Ferroptosis: Therapeutic Potential and Strategies in Non-Small Cell Lung Cancer
Simple Summary
Abstract
1. Introduction
2. Characteristics of Ferroptosis
3. Mechanisms That Promote Ferroptosis
3.1. Iron Accumulation
3.2. Lipid Metabolism
3.3. Amino Acids Metabolism
4. Genetic Regulation of Ferroptosis in NSCLC
4.1. SLC7A11
4.2. GPX4
4.3. NRF2
4.4. p53
Gene | Mechanism | Effect on Ferroptosis | References |
---|---|---|---|
SLC7A11 | SPTBN2 interacts with SLC7A11 via its CH domain, links it to the motor protein Arp1, and promotes SLC7A11 membrane localization | ↓ | [48] |
LAPTM4B inhibits the ubiquitin/proteasomal degradation of SLC7A11 through NEDD4L/ZRANB1 | ↓ | [24] | |
Direct interaction with SLC7A11/xCT via its NHL domain leads to the ubiquitination of K11 junctions and subsequent proteasome degradation | ↑ | [23] | |
CAP inhibits the expression of SLC7A11 by activating the PCAF-mediated acetylation of HOXB9 | ↑ | [21] | |
Downregulated SLC7A11 by reducing m6A modification | ↑ | [25] | |
SF3B1 promotes the expression of SLC7A11 | ↓ | [22] | |
GPX4 | PPARα promotes the expression of GPX4 | ↓ | [27] |
Lactate through the p38-SGK1 pathway attenuates NEDD4L/GPX4-mediated ubiquitination and degradation of GPX4 | ↓ | [28] | |
β-elemene promotes lysosomal degradation of GPX4 via TFEB | ↑ | [29] | |
METTL14 enhances the stability and expression of GPX4 mRNA through IGF2BP1-mediated m6A modification of GPX4 | ↓ | [30] | |
Lapatinib inhibits the expression of GPX4 | ↑ | [31] | |
Notch3 inhibits the expression of GPX4 | ↑ | [32] | |
NRF2 | Trabectedin inhibits the KEAP1/NRF2/GPX4 axis | ↑ | [35] |
NSUN2 enhances the stability of NRF2 mRNA by modifying its 5′UTR region with m5C | ↓ | [36] | |
NRF2 upregulates PHKG2 expression, induces mitochondrial dysfunction, and promotes ferritinophagy | ↑ | [37] | |
APOC1 regulates the NRF2/HO-1 pathway | ↑ | [38] | |
NRF2 through the FOCAD-FAK signaling pathway regulates the sensitivity of NSCLC cells to cystine deprivation-induced ferroptosis | ↑ | [39] | |
p53 | Disulfide/copper through ferroptosis enhances the therapeutic efficacy of adavosertib in p53-deficient NSCLC | ↑ | [44] |
Qingrehuoxue formula promotes the expression of p53 | ↑ | [45] | |
KIAA1429 upregulates the p53 signaling pathway | ↑ | [46] | |
HEATR1 upregulates the p53/SAT1/ALOX15 pathway | ↑ | [47] |
5. Therapeutic Strategies Targeting Ferroptosis in NSCLC
5.1. Non-Coding RNA
5.1.1. miRNAs
5.1.2. LncRNAs
5.1.3. circRNAs
Category | Target Protein/Pathway | Model | Mechanism | References |
---|---|---|---|---|
miR-744-5p/miR-615-3p | GPX4 | A549, H1299, A549, and H12999 (Cis) | miR-744-5p/miR-615-3p upregulation: ↓GPX4. | [56] |
miR-324-3p | GPX4 | A549/DPP | miR-324-3p upregulation: ↓GSH, ↓GPX4, and ↓mitochondrial shrinkage and mitochondrial ridge; ↑ROS, ↑lipid peroxides, and ↑sensitivity to cisplatin. | [57] |
miR-27a-3p | SLC7A11 | A549, Beas-2B, And Calu-3; clinical tissue specimens | miR-27a-3p upregulation: ↓SLC7A11; ↑Fe2+, ↑ROS, ↑MDA, and ↑lipid peroxidation. | [58] |
miR-26a-1-3p | MDM2 | A549, H1975, and BEAS-2B; xenotransplantation of tumor in mice; patient-derived tumor xenograft (PDX) | miR-26a-1-3p upregulation: ↓SLC7A11, ↓GSH, ↓GPX4, ↓MDM2, and ↓mitochondrial contraction; ↑ROS, ↑lipid peroxides, and ↑p53. | [59] |
miR-139 | cJUN, KPNA2 | A549, H1299, and 293FT; xenotransplantation of tumor in mice | miR-139 upregulation: ↓NRF2, ↓KPNA2, ↓SLC7A11, ↓GCLC, ↓GPX4, ↓TXNRD1, ↓HO-1, and ↓NQO-1. | [60] |
miR-302a-3p | FPN | A549, H358, H1299, H1650, BEAS-2B, and HBE | miR-302a-3p upregulation: ↓GSH, ↓GPX4, and ↓cell viability; ↑Fe2+ and ↑lipid peroxides. | [61] |
LncRNA ITGB2-AS1 | FOSL2/NAMPT pathway | BEAS-2B, SK-MES-1, NCI-H520, A549, H197, and PC-9; xenotransplantation of tumor in mice | ITGB2-AS1 downregulation: ↓p53; ↑Fe2+ and ↑cisplatin resistance. | [63] |
LncRNA RGMB-AS1 | HO-1, NAA10 | 293T, A549, H1299, HCC827, and PC9; xenotransplantation of tumor in mice | RGMB-AS1 upregulation: ↓GSH, ↓GPX4, ↓HO-1 ubiquitination, and ↓mitochondrial shrinkage and mitochondrial ridge; ↑Fe2+, ↑lipid ROS, ↑MDA, and ↑NAA10 activity. | [64] |
BBOX1-AS1 | miR-326, PROM2 | BEAS-2B, A549, H1299, SK-MES-1, and NCI-H520; xenotransplantation of tumor in mice | BBOX1-AS1 downregulation: ↓GSH, ↓GPX4, ↓SLC7A11, and ↓PROM2; ↑ACSL4 and ↑MDA. | [65] |
LncRNA LUCAT1 | miR-34a-5p, GCH1 | BEAS-2B, A549, 293T, and H460 | LUCAT1 downregulation: ↓GCH1; ↑miR-34a-5p and ↑lipid peroxidation. | [66] |
LncRNA H19 | BEAS-2B, H1975, H1650, and H1819(EGFR-mutant); xenotransplantation of tumor in mice | H19 upregulation: ↓GSH, ↓GPX4, and ↓MMP; ↑ROS, ↑lipid ROS, ↑MDA, and ↑cytotoxicity. | [67] | |
LncRNA HOXC-AS3 | SETD1A, EP300 | BEAS-2B, H522, PC9, H1975, and A549 xenotransplantation of tumor in mice | HOXC-AS3 upregulation: ↓SETD1A, ↓ROS, and ↓MDA; ↑GPX4, ↑GSH, ↑EP300, and ↑cell proliferation. | [68] |
CircSCN8A | miR-1290 | BEAS-2B, A549, H1299, NCI-H520, and SK-MES-1; xenotransplantation of tumor in mice | CircSCN8A upregulation: ↓GSH and ↓cell proliferation and metastasis; ↑ROS, ↑MDA, ↑Fe2+, and ↑ACSL4. | [53] |
Circ_0082374 | miR-491-5p | 16HBE, H1299, Calu-6, and A549; clinical tissue specimens | Circ_0082374 downregulation: ↓GPX4, ↓cell proliferation and metastasis, and ↓tumor volume and weight; ↑miR-491-5p. | [70] |
CirCDTL | miR-1287-5p | BEAS-2B, H23, H522, PC9, and A549; xenotransplantation of tumor in mice | CirCDTL downregulation: ↓GSH, ↓GPX4, and ↓tumor volume and weight; ↑miR-1287-5p, ↑Fe2+, ↑ROS, ↑lipid peroxides, and ↑sensitivity to chemotherapeutic/ferroptosis inducing agent. | [71] |
