossRef]
- Lea, P.J.; Morot-Gaudry, J.F. Plant Nitrogen; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Masumoto, C.; Miyazawa, S.I.; Ohkawa, H.; Fukuda, T.; Taniguchi, Y.; Murayama, S.; Kusano, M.; Saito, K.; Fukayama, H.; Miyao, M. Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc. Natl. Acad. Sci. USA 2010, 107, 5226–5231. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Yi, K.; Liu, Y.; Xie, L.; Zhou, Z.; Chen, Y.; Hu, Z.; Zheng, T.; Liu, R.; Chen, Y. Phosphoenolpyruvate carboxylase in Arabidopsis leaves plays a crucial role in carbon and nitrogen metabolism. Plant Physiol. 2015, 167, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.L. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 2014, 65, 33–67. [Google Scholar] [CrossRef]
- Lawlor, D.W.; Paul, M.J. Source/sink interactions underpin crop yield: The case for trehalose 6-phosphate/SnRK1 in improvement of wheat. Front. Plant Sci. 2014, 5, 418. [Google Scholar] [CrossRef]
- Yu, S.; Lo, S.; Ho, T.D. Source-sink communication: Regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci. 2015, 20, 844–857. [Google Scholar] [CrossRef]
- Martin, T.; Oswald, O.; Graham, I.A. Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: Nitrogen availability. Plant Physiol. 2002, 128, 472–481. [Google Scholar] [CrossRef]
- Moore, B.; Zhou, L.; Rolland, F.; Hall, Q.; Cheng, W.; Liu, Y.; Hwang, I.; Jones, T.; Sheen, J. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 2003, 300, 332–336. [Google Scholar] [CrossRef]
- Dai, T.; Cao, W.; Sun, C.; Jiang, D.; Jing, Q. Effect of enhanced ammonium nutrition on photosynthesis and nitrate reductase and glutamine synthetase activities of winter wheat. Chin. J. Appl. Ecol. 2003, 14, 1529–1532. [Google Scholar]
- Neales, T.F.; Incoll, L.D. The control of leaf photosynthesis rate by the level of assimilate concentration in the leaf: A review of the hypothesis. Bot. Rev. 1968, 34, 107–125. [Google Scholar] [CrossRef]
- Figueroa, C.M.; Lunn, J.E. A tale of two sugars: Trehalose 6-phosphate and sucrose. Plant Physiol. 2016, 172, 7–27. [Google Scholar] [CrossRef] [PubMed]
- Yadav, U.P.; Ivakov, A.; Feil, R.; Duan, G.Y.; Walther, D.; Giavalisco, P.; Piques, M.; Carillo, P.; Hubberten, H.; Stitt, M. The sucrose-trehalose 6-phosphate (Tre6P) nexus: Specificity and mechanisms of sucrose signalling by Tre6P. J. Exp. Bot. 2014, 65, 1051–1068. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, C.; Sagar, R.; Geng, Y.; Primavesi, L.; Patel, M.; Passarelli, M.; Gilmore, I.; Steven, R.; Bunch, J.; Paul, M. Chemical intervention in plant sugar signalling increases yield and resilience. Nature 2016, 540, 574–578. [Google Scholar] [CrossRef]
- Petrásek, J.; Friml, J. Auxin transport routes in plant development. Development 2009, 136, 2675–2688. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, X.; Zhang, Z.; Yuan, S. Synergistic effects of nitrogen metabolites on auxin regulating plant growth and development. Front. Plant Sci. 2022, 13, 1098787. [Google Scholar] [CrossRef]
- Reinhardt, D.; Mandel, T.; Kuhlemeier, C. Auxin regulates the initia-tion and radial position of plant lateral organs. Plant Cell. 2000, 12, 507–518. [Google Scholar] [CrossRef]
- Sieburth, L.E. Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiol. 1999, 121, 1179–1190. [Google Scholar] [CrossRef]
- Keller, C.P. Leaf expansion in Phaseolus: Transient auxin-induced growth increase. Physiol. Plant. 2017, 130, 580–589. [Google Scholar] [CrossRef]
