Oxidative Stress Biomarkers in Fish Exposed to Environmental Concentrations of Pharmaceutical Pollutants: A Review
Simple Summary
Abstract
1. Introduction
1.1. The Sources and Types of Human Pharmaceutical Active Compounds Within the Aquatic Environment
1.2. Oxidative Stress (OS) and Antioxidant Defenses
2. Methodology
3. Results and Discussion
3.1. The Influence of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) on Oxidative Stress in Fish
3.1.1. The Influence of Diclofenac (DCF) on Oxidative Stress in Various Fish Species
3.1.2. The Influence of Ibuprofen (IBU) on OS in Various Fish Species
3.1.3. The Influence of Acetylsalicylic Acid (ASA) and Paracetamol (APAP) on OS in Various Fish Species
Pharmaceutical Product | Species | Concentration and Time of Exposure | Main Findings | Ref. |
---|---|---|---|---|
ASA | Labeo rohita | 1, 10, 100 μg/L for 7, 14, 21, and 28 days | (-) SOD, CAT, GPx, GRed, and GSH in liver at al conc.; (+) GST and LPO. | [145] |
Mugilogobius abei | 0.5, 5, and 50 μg/ L for 24, 72, and 168 h | (+) SOD, CAT, GPx, and GST activity; (-) GSH after 24 and 72 h; (+) GSH 168 h; (+) LPO; (-) LPO after 168 h | [146] | |
Danio rerio | 4; 40 μg/ L for 28 days | (+) GST; (+) GRed; (+) CAT; (+) GPx; (-) LPO | [147] | |
APAP | Rhamdia quelen | 0, 0.25, and 2.5 µg/ L, for 21 days | (+) SOD activity at a concentration of 2.5 µg/L; (-) GST at all concentrations; No modification of GPx, GSH, and LPO | [151] |
Rhamdia quelen | 0.25, 2.5, and 25 µg/L | In liver: (+) GSH-; (-) SOD; (-) LPO at 0.25 µg/L; In gonads: (-) GST at 25 µg/L; (+) SOD at 0.25 µg/L; (-) GPx at all conc. | [152] | |
Danio rerio embryos | 150, 300, 450, 600, 750, 900, 1050, and 1200 μg/L | (+) LPO and CAT; (+) SOD from conc. of 300–1200 μg/L | [153] | |
Anguilla anguilla | 5, 25, 125, 625, and 3125 μg/L | In liver: (+) GST at 625 and 3125 mg/L; LPO remained unaltered In gills: (-) GST; (+) LPO | [154] |
3.1.4. The Influence of Antibiotics on Fish OS
Pharmaceutical Product | Species | Concentration and Time of Exposure | Main Findings | Ref. |
---|---|---|---|---|
OTC | Danio rerio | 0, 0.1, 10, and 10,000 mg/L for 2 months | (-) GST and CAT | [165] |
SMZ | Oreochromis niloticus | 0, 1, 10, and 100 μg/L SMZ for 7 and 30 days | In liver (+) SOD, CAT, GPx, and GSH at 1 and 10 μg/L CAT and GSH, (-) LPO; At 100 μg/L SMZ (-) SOD and GSH; (+) LPO at both 7 and 30 days. | [167] |
CIP | Danio rerio | 0.7 µg/L, 100, 650, 1100, and 3000 µg/L for 28 days | (+) GST at 0,7 and 100 µg/L; (-) GST at 650, 1100, and 3 000 μg/L; (-) GRed at conc. of 1100 and 3000 µg/L; (-) GPX, at all tested concentrations, except for the 100 µg/L; (-) LPO at 100 μg/L | [168] |
3.1.5. The Influence of Antiepileptic Drugs on Fish OS
Pharmaceutical Product | Species | Concentration and Time of Exposure | Main Findings | Ref. |
---|---|---|---|---|
CBZ | Cyprinus carpio | 0, 1, 5, 50, or 100 µg/L of CBZ for 28 days | (+) CAT and GRed at 5 and 50 µg/ L) at 100 µg/L (-) GRed.; (-) SOD. | [175] |
CBZ | Cyprinus carpio | 2000 µg/L exposure from 12 to 96 h | (-) LPO in the brain after 24, 48, and 72 h; (-) SOD in liver, gills and brain; (-) CAT; (+) GPx in liver, after 48 h; (-) GPx at 96 h; (-) GPx in the brain and gills. | [177] |
CBZ | Danio rerio | 1; 10 µg/L of CBZ for 28 days | At 1 µg/L: (+) SOD and CAT in the brain; (+) CAT and MDA; (-) SOD in the liver; At 10 µg/L: (+) SOD and CAT in the brain; (+) CAT and MDA in the liver | [174] |
3.1.6. The Influence of Antidepressant Drugs on Fish OS
3.1.7. The Influence of Pharmaceutical Mixtures on Fish Oxidative Stress
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caruso, G.; Corsi, I.; Wu, C.; Bergami, E.; Corami, F.; Azevedo-Santos, V.M. Plastic pollution in marine and freshwater biota. Water Biol. Secur. 2024, 3, 100247. [Google Scholar] [CrossRef]