CircPDSS1 | miR-137/SLC7A11 | 16HBE, PC-9, NCI-H522, A549, and H1299 | CircPDSS1 downregulation: ↓SLC7A11, ↓GPX4, ↓GCLC, and ↓cell proliferation; ↑miR-137 and ↑lipid peroxides. | [72] |
CircPOLA2 | Merlin-YAP | A549 and PC9 | CircPOLA2 upregulation: ↓p-Merlin (Ser518), activated the hippo signaling pathway, and ↓cell proliferation; ↑MDA and ↑lipid peroxides. | [73] |
5.2. Natural Compounds
5.2.1. Terpenoids
5.2.2. Alkaloid
5.2.3. Flavonoids
5.2.4. Others
Medicine | Class | Model | Mechanism | References |
---|---|---|---|---|
Andrographolide | Terpenoids | H460 and H1650; xenotransplantation of tumor in mice | ↑ROS, ↑MDA, ↑Fe2+, ↑lipid peroxides, ↑ATP, and ↑mitochondrial membrane potential depolarization; ↓GSH, ↓GPX4, and ↓SLC7A11. | [75] |
ß-Elemene | Terpenoids | BEAS-2B, H1975, H1650, and H1819 (EGFR-mutated EGFR-TKI-resistant NSCLC cells); xenotransplantation of tumor in mice | ↑lncRNA H19 and ↑ROS; ↓SLC7A11, ↓GSH, ↓GPX4, ↓FTH1, and ↓NRF2. | [67] |
ß-Elemene | Terpenoids | A549TFEB KO and A549WT; orthotopic NSCLC NOD/SCID mice | ↑Fe2+ and ↑lipid peroxides; ↓GPX4. | [29] |
13-oxyingenol dodecanoate | Terpenoids | BEAS-2B, A549, H460, and LO2 | ↑NRF2-KEAP1-HO-1, ↑lip ROS, ↑MDA, ↑lipid peroxides, and ↑mitophagy; ↓Xc−, ↓GSH, and ↓GPX4. | [76] |
Cucurbitacin B | Terpenoids | H358, A549, H23, H1650, and PC9 | ↑Fe2+, ↑ROS, ↑MDA, and ↑lipid peroxides; ↓p-STAT3, ↓GSH, and ↓MMP. | [77] |
Sinapine | Alkaloid | A549, SK, H661, HBE, H460, H460 and p53; xenotransplantation of tumor in mice | ↑TF, ↑TFR1, ↑P53, ↑Fe2+, and ↑ROS; ↓SLC7A11. | [78] |
Capsaicin | Alkaloid | A549 and NCI-H23 | ↑Fe2+; ↓SLC7A11, ↓GSH, and ↓GPX4. | [79] |
Berberine | Alkaloid | A549, NCI-H1299, NCI-H1975, 293 T, and LLC-1; xenotransplantation of tumor in mice | ↑ROS; ↓NRF2, ↓SLC7A11, ↓GSH, and ↓GPX4. | [80] |
Sanguinarine | Alkaloid | A549 and H3122; xenotransplantation of tumor in mice | ↑Fe2+, ↑ROS, and ↑MDA; ↓GSH and ↓GPX4. | [81] |
Fascaplysin | Alkaloid | A549; syngeneic mouse | ↑Fe2+, ↑ROS, and ↑PD-L1; G1/G0 phase arrest. | [82] |
Sanggenol L | Flavonoids (Isopentenyl) | A549, H1975, and BEAS-2B; xenotransplantation of tumor in mice patient-derived tumor xenograft (PDX); | ↑miR-26a-1-3p, ↑p53, ↑lipid peroxides, and ↑ROS; ↓MDM2, ↓SLC7A11, ↓GPX4, ↓GSH, and ↓mitochondrial contraction. | [59] |
Ginkgetin | Flavonoids (Bioflavonoid) | A549, NCI-H460, and SPC-A-1; xenotransplantation of tumor in mice | ↑MMP; ↓NRF2/HO-1, ↓SLC7A11, ↓GSH/GSSG, and ↓GPX4. | [83] |
S-3′-hydroxy-7′, 2′, 4′-trimethoxyisoxane | Flavonoids (Isoflavonoid)s | A549 and H460; xenotransplantation of nude mice | ↑Fe2+, ↑ROS, and ↑MDA; ↓GSH, ↓NRF2/HO-1, ↓GPX4, and cell cycle arrest. | [84] |
Timosaponin AIII | Saponin | H1299, A549, SPC-A1, Lewis lung carcinoma(LLC), and HBE; xenotransplantation of tumor in mice | ↑ROS, ↑MDA, And ↑HSP90; ↓GSH and ↓GPX4. | [85] |
α-Hederin | Saponin | A549/DPP and PC-9/DPP; xenotransplantation of tumor in mice | ↑EGR1 and ↑ DDIT3/ATF3; ↓miR-96-5p, ↓SLC7A11, and ↓GPX4. | [86] |
Bufotalin | Steroids | A549; xenotransplantation of tumor in mice | ↓GPX4 | [87] |
Curcumin | Polyphenol | A549 and H1299; Lewis lung carcinoma mice | ↑Fe2+, ↑ACSL4, ↑lipid peroxides, ↑LC3, ↑Beclin1, and ↑autolysosomes; ↓SLC7A11, ↓GSH, ↓GPX4, ↓P62, and ↓mitochondrial cristae. | [88] |
HO-3867 | polyketide | H460, PC-9, H1975, A549, H1299, A549 p53, and H460 p53 KO | ↑Fe2+, ↑ROS, and ↑DMT1 in a p53-dependent way; ↓GPX4. | [89] |
5.3. Combination Therapy
5.3.1. The Combination of Natural and Chemical Medicines
5.3.2. Anti-Tumor Therapy Combined with Ferroptosis Inducers
5.4. Nanomaterials
5.5. CRISPR-Cas9 Technology
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACSL4 | Acyl-CoA synthetase long-chain family member 4 |
ALKBH5 | AlkB homolog 5 |
ALOX | arachidonate lipoxygenase |
ATP | Adenosine-5′-triphosphate |
ATF3 | Three-letter acronym |
DDIT3 | DNA damage-induced transcriptional activator 3 |
DMT1 | divalent metal transporter 1 |
EGR1 | Early growth response 1 |
EP300 | E1A binding protein p300 |
FPN | Ferroportin |
FSP1 | Ferroptosis-suppressor protein 1 |
FTH1 | Ferritin heavy chain 1 |
CAP | Cold atmospheric plasma |
GCH1 | GTP cyclohydrolase 1 |
GCLC | glutamate/cysteine ligase catalytic subunit |
GPX4 | glutathione peroxidase 4 |
GSSG | oxidized glutathione |
GSH | glutathione |
GSR | glutathionedisulfide reductase |
GSS | glutathione synthetase |
γ-GCS | Gamma-glutamylcysteine synthetase |
HO-1 | heme oxygenase 1 |
HSP90 | Heat shock protein 90 |
KEAP1 | Kelch-like ECH-associated protein 1 |
KPNA2 | Karyopherin subunit alpha 2 |
LAPTM4B | lysosome-associated protein transmembrane 4B |
LC3 | microtubule-associated protein 1A/1B-light chain 3 |
LPCAT3 | lysophosphatidylcholine acyltransferase 3 |
MDA | Malondialdehyde |
MDM2 | Mouse double minute 2 homolog |
MLKL | Mixed lineage kinase domain-like pseudokinase |
MMP | mitochondrial membrane potential |
NAA10 | N-α-acetyltransferase 10 |
NCOA4 | Nuclear receptor coactivator 4 |
NQO-1 | NAD(P)H:quinone oxidoreductase 1 |
NRF2 | Nuclear factor erythroid 2-related factor 2 |
PD-L1 | Programmed death-ligand 1 |
PROM2 | prominin 2 |
PPAR | peroxisome proliferator-activated receptor |
PPRE | peroxisome proliferator response element |
PTGS2 | Prostaglandin–endoperoxide synthase 2 |
P62 | Sequestosome-1 |
Q10 | Coenzyme Q10 |
RIP1 | Receptor-interacting serine/threonine-protein kinase 1 |