- Avery, G.S., Jr.; Pottorf, L. Auxin and nitrogen relationships in green plants. Am. J. Bot. 1945, 32, 666–669. [Google Scholar] [CrossRef]
- Tian, Q.; Chen, F.; Liu, J.; Zhang, F.; Mi, G. Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J. Plant Physiol. 2008, 165, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Caba, J.M.; Centeno, M.L.; Fernández, B.; Gresshoff, P.M.; Ligero, F. Inoculation and nitrate alter phytohormone levels in soybean roots: Differences between a supernodulating mutant and the wild type. Planta 2000, 211, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, V.; Mercier, H. Cytokinins and auxin communicate nitrogen availability as long-distance signal molecules in pineapple (Ananas comosus). J. Plant Physiol. 2007, 164, 1543–1547. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Li, J.; Qu, B.; He, X.; Zhao, X.; Li, B.; Fu, X.; Tong, Y. Auxin bio-synthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis. Plant J. 2014, 78, 70–79. [Google Scholar] [CrossRef]
- Revsbech, N.P.; Pedersen, O.; Reichardt, W.; Briones, A. Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biol. Fertil. Soils. 1999, 29, 379–385. [Google Scholar] [CrossRef]
- Reed, R.C.; Brady, S.R.; Muday, G.K. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol. 1998, 118, 1369–1378. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Dong, J.; Wang, S.; Song, K.; Ling, A.; Yang, J.; Xiao, Z.; Li, W.; Song, W.; Liang, H. Differential responses of root growth to nutrition with different ammonium/nitrate ratios involve auxin distribution in two tobacco cultivars. J. Integr. Agric. 2018, 18, 2703–2715. [Google Scholar] [CrossRef]
- Wang, B.; Shen, Q. Effects of ammonium on the root architecture and nitrate uptake kinetics of two typical lettuce genotypes grown in hydroponic systems. J. Plant Nutr. 2012, 35, 1497–1508. [Google Scholar] [CrossRef]
- Song, W.; Makeen, K.; Wang, D.; Zhang, C.; Xu, Y.; Zhao, H.; Tu, E.; Zhang, Y.; Shen, Q.; Xu, G. Nitrate supply affects root growth differentially in two rice cultivars differing in nitrogen use efficiency. Plant Soil. 2011, 343, 357–368. [Google Scholar] [CrossRef]
- Sun, H.; Feng, F.; Liu, J.; Zhao, Q. Nitric Oxide Affects Rice Root Growth by Regulating Auxin Transport Under Nitrate Supply. Front. Plant Sci. 2019, 10, 1123. [Google Scholar] [CrossRef]
- Walch, L.P.; Neumann, G.; Bangerth, F.; Engels, C. Rapid effects of nitrogen form on leaf morphogenesis in tobacco. J. Exp. Bot. 2000, 51, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, C.; Zhang, F. Effects of different nitrogen forms and combination with foliar spraying with 6-benzylaminopurine on growth, transpiration, and water and potassium uptake and flow in tobacco. Plant Soil. 2003, 256, 169–178. [Google Scholar] [CrossRef]
- Martins-Loução, M.A.; Dias, T.; Cruz, C. Integrating ecological principles for addressing plant production security and move beyond the dichotomy ‘good or bad’ for nitrogen inputs choice. Agronomy 2022, 12, 1632. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Li, W.; Li, P.; Zhu, R.; Zhong, Y.; Zhang, W.; Li, T. The optimal ammonium–nitrate ratio for various crops: A meta-analysis. Field Crops Res. 2024, 307, 109240. [Google Scholar] [CrossRef]
Species | Methods of Cultivation | Nitrogen Supply Concentration | Optimal Ammonium-Nitrate Ratio | Medium pH | Reference |
---|---|---|---|---|---|
Maize | Hydroponics | 1 mmol L−1 | 1:3 | 5.8 | [16] |