- Ortúzar, M.; Esterhuizen, M.; Olicón-Hernández, D.R.; González-López, J.; Aranda, E. Pharmaceutical pollution in aquatic environments: A concise review of environmental impacts and bioremediation systems. Front. Microb. 2022, 13, 869332. [Google Scholar] [CrossRef] [PubMed]
- Abaineh, A.; Ejigu, D.; Atlabachew, M.; Dejen, E.; Tilahun, G. Risks of pesticides on aquatic ecosystems and pesticide management effectiveness in Ethiopia. Int. J. Environ. Sci. Technol. 2024, 21, 8833–8848. [Google Scholar] [CrossRef]
- Aziz, K.H.H.; Mustafa, F.S.; Omer, K.M.; Hama, S.; Hamarawf, R.F.; Rahman, K.O. Heavy metal pollution in the aquatic environment: Efficient and low-cost removal approaches to eliminate their toxicity: A review. RSC Adv. 2023, 13, 17595–17610. [Google Scholar] [CrossRef]
- Fent, K.; Weston, A.A.; Caminada, D. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 2006, 76, 122–159. [Google Scholar] [CrossRef] [PubMed]
- Roberts, P.H.; Thomas, K.V. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Sci. Total Environ. 2006, 356, 143–153. [Google Scholar] [CrossRef]
- IQVIA. Institute for Human Data Science. Available online: https://www.iqvia.com/insights/the-iqvia-institute/reports-and-publications/reports/the-global-use-of-medicines-2023 (accessed on 29 May 2024).
- Tiwari, B.; Sellamuthu, B.; Ouarda, Y.; Drogui, P.; Tyagi, R.D.; Buelna, G. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour. Technol. 2017, 224, 1–12. [Google Scholar] [CrossRef]
- Daughton, C.G. Pharmaceuticals in the environment: Sources and their management. Compr. Anal. Chem. 2007, 50, 1–58. [Google Scholar]
- Nikolenko, O.; Pujades, E.; Teixid’o, M.; S’aez, C.; Jurado, A. Contaminants of emerging concern in the urban aquifers of Barcelona: Do they hamper the use of groundwater? Chemosphere 2023, 341, 140023. [Google Scholar] [CrossRef]
- Chonova, T.; Keck, F.; Labanowski, J.; Montuelle, B.; Rimet, F.; Bouchez, A. Separate treatment of hospital and urban wastewaters: A real scale comparison of effluents and their effect on microbial communities. Sci. Total Environ. 2016, 542, 965–975. [Google Scholar] [CrossRef]
- Wollenberger, L.; Halling-Sorensen, B.; Kusk, K.O. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 2000, 40, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Brausch, J.M.; Connors, K.A.; Brooks, B.W.; Rand, G.M. Human pharmaceuticals in the aquatic environment: A review of recent toxicological studies and considerations for toxicity testing. Rev. Environ. Contam. Toxicol. 2012, 218, 1–99. [Google Scholar]
- Koubová, A.; Van Nguyen, T.; Grabicová, K.; Burkina, V.; Aydin, F.G.; Grabic, R.; Nováková, P.; Švecová, H.; Lepič, P.; Fedorova, G.; et al. Metabolome adaptation and oxidative stress response of common carp (Cyprinus carpio) to altered water pollution levels. Environ. Pollut. 2022, 303, 119117. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef]
- Mukhtar, A.; Manzoor, M.; Gul, I.; Zafar, R.; Jamil, H.I.; Niazi, A.K.; Muhammad, A.; Tae, J.P.; Muhammad, A. Phytotoxicity of different antibiotics to rice and stress alleviation upon application of organic amendments. Chemosphere 2020, 258, 127353. [Google Scholar] [CrossRef]
- Sosa-Hernández, J.E.; Rodas-Zuluaga, L.I.; López-Pacheco, I.Y.; Melchor-Martínez, E.M.; Aghalari, Z.; Limón, D.S.; Hafiz, M.N.; Parra-Saldívar, R. Sources of antibiotics pollutants in the aquatic environment under SARS-CoV-2 pandemic situation. Case Stud. Chem. Environ. Eng. 2021, 4, 100127. [Google Scholar] [CrossRef]
- Chițescu, C.L.; Kaklamanos, G.; Nicolau, A.I.; Stolker, A.A.M.L. High sensitive multi-residue analysis of pharmaceuticals and antifungals in surface water using U-HPLC-Q-Exactive Orbitrap HRMS. Application to the Danube River basin on the Romanian territory. Sci. Total Environ. 2015, 532, 501–511. [Google Scholar] [CrossRef]
- Das