RIP3 | Receptor-interacting serine/threonine kinase 3 |
ROS | reactive oxygen species |
SETD1A | SET domain containing 1A |
SLC3A2 | solute carrier family 3 member 2 |
SLC7A11 | solute carrier family 7 member 11 |
SPTBN2 | Non-Erythrocytic 2 |
System Xc− | cystine/glutamate antiporter system |
TF | transferrin |
TFR | transferrin receptor |
TRIM3 | tripartite motif-containing 3 |
TXNRD1 | Thioredoxin reductase 1 |
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Liu, Y.; Wen, Y.; Zhou, C. Non-small cell lung cancer in China. Cancer Commun. 2022, 42, 937–970. [Google Scholar] [CrossRef]
- Dixon, S.J.; Olzmann, J.A. The cell biology of ferroptosis. Nat. Rev. Mol. Cell Biol. 2024, 25, 424–442. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular mechanisms and health implications. Cell Res. 2021, 31, 107–125. [Google Scholar] [CrossRef]
- Wu, S.; Zhu, C.; Tang, D.; Dou, Q.P.; Shen, J.; Chen, X. The role of ferroptosis in lung cancer. Biomark. Res. 2021, 9, 82. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, R.; Li, J.; Zhu, L. Research progress on the occurrence and therapeutic mechanism of ferroptosis in NSCLC. Naunyn Schmiedebergs Arch. Pharmacol. 2022, 395, 1–12. [Google Scholar] [CrossRef]
- Zou, J.; Wang, L.; Tang, H.; Liu, X.; Peng, F.; Peng, C. Ferroptosis in Non-Small Cell Lung Cancer: Progression and Therapeutic Potential on It. Int. J. Mol. Sci. 2021, 22, 13335. [Google Scholar] [CrossRef]
- Dixon, S.J.; Stockwell, B.R. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 2014, 10, 9–17. [Google Scholar] [CrossRef]
- Galaris, D.; Pantopoulos, K. Oxidative stress and iron homeostasis: Mechanistic and health aspects. Crit. Rev. Clin. Lab. Sci. 2008, 45, 1–23. [Google Scholar] [CrossRef]
- Huang, L.; Feng, J.; Zhu, J.; Yang, J.; Xiong, W.; Lu, X.; Chen, S.; Yang, S.; Li, Y.; Xu, Y.; et al. A Strategy of Fenton Reaction Cycloacceleration for High-Performance Ferroptosis Therapy Initiated by Tumor Microenvironment Remodeling. Adv. Healthc. Mater. 2023, 12, e2203362. [Google Scholar] [CrossRef]
- Gao, M.; Monian, P.; Pan, Q.; Zhang, W.; Xiang, J.; Jiang, X. Ferroptosis is an autophagic cell death process. Cell Res. 2016, 26, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhou, X.; Xie, F.; Zhang, L.; Yan, H.; Huang, J.; Zhang, C.; Zhou, F.; Chen, J.; Zhang, L. Ferroptosis in cancer and cancer immunotherapy. Cancer Commun. 2022, 42, 88–116. [Google Scholar] [CrossRef]
- Liang, D.; Minikes, A.M.; Jiang, X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol. Cell 2022, 82, 2215–2227. [Google Scholar] [CrossRef] [PubMed]
- D’Herde, K.; Krysko, D.V. Ferroptosis: Oxidized PEs trigger death. Nat. Chem. Biol. 2017, 13, 4–5. [Google Scholar] [CrossRef] [PubMed]
- Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 2017, 13, 91–98. [Google Scholar] [CrossRef]
- Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 2017, 13, 81–90. [Google Scholar] [CrossRef]
- Koppula, P.; Zhuang, L.; Gan, B. Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 2021, 12, 599–620. [Google Scholar] [CrossRef]
- Xie, Y.; Kang, R.; Klionsky, D.J.; Tang, D. GPX4 in cell death, autophagy, and disease. Autophagy 2023, 19, 2621–2638. [Google Scholar] [CrossRef]
- Hadian, K.; Stockwell, B.R. SnapShot: Ferroptosis. Cell 2020, 181, 1188–1188.e1. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, H.; Li, X.; Xiao, N.; Chen, H.; Feng, H.; Li, Y.; Yang, Y.; Zhang, R.; Zhao, X.; et al. Cold atmospheric plasma enhances SLC7A11-mediated ferroptosis in non-small cell lung cancer by regulating PCAF mediated HOXB9 acetylation. Redox Biol. 2024, 75, 103299. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, X.; Du, Y.; Zhao, Y.; Gao, L.; Hao, Y.; Lv, D.; Feng, X.; Zhai, Y.; Zou, B.; et al. The splicing factor SF3B1 confers ferroptosis resistance and promotes lung adenocarcinoma progression via upregulation of SLC7A11. Cancer Gene Ther. 2024, 31, 1498–1510. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, N.; Wang, Z.; Yu, L.; Yang, S.; Wang, Y.; Liu, Y.; Han, G.; Zhang, Q. TRIM3 facilitates ferroptosis in non-small cell lung cancer through promoting SLC7A11/xCT K11-linked ubiquitination and degradation. Cell Death Differ. 2024, 31, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Liu, D.; Guo, H.; Liu, M.; Lv, D.; Bjorkblom, B.; Wu, M.; Yu, H.; Leng, H.; Lu, B.; et al. LAPTM4B counteracts ferroptosis via suppressing the ubiquitin-proteasome degradation of SLC7A11 in non-small cell lung cancer. Cell Death Dis. 2024, 15, 436. [Google Scholar] [CrossRef]
- Huang, Z.; Lin, G.; Hong, Y.; Weng, L.; Zhu, K.; Zhuang, W. High expression of AlkB homolog 5 suppresses the progression of non-small cell lung cancer by facilitating ferroptosis through m6A demethylation of SLC7A11. Environ. Toxicol. 2024, 39, 4035–4046. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Roh, J.L. Targeting GPX4 in human cancer: Implications of ferroptosis induction for tackling cancer resilience. Cancer Lett. 2023, 559, 216119. [Google Scholar] [CrossRef]
- Xing, G.; Meng, L.; Cao, S.; Liu, S.; Wu, J.; Li, Q.; Huang, W.; Zhang, L. PPARalpha alleviates iron overload-induced ferroptosis in mouse liver. EMBO Rep. 2022, 23, e52280. [Google Scholar] [CrossRef]
- Cheng, F.; Dou, J.; Yang, Y.; Sun, S.; Chen, R.; Zhang, Z.; Wei, H.; Li, J.; Wu, Z. Drug-induced lactate confers ferroptosis resistance via p38-SGK1-NEDD4L-dependent upregulation of GPX4 in NSCLC cells. Cell Death Discov. 2023, 9, 165. [Google Scholar] [CrossRef]