Hydroponics | 1 mmol L−1 | 1:3 | 5.8 | [11] | |
Hydroponics | 1 mmol L−1 | 1:3 | 5.8 | [12] | |
Hydroponics | 1 mmol L−1 | 1:3 | 5.8 | [17] | |
Hydroponics | 7.14 mmol L−1 | 3:1 | 5.3 ± 0.5 | [18] | |
Field | 240 kg hm−2 | 1:3–1:1 | -- | [19] | |
Field | 180 kg hm−2 | 1:3 | -- | [20] | |
Hydroponics | 3 mmol L−1 | 1:4 | 4.8–5.5 | [21] | |
Hydroponics | 11 mmol L−1 | 0:11–2:9 | -- | [22] | |
Wheat | Hydroponics | 0.2 mmol L−1 | 1:5 | 5.6 ± 0.2 | [7] |
Hydroponics | 7.14 mmol L−1 | 1:3–1:1 | 6.0 ± 0.5 | [23] | |
Field | -- | 2:1 | -- | [6] | |
Barly | Hydroponics | 7.14 mmol L−1 | 1:3–1:1 | 6.0 | [24] |
Rice | Hydroponics | 2.86 mmol L−1 | 1:1 | 6.0 | [25] |
Hydroponics | 2.86 mmol L−1 | 1:1 | 5.50 ± 0.05 | [26] | |
Hydroponics | 2.86 mmol L−1 | 1:1 | 6.0 | [27] | |
Hydroponics | 2.86 mmol L−1 | 1:1 | 6.0 | [28] | |
Soybean | Hydroponics | 3 mmol L−1 | 0:1–1:4 | 6.4 | [29] |
Hydroponics | 2.4 mmol L−1 | 1:3 | 5.8 | [30] | |
Hydroponics | 11 mmol L−1 | 1:10 | -- | [22] | |
Phaseolus vulgaris | pot | 16 mmol L−1 | 1:3 | -- | [31] |
Sorghum | Hydroponics | 14.3 mmol L−1 | 1:4 | -- | [32] |
Tobacco | Field | 105 kg hm−2 | 1:1 | 6.21 | [33] |
Hydroponics | 10 mmol L−1 | 0:1–3:7 | 5.8 ± 0.1 | [34] | |
Hydroponics | 2 mmol L−1 | 1:1 | 6.8–7.2 | [35] | |
Hydroponics | 20 mmol L−1 | 1:1 | 6.9–7.1 | [36] | |
Strawberry | Hydroponics | 14.2 mmol L−1 | 1:1 | 6.5–6.8 | [37] |
Hydroponics | 7 mmol L−1 | 3:11 | 6.0 | [38] | |
Hydroponics | 14.2 mmol L−1 | 1:3 | 6.5 | [13] | |
Potato | Hydroponics | 6.4 mmol L−1 | 1:1 | 5.5–6.5 | [39] |
Hydroponics | 41 mmol L−1 | 1:3 | -- | [40] | |
Tomato | Hydroponics | 5 mmol L−1 | 1:3 | 6.2 | [41] |
Hydroponics | 3.83 mmol L−1 | 3:1 | 6.0 ± 0.2 | [42] | |
Hydroponics | 12.5 mmol L−1 | 1:4 | 6.0 | [43] | |
Hydroponics | 8 mmol L−1 | 1:3 | 5.5–6.5 | [44] | |
Hydroponics | 14 mmol L−1 | 2:12 | 5.5–6.0 | [45] | |
Cabbage | Hydroponics | 5 mmol L−1 | 15:85 | 6.5–7.0 | [46] |
Hydroponics | 11 mmol L−1 | 1:10 | -- | [22] | |
Hydroponics | -- | 1:3 | -- | [47] | |
Cucumber | Hydroponics | 12.5 mmol L−1 | 11:3 | -- | [48] |
Spinach | Hydroponics | 12 mmol L−1 | 0:1–1:3 | 6.5 | [49] |
Hydroponics | 8 mmol L−1 | 1:1 | 5.5–6.0 | [50] | |
Grape | Hydroponics | 7.14 mmol L−1 | 3:7 | 6.5 | [51] |
Field | Nitrogen 10 g plant−1 | 1:1 | -- | [52] | |
Sesame | Hydroponics | 8 mmol L−1 | 1:9 | 5.85 | [10] |
Onion | Hydroponics | -- | 1:3 | -- | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Yan, H.; Liu, H.; Yang, L.; Mi, G.; Wang, P. Enhancing Crop Nitrogen Efficiency: The Role of Mixed Nitrate and Ammonium Supply in Plant Growth and Development. Biology 2025, 14, 546. https://doi.org/10.3390/biology14050546
Yang Z, Yan H, Liu H, Yang L, Mi G, Wang P. Enhancing Crop Nitrogen Efficiency: The Role of Mixed Nitrate and Ammonium Supply in Plant Growth and Development. Biology. 2025; 14(5):546. https://doi.org/10.3390/biology14050546
Chicago/Turabian StyleYang, Zhiqi, Huifeng Yan, Haiwei Liu, Lan Yang, Guohua Mi, and Peng Wang. 2025. "Enhancing Crop Nitrogen Efficiency: The Role of Mixed Nitrate and Ammonium Supply in Plant Growth and Development" Biology 14, no. 5: 546. https://doi.org/10.3390/biology14050546
APA StyleYang, Z., Yan, H., Liu, H., Yang, L., Mi, G., & Wang, P. (2025). Enhancing Crop Nitrogen Efficiency: The Role of Mixed Nitrate and Ammonium Supply in Plant Growth and Development. Biology, 14(5), 546. https://doi.org/10.3390/biology14050546