- Zhao, L.P.; Wang, H.J.; Hu, D.; Hu, J.H.; Guan, Z.R.; Yu, L.H.; Jiang, Y.P.; Tang, X.Q.; Zhou, Z.H.; Xie, T.; et al. beta-Elemene induced ferroptosis via TFEB-mediated GPX4 degradation in EGFR wide-type non-small cell lung cancer. J. Adv. Res. 2024, 62, 257–272. [Google Scholar] [CrossRef]
- Lou, Y.; Huang, K.; Xu, B.; Chen, X. METTL14 plays an oncogenic role in NSCLC by modulating ferroptosis and the m6A modification of GPX4. Arch. Physiol. Biochem. 2024, 130, 962–973. [Google Scholar] [CrossRef]
- Ni, J.; Chen, K.; Zhang, J.; Zhang, X. Inhibition of GPX4 or mTOR overcomes resistance to Lapatinib via promoting ferroptosis in NSCLC cells. Biochem. Biophys. Res. Commun. 2021, 567, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xiao, J.; Liu, M.; Cui, J.; Lian, B.; Sun, Y.; Li, C. Notch3 regulates ferroptosis via ROS-induced lipid peroxidation in NSCLC cells. FEBS Open Bio 2022, 12, 1197–1205. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Lin, B.; Jin, W.; Tang, L.; Hu, S.; Cai, R. NRF2, a Superstar of Ferroptosis. Antioxidants 2023, 12, 1739. [Google Scholar] [CrossRef]
- Lee, J.; Roh, J.L. Targeting Nrf2 for ferroptosis-based therapy: Implications for overcoming ferroptosis evasion and therapy resistance in cancer. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166788. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Ding, Z.; Liu, X.; Zeng, J. Trabectedin induces ferroptosis via regulation of HIF-1alpha/IRP1/TFR1 and Keap1/Nrf2/GPX4 axis in non-small cell lung cancer cells. Chem. Biol. Interact. 2023, 369, 110262. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, Z.; Zhang, C.; Zhang, L.; Chen, H.; Xiao, N.; Bai, L.; Liu, H.; Wan, J. 5-Methylcytosine transferase NSUN2 drives NRF2-mediated ferroptosis resistance in non-small cell lung cancer. J. Biol. Chem. 2024, 300, 106793. [Google Scholar] [CrossRef]
- Han, F.; Chen, S.; Zhang, K.; Zhang, K.; Wang, M.; Wang, P. Targeting Nrf2/PHKG2 axis to enhance radiosensitivity in NSCLC. NPJ Precis. Oncol. 2024, 8, 183. [Google Scholar] [CrossRef]
- Mei, L.; Long, J.; Wu, S.; Mei, M.; Mei, D.; Qiu, H. APOC1 reduced anti-PD-1 immunotherapy of nonsmall cell lung cancer via the transformation of M2 into M1 macrophages by ferroptosis by NRF2/HO-1. Anticancer. Drugs 2024, 35, 333–343. [Google Scholar] [CrossRef]
- Liu, P.; Wu, D.; Duan, J.; Xiao, H.; Zhou, Y.; Zhao, L.; Feng, Y. NRF2 regulates the sensitivity of human NSCLC cells to cystine deprivation-induced ferroptosis via FOCAD-FAK signaling pathway. Redox Biol. 2020, 37, 101702. [Google Scholar] [CrossRef]
- Xu, R.; Wang, W.; Zhang, W. Ferroptosis and the bidirectional regulatory factor p53. Cell Death Discov. 2023, 9, 197. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, W. p53 in ferroptosis regulation: The new weapon for the old guardian. Cell Death Differ. 2022, 29, 895–910. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Y.; Xiao, J.; Shang, J.; Tan, Q.; Ping, F.; Huang, W.; Wu, F.; Zhang, H.; Zhang, X. Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death Differ. 2020, 27, 2635–2650. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, Y.; Zhong, W.; Wu, K.; Zhong, T.; Jiang, T. Targeting ferroptosis: A promising approach for treating lung carcinoma. Cell Death Discov. 2025, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Cao, J.; Ding, X.; Xu, W.; Yao, X.; Dai, M.; Tai, Q.; Shi, M.; Fei, K.; Xu, Y.; et al. Disulfiram/copper complex improves the effectiveness of the WEE1 inhibitor Adavosertib in p53 deficient non-small cell lung cancer via ferroptosis. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 167455. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, J.; Ji, L.; Cui, W.; Cui, J.; Tang, Z.; Sun, N.; Zhang, G.; Guo, M.; Liu, B.; et al. Inhibition of Non-small Cell Lung Cancer by Ferroptosis and Apoptosis Induction through P53 and GSK-3beta/Nrf2 Signal Pathways using Qingrehuoxue Formula. J. Cancer 2023, 14, 336–349. [Google Scholar] [CrossRef]
- Wu, Y.; Li, H.; Huang, Y.; Chen, Q. Silencing of m(6)A methyltransferase KIAA1429 suppresses the progression of non-small cell lung cancer by promoting the p53 signaling pathway and ferroptosis. Am. J. Cancer Res. 2023, 13, 5320–5333. [Google Scholar]
- Ma, X.; Gan, Y.; Mai, Z.; Song, Y.; Zhang, M.; Xia, W. Silencing HEATR1 Rescues Cisplatin Resistance of Non-Small Cell Lung Cancer by Inducing Ferroptosis via the p53/SAT1/ALOX15 Axis. Curr. Cancer Drug Targets 2024, 25, 345–356. [Google Scholar] [CrossRef]
- Deng, J.; Lin, X.; Qin, J.; Li, Q.; Zhang, Y.; Zhang, Q.; Ji, C.; Shen, S.; Li, Y.; Zhang, B.; et al. SPTBN2 suppresses ferroptosis in NSCLC cells by facilitating SLC7A11 membrane trafficking and localization. Redox Biol. 2024, 70, 103039. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Fan, Y.; Li, D.; Han, B.; Meng, Y.; Chen, F.; Liu, T.; Song, Z.; Han, Y.; Huang, L.; et al. Ferroptosis inducer erastin sensitizes NSCLC cells to celastrol through activation of the ROS-mitochondrial fission-mitophagy axis. Mol. Oncol. 2021, 15, 2084–2105. [Google Scholar] [CrossRef]
- Yan, H.; Bu, P. Non-coding RNA in cancer. Essays Biochem. 2021, 65, 625–639. [Google Scholar]
- Song, Z.; Jia, G.; Ma, P.; Cang, S. Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis. Life Sci. 2021, 276, 119399. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, Y.; Fan, M.; Ren, H.; Chen, M.; Shi, P. Identification of the ferroptosis-related long non-coding RNAs signature to improve the prognosis prediction and immunotherapy response in patients with NSCLC. BMC Med. Genom. 2021, 14, 286. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Ma, H.; Liu, X.; Xing, W. CircSCN8A suppresses malignant progression and induces ferroptosis in non-small cell lung cancer by regulating miR-1290/ACSL4 axis. Cell Cycle 2023, 22, 758–776. [Google Scholar] [CrossRef]
- Mustafov, D.; Ahmad, M.S.; Serrano, A.; Braoudaki, M.; Siddiqui, S.S. MicroRNA:Siglec crosstalk in cancer progression. Curr. Opin. Chem. Biol. 2024, 81, 102502. [Google Scholar] [CrossRef]
- Metcalf, G.A.D. MicroRNAs: Circulating biomarkers for the early detection of imperceptible cancers via biosensor and machine-learning advances. Oncogene 2024, 43, 2135–2142. [Google Scholar] [CrossRef]
- Han, B.; Liu, Y.; Zhang, Q.; Liang, L. Propofol decreases cisplatin resistance of non-small cell lung cancer by inducing GPX4-mediated ferroptosis through the miR-744-5p/miR-615-3p axis. J. Proteom. 2023, 274, 104777. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.H.; Wu, D.M.; Li, L.; Liu, T.; Zhang, T.; Li, J.; Yu, Y.; He, M.; Zhao, Y.Y.; Han, R.; et al. miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549. Biochem. Biophys. Res. Commun. 2021, 549, 54–60. [Google Scholar] [CrossRef]
- Lu, X.; Kang, N.; Ling, X.; Pan, M.; Du, W.; Gao, S. MiR-27a-3p Promotes Non-Small Cell Lung Cancer Through SLC7A11-Mediated-Ferroptosis. Front. Oncol. 2021, 11, 759346. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.; You, Y.; Wang, Y.; Wang, J.; Lu, Y.; Gao, R.; Pang, M.; Yang, P.; Wang, H. Sanggenol L induces ferroptosis in non-small cell lung cancer cells via regulating the miR-26a-1-3p/MDM2/p53 signaling pathway. Biochem. Pharmacol. 2024, 226, 116345. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Y.; Cheng, Z.; Zhao, J.; Wang, M.; Sun, Y.; Mi, Z.; Yuan, Z.; Wu, Z. The EGR1/miR-139/NRF2 axis orchestrates radiosensitivity of non-small-cell lung cancer via ferroptosis. Cancer Lett. 2024, 595, 217000. [Google Scholar] [CrossRef]
- Wei, D.; Ke, Y.Q.; Duan, P.; Zhou, L.; Wang, C.Y.; Cao, P. MicroRNA-302a-3p induces ferroptosis of non-small cell lung cancer cells via targeting ferroportin. Free Radic. Res. 2021, 55, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Li, J.; Yu, P.; Sun, J.; Hu, Y.; Meng, X.; Xiang, L. Targeting lncRNAs in programmed cell death as a therapeutic strategy for non-small cell lung cancer. Cell Death Discov. 2022, 8, 159. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, L.; Liu, J.; Wan, Z.; Zhou, L.; Liao, H.; Wan, R. LncRNA ITGB2-AS1 promotes cisplatin resistance of non-small cell lung cancer by inhibiting ferroptosis via activating the FOSL2/NAMPT axis. Cancer Biol. Ther. 2023, 24, 2223377. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.B.; Chen, L.; Pan, J.F.; Lei, T.; Cai, X.; Hao, Z.; Wang, Q.; Shan, G.; Li, J. LncRNA RGMB-AS1 inhibits HMOX1 ubiquitination and NAA10 activation to induce ferroptosis in non-small cell lung cancer. Cancer Lett. 2024, 590, 216826. [Google Scholar] [CrossRef]
- An, J.; Shi, J.; Yang, C.; Luo, J.; Li, Y.; Ren, J.; Lv, Y.; Zhang, Y. Regulation of tumorigenesis and ferroptosis in non-small cell lung cancer by a novel BBOX1-AS1/miR-326/PROM2 axis. Mol. Cell. Biochem. 2024, 479, 2143–2155. [Google Scholar] [CrossRef]
- Tai, F.; Zhai, R.; Ding, K.; Zhang, Y.; Yang, H.; Li, H.; Wang, Q.; Cao, Z.; Ge, C.; Fu, H.; et al. Long non-coding RNA lung cancer-associated transcript 1 regulates ferroptosis via microRNA-34a-5p-mediated GTP cyclohydrolase 1 downregulation in lung cancer cells. Int. J. Oncol. 2024, 64, 64. [Google Scholar] [CrossRef]
- Xu, C.; Jiang, Z.B.; Shao, L.; Zhao, Z.M.; Fan, X.X.; Sui, X.; Yu, L.L.; Wang, X.R.; Zhang, R.N.; Wang, W.J.; et al. beta-Elemene enhances erlotinib sensitivity through induction of ferroptosis by upregulating lncRNA H19 in EGFR-mutant non-small cell lung cancer. Pharmacol. Res. 2023, 191, 106739. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, H.; Shen, Y.; Zhang, S.; Zhang, X.; Xu, Y.; Sun, D. SETD1A-mediated H3K4me3 methylation upregulates lncRNA HOXC-AS3 and the binding of HOXC-AS3 to EP300 and increases EP300 stability to suppress the ferroptosis of NSCLC cells. Thorac. Cancer 2023, 14, 2579–2590. [Google Scholar] [CrossRef]
- Babayev, M.; Silveyra, P. Role of circular RNAs in lung cancer. Front. Genet. 2024, 15, 1346119. [Google Scholar] [CrossRef]
- Li, Z.; Fan, M.; Zhou, Z.; Sang, X. Circ_0082374 Promotes the Tumorigenesis and Suppresses Ferroptosis in Non-small Cell Lung Cancer by Up-Regulating GPX4 Through Sequestering miR-491-5p. Mol. Biotechnol. 2024, 67, 484–495. [Google Scholar] [CrossRef]
- Shanshan, W.; Hongying, M.; Jingjing, F.; Yiming, Y.; Yu, R.; Rui, Y. CircDTL Functions as an Oncogene and Regulates Both Apoptosis and Ferroptosis in Non-small Cell Lung Cancer Cells. Front. Genet. 2021, 12, 743505. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Li, N.; Zhu, L.; Shao, G. CircPDSS1 (hsa_circ_0017998) silencing induces ferroptosis in non-small-cell lung cancer cells by modulating the miR-137/SLC7A11/GPX4/GCLC axis. Toxicol Vitr. 2024, 99, 105887. [Google Scholar] [CrossRef]
- Xu, K.; Wei, G.; Qi, W.; Ye, C.; Liu, Y.; Wang, S.; Yang, F.; Tang, J. CircPOLA2 sensitizes non-small cell lung cancer cells to ferroptosis and suppresses tumorigenesis via the Merlin-YAP signaling pathway. iScience 2024, 27, 110832. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, B. RNA therapeutics: Updates and future potential. Sci. China Life Sci. 2023, 66, 12–30. [Google Scholar] [CrossRef]
- Jiaqi, L.; Siqing, H.; Qin, W.; Di, Z.; Bei, Z.; Jialin, Y. Andrographolide promoted ferroptosis to repress the development of non-small cell lung cancer through activation of the mitochondrial dysfunction. Phytomedicine 2023, 109, 154601. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gu, L.; Li, J.; Wang, R.; Zhuang, Y.; Li, X.; Wang, X.; Zhang, J.; Liu, Q.; Wang, J.; et al. 13-oxyingenol dodecanoate derivatives induce mitophagy and ferroptosis through targeting TMBIM6 as potential anti-NSCLC agents. Eur. J. Med. Chem. 2024, 270, 116312. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Hu, Y.; Xiang, J.; Su, J.; Tan, H.; Lai, T.; Chen, X.; Fang, G.; Li, L.; Luo, L. Cucurbitacin B targets STAT3 to induce ferroptosis in non-small cell lung cancer. Eur. J. Pharmacol. 2024, 978, 176805. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Jiang, Q.; Shen, C.; Liu, Z.; Qiu, L. Sinapine induced ferroptosis in non-small cell lung cancer cells by upregulating transferrin/transferrin receptor and downregulating SLC7A11. Gene 2022, 827, 146460. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wei, D.G.; Li, R.S. Capsaicin induces ferroptosis of NSCLC by regulating SLC7A11/GPX4 signaling in vitro. Sci. Rep. 2022, 12, 11996. [Google Scholar] [CrossRef]
- Liao, W.; Zhang, R.; Chen, G.; Zhu, X.; Wu, W.; Chen, Z.; Jiang, C.; Lin, Z.; Ma, L.; Yu, H. Berberine synergises with ferroptosis inducer sensitizing NSCLC to ferroptosis in p53-dependent SLC7A11-GPX4 pathway. Biomed. Pharmacother. 2024, 176, 116832. [Google Scholar] [CrossRef]
- Xu, R.; Wu, J.; Luo, Y.; Wang, Y.; Tian, J.; Teng, W.; Zhang, B.; Fang, Z.; Li, Y. Sanguinarine Represses the Growth and Metastasis of Non-small Cell Lung Cancer by Facilitating Ferroptosis. Curr. Pharm. Des. 2022, 28, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Xu, G. Fascaplysin Induces Apoptosis and Ferroptosis, and Enhances Anti-PD-1 Immunotherapy in Non-Small Cell Lung Cancer (NSCLC) by Promoting PD-L1 Expression. Int. J. Mol. Sci. 2022, 23, 13774. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.S.; Zhao, L.P.; Huang, Z.H.; Chen, X.Y.; Xu, J.T.; Tai, W.C.; Tsim, K.W.K.; Chen, Y.T.; Xie, T. Ginkgetin derived from Ginkgo biloba leaves enhances the therapeutic effect of cisplatin via ferroptosis-mediated disruption of the Nrf2/HO-1 axis in EGFR wild-type non-small-cell lung cancer. Phytomedicine 2021, 80, 153370. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhou, S.; Zhang, X.; Zhao, H. S-3′-hydroxy-7′, 2′, 4′-trimethoxyisoxane, a novel ferroptosis inducer, promotes NSCLC cell death through inhibiting Nrf2/HO-1 signaling pathway. Front. Pharmacol. 2022, 13, 973611. [Google Scholar] [CrossRef]
- Zhou, C.; Yu, T.; Zhu, R.; Lu, J.; Ouyang, X.; Zhang, Z.; Chen, Q.; Li, J.; Cui, J.; Jiang, F.; et al. Timosaponin AIII promotes non-small-cell lung cancer ferroptosis through targeting and facilitating HSP90 mediated GPX4 ubiquitination and degradation. Int. J. Biol. Sci. 2023, 19, 1471–1489. [Google Scholar] [CrossRef]
- Han, S.; Yang, X.; Zhuang, J.; Zhou, Q.; Wang, J.; Ru, L.; Niu, F.; Mao, W. alpha-Hederin promotes ferroptosis and reverses cisplatin chemoresistance in non-small cell lung cancer. Aging 2024, 16, 1298–1317. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, B.; Liu, Y.; Xu, L.; Wan, M. Bufotalin induces ferroptosis in non-small cell lung cancer cells by facilitating the ubiquitination and degradation of GPX4. Free Radic. Biol. Med. 2022, 180, 75–84. [Google Scholar] [CrossRef]
- Tang, X.; Ding, H.; Liang, M.; Chen, X.; Yan, Y.; Wan, N.; Chen, Q.; Zhang, J.; Cao, J. Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy. Thorac. Cancer 2021, 12, 1219–1230. [Google Scholar] [CrossRef]
- Wu, L.; Xu, G.; Li, N.; Zhu, L.; Shao, G. Curcumin Analog, HO-3867, Induces Both Apoptosis and Ferroptosis via Multiple Mechanisms in NSCLC Cells with Wild-Type p53. Evid.-Based Complement. Altern. Med. 2023, 2023, 8378581. [Google Scholar] [CrossRef]
- Chen, Y.L.; Xiong, L.A.; Ma, L.F.; Fang, L.; Zhan, Z.J. Natural product-derived ferroptosis mediators. Phytochemistry 2024, 219, 114002. [Google Scholar] [CrossRef]
- Min, H.Y.; Lee, H.Y. Mechanisms of resistance to chemotherapy in non-small cell lung cancer. Arch. Pharm. Res. 2021, 44, 146–164. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yuan, J.; Li, Y.; Wang, J.; Xie, Q.; Ma, R.; Wang, J.; Ren, M.; Lu, D.; Xu, Z. d-Borneol enhances cisplatin sensitivity via autophagy dependent EMT signaling and NCOA4-mediated ferritinophagy. Phytomedicine 2022, 106, 154411. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, D.; Lou, Y.; Liu, X.; Huang, P.; Jin, M.; Huang, G. Regulatory mechanism of alpha-hederin upon cisplatin sensibility in NSCLC at safe dose by destroying GSS/GSH/GPX2 axis-mediated glutathione oxidation-reduction system. Biomed. Pharmacother. 2022, 150, 112927. [Google Scholar] [CrossRef]
- Cui, Z.; Li, D.; Zhao, J.; Chen, K. Falnidamol and cisplatin combinational treatment inhibits non-small cell lung cancer (NSCLC) by targeting DUSP26-mediated signal pathways. Free Radic. Biol. Med. 2022, 183, 106–124. [Google Scholar] [CrossRef] [PubMed]
- Batbold, U.; Liu, J.J. Artemisia santolinifolia-Mediated Chemosensitization via Activation of Distinct Cell Death Modes and Suppression of STAT3/Survivin-Signaling Pathways in NSCLC. Molecules 2021, 26, 7200. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Zhao, W.; Li, X.; Wang, L.; Meng, L.; Yu, R. Cisplatin synergizes with PRLX93936 to induce ferroptosis in non-small cell lung cancer cells. Biochem. Biophys. Res. Commun. 2021, 569, 79–85. [Google Scholar] [CrossRef]
- Kim, J.W.; Min, D.W.; Kim, D.; Kim, J.; Kim, M.J.; Lim, H.; Lee, J.Y. GPX4 overexpressed non-small cell lung cancer cells are sensitive to RSL3-induced ferroptosis. Sci. Rep. 2023, 13, 8872. [Google Scholar] [CrossRef]
- Bow, Y.D.; Ko, C.C.; Chang, W.T.; Chou, S.Y.; Hung, C.T.; Huang, J.L.; Tseng, C.H.; Chen, Y.L.; Li, R.N.; Chiu, C.C. A novel quinoline derivative, DFIQ, sensitizes NSCLC cells to ferroptosis by promoting oxidative stress accompanied by autophagic dysfunction and mitochondrial damage. Cancer Cell Int. 2023, 23, 171. [Google Scholar] [CrossRef]
- Li, Y.; Yan, H.; Xu, X.; Liu, H.; Wu, C.; Zhao, L. Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway. Oncol. Lett. 2020, 19, 323–333. [Google Scholar] [CrossRef]
- Dessai, A.; Nayak, U.Y.; Nayak, Y. Precision nanomedicine to treat non-small cell lung cancer. Life Sci. 2024, 346, 122614. [Google Scholar] [CrossRef]
- Wang, L.; Fu, H.; Song, L.; Wu, Z.; Yu, J.; Guo, Q.; Chen, C.; Yang, X.; Zhang, J.; Wang, Q.; et al. Overcoming AZD9291 Resistance and Metastasis of NSCLC via Ferroptosis and Multitarget Interference by Nanocatalytic Sensitizer Plus AHP-DRI-12. Small 2023, 19, e2204133. [Google Scholar] [CrossRef]
- Zhu, G.; Chi, H.; Liu, M.; Yin, Y.; Diao, H.; Liu, Z.; Guo, Z.; Xu, W.; Xu, J.; Cui, C.; et al. Multifunctional “ball-rod” Janus nanoparticles boosting Fenton reaction for ferroptosis therapy of non-small cell lung cancer. J. Colloid. Interface Sci. 2022, 621, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.X.; Mei, J.; Cao, L.; Song, J.; Rong, D.; Fang, M.; Xu, Z.; Chen, J.; Tang, J.; Xiao, H.; et al. Disruption of Iron Homeostasis to Induce Ferroptosis with Albumin-Encapsulated Pt(IV) Nanodrug for the Treatment of Non-Small Cell Lung Cancer. Small 2023, 19, e2206688. [Google Scholar] [CrossRef]
- Gai, C.; Liu, C.; Wu, X.; Yu, M.; Zheng, J.; Zhang, W.; Lv, S.; Li, W. MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells. Cell Death Dis. 2020, 11, 751. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.; Wu, S.; Lai, Y.; Wang, H.; Hou, P.; Huang, Y.; Chen, H.H.; Su, W. CD44-hyaluronan mediating endocytosis of iron-platinum alloy nanoparticles induces ferroptotic cell death in mesenchymal-state lung cancer cells with tyrosine kinase inhibitor resistance. Acta Biomater. 2024, 186, 396–410. [Google Scholar] [CrossRef] [PubMed]
- Kuche, K.; Yadav, V.; Patel, M.; Chaudhari, D.; Date, T.; Jain, S. Enhancing anti-cancer potential by delivering synergistic drug combinations via phenylboronic acid modified PLGA nanoparticles through ferroptosis-based therapy. Biomater. Adv. 2024, 156, 213700. [Google Scholar] [CrossRef]
- Hsieh, C.H.; Hsieh, H.C.; Shih, F.S.; Wang, P.W.; Yang, L.X.; Shieh, D.B.; Wang, Y.C. An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment. Theranostics 2021, 11, 7072–7091. [Google Scholar] [CrossRef]
- Hu, Y.; Nie, Q.; Cong, X.; Wu, W.; Wu, Q.; Liu, Q.; Li, Y.; Liu, H.; Ge, J.; Chen, F. PEN-coated superparamagnetic iron-mediated delivery of siSnail2 to inhibit metastasis and promote ferroptosis in the treatment of cancer. Int. J. Pharm. 2024, 650, 123728. [Google Scholar] [CrossRef]
- Shu, L.; Luo, P.; Chen, Q.; Liu, J.; Huang, Y.; Wu, C.; Pan, X.; Huang, Z. Fibroin nanodisruptor with Ferroptosis-Autophagy synergism is potent for lung cancer treatment. Int. J. Pharm. 2024, 664, 124582. [Google Scholar] [CrossRef]
- Cai, R.; Lv, R.; Shi, X.; Yang, G.; Jin, J. CRISPR/dCas9 Tools: Epigenetic Mechanism and Application in Gene Transcriptional Regulation. Int. J. Mol. Sci. 2023, 24, 14865. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Z.; Gu, M.; Wang, J.; Tan, J. Research into overcoming drug resistance in lung cancer treatment using CRISPR-Cas9 technology: A narrative review. Transl. Lung Cancer Res. 2024, 13, 2067–2081. [Google Scholar] [CrossRef] [PubMed]
- Bi, G.; Liang, J.; Zhao, M.; Zhang, H.; Jin, X.; Lu, T.; Zheng, Y.; Bian, Y.; Chen, Z.; Huang, Y.; et al. miR-6077 promotes cisplatin/pemetrexed resistance in lung adenocarcinoma via CDKN1A/cell cycle arrest and KEAP1/ferroptosis pathways. Mol. Ther. Nucleic Acids 2022, 28, 366–386. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Bi, G.; Huang, Y.; Zhao, G.; Sui, Q.; Zhang, H.; Bian, Y.; Yin, J.; Wang, Q.; Chen, Z.; et al. MAFF confers vulnerability to cisplatin-based and ionizing radiation treatments by modulating ferroptosis and cell cycle progression in lung adenocarcinoma. Drug Resist. Updat. 2024, 73, 101057. [Google Scholar] [CrossRef]
- Wang, H.J.; Dong, L.F.; Ding, L.L.; Miao, X.Y.; Zhang, Y.W.; Zhao, L.P.; Yu, L.H.; Guan, Z.R.; Jiang, Y.P.; Tang, X.Q.; et al. TFEB promotes Ginkgetin-induced ferroptosis via TRIM25 mediated GPX4 lysosomal degradation in EGFR wide-type lung adenocarcinoma. Theranostics 2025, 15, 2991–3012. [Google Scholar] [CrossRef] [PubMed]
- Singh, D. Revolutionizing Lung Cancer Treatment: Innovative CRISPR-Cas9 Delivery Strategies. AAPS PharmSciTech 2024, 25, 129. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, C.; Wang, Z.; Huang, Q.; Qian, J.; Shi, G.; Sun, W.; Wang, J.; Ji, Y.; Sun, Z.; et al. CRISPR-dCas9-Mediated PTEN Activation via Tumor Cell Membrane-Coated Nanoplatform Enhances Sensitivity to Tyrosine Kinase Inhibitors in Nonsmall Cell Lung Cancer. ACS Appl. Mater. Interfaces 2025, 17, 13605–13616. [Google Scholar] [CrossRef]
- Lei, M.; Zhang, Y.L.; Huang, F.Y.; Chen, H.Y.; Chen, M.H.; Wu, R.H.; Dai, S.Z.; He, G.S.; Tan, G.H.; Zheng, W.P. Gankyrin inhibits ferroptosis through the p53/SLC7A11/GPX4 axis in triple-negative breast cancer cells. Sci. Rep. 2023, 13, 21916. [Google Scholar] [CrossRef]
- Guan, Z.; Chen, J.; Li, X.; Dong, N. Tanshinone IIA induces ferroptosis in gastric cancer cells through p53-mediated SLC7A11 down-regulation. Biosci. Rep. 2020, 40, BSR20201807. [Google Scholar] [CrossRef]
- Wang, H.; Xie, Y. Advances in Ferroptosis Research: A Comprehensive Review of Mechanism Exploration, Drug Development, and Disease Treatment. Pharmaceuticals 2025, 18, 334. [Google Scholar] [CrossRef]
Characteristics | Ferroptosis | Apoptosis | Necroptosis | Autophagy |
---|---|---|---|---|
Morphological | Loss of cell membrane integrity; shrinkage of mitochondria, increased mitochondrial membrane density, and reduction in mitochondrial cristae morphology; and chromatin condensation | Intact cell membrane; reduced cell volume with organelles, maintaining normal morphology; condensation of the nucleus and cytoplasm; and fragmentation of the nucleus | Rupture of the cell membrane; swelling of mitochondria; and irregular condensation of nuclear chromatin | Intact cell membrane; presence of autophagosomes, autolysosomes, and vacuoles; and nucleus: absence of chromatin condensation |
Biochemical | ↑iron, ↑ROS, and ↑lipid peroxidation; ↓GSH. | ↑caspases, internucleosomal DNA fragmentation. | ↑GSDMD, ↑NLRP3, ↑IL-1β, and ↑IL-18. | ↑ratio of LC3-II/I; ↓p62. |
Key regulatory factors | ↑p53 and ↑TFR1; ↓GPX4, ↓SLC7A11, and ↓ACSL4. | ↑Caspase-3, ↑Caspase-8, and ↑BAX; ↓BCL-2. | ↑Caspase-1, ↑TNF-α, ↑RIP1, ↑RIP3, and ↑MLKL. | ↑AMPK, ↑ULK1, ↑ATG, and ↑BECN1; ↓mTOR. |
Nanoparticle Name | Nanoparticle Size | Model | Mechanism | References |
---|---|---|---|---|
VF/S/A@CaP | 150 nm | AZD9291; tumor growth on cell-derived xenograft (CDX) | ↑Fenton reaction; ↓GPX4, ↓GSH, OTUB2 and MALAT1 downregulation, cell invasion, and metastasis. | [101] |
FTG/L&SMD | 350 nm | A549; xenotransplantation of tumor in mice | ↑Fenton reaction, ↑ROS, and ↑cytotoxicity; ↓GPX4, ↓VEGF, and ↓tumor migration and angiogenesis. | [102] |
HSA@Pt(IV) | 49.5 nm | A549, H1299, and MRC-5; Homologous and xenotransplantation of tumor in mice | ↑lipid ROS and ↑PTGS2 mRNA; ↓GSH and mitochondria damage. | [103] |
E/M@FA-LPs | 154 nm | A549 and H1299 | ↑MT1DP, ↑ROS, ↑lipid ROS, and ↑MDA; ↓NRF2 and ↓GSH. | [104] |
FePt NPs | 6 nm | HCC827, GR+, and M6; xenotransplantation of tumor in mice | ↑EMT, ↑P62, ↑ NRF2, ↑DHODH,↑SLC7A11, ↑PTGS2, ↑TFR1, ↑HO-1, ↑FTH1, ↑Fenton reaction, ↑lipid ROS, and ↑lipid peroxides; ↓KEAP1 and ↓GPX4. | [105] |
CPBA − PLGA(SOR + SIM) − NPs | 213.1 ± 10.9 nm | A549; BALB/c mouse model | ↑ROS and ↑MDA; ↓GSH and mitochondrial membrane depolarization. | [106] |
ZVI-NP | ZVI@Ag NPs: 81.08 ± 14.29 nm; ZVI@CMC NPs: 70.17 ± 14.4 nm. | H1299, H460, A549, MRC-5, IMR-90, and LLC; xenotransplantation of tumor in mice | ↑AMPK/mTOR, loss of mitochondrial membrane potential, ↑mtROS, ↑Fenton reaction, ↑oxidative stress, and ↑lipid peroxides; ↓NADPH, ↓GPX4, and disrupt the AMPK/mTOR pathway to activate p-GSK3/β-TrCP and in turn degrade NRF2, ↓PD-1, and CTLA4 in CD8+ T cells. | [107] |
CNP@siSnail2 | 60 nm | A549; subcutaneous tumor model and tail vein injection model | ↑ROS; ↓GSH and ↓migration and invasion. | [108] |
FP@SFN | 193 ± 5.86 nm | A549; subcutaneous tumor | ↑ROS and ↑lPO; ↓GPX4, ↓Q10, ↓GSH, and loss of mitochondrial membrane potential. | [109] |
Function | Model | Mechanism | References |
---|---|---|---|
Screening system reveals miR-6077 as a key regulator of CDDP/PEM sensitivity in LUAD | A549,H358, and HEK293T; xenotransplantation of tumor in mice | miR-6077 overexpression: ↓CDDP/PEM resistance and ↓ROS; ↑GSH, ↑NRF2, ↑SLC7A11, and ↑NQO1. | [112] |
Screening identifies MAFF as a tumor suppressor in LUAD | A549, A549/DDP, H358, HCC827, PC-9, H1975, BEAS-2B, and HEK293T; xenotransplantation of tumor in mice | ↓SLC7A11, ↓glutamate, ↓GSH, ↓mitochondrial membrane density, and ↓mitochondrial cristae. | [113] |
Knockout TFEB | A549TFEB KO cells; mouse model | TFEB knockout: ↓lysosomal degradation of GPX4 and ↓anticancer effect | [29] |
Knockout TFEB | A549TFEB KO cells (TFEB-/--2, TFEB-/--4); xenotransplantation of SCID mouse models | TFEB knockout: ↓lysosomal activity, ↓cathepsin B, ↓GPX4-TRIM25 binding force, ↓LIP, and ↓lipid peroxides; ↑GPX4. | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Y.; Jiang, S.; Kong, C.; Pang, P.; Shan, H. Ferroptosis: Therapeutic Potential and Strategies in Non-Small Cell Lung Cancer. Biology 2025, 14, 545. https://doi.org/10.3390/biology14050545
Lei Y, Jiang S, Kong C, Pang P, Shan H. Ferroptosis: Therapeutic Potential and Strategies in Non-Small Cell Lung Cancer. Biology. 2025; 14(5):545. https://doi.org/10.3390/biology14050545
Chicago/Turabian StyleLei, Ying, Shuxia Jiang, Chengyu Kong, Ping Pang, and Hongli Shan. 2025. "Ferroptosis: Therapeutic Potential and Strategies in Non-Small Cell Lung Cancer" Biology 14, no. 5: 545. https://doi.org/10.3390/biology14050545
APA StyleLei, Y., Jiang, S., Kong, C., Pang, P., & Shan, H. (2025). Ferroptosis: Therapeutic Potential and Strategies in Non-Small Cell Lung Cancer. Biology, 14(5), 545. https://doi.org/10.3390/biology14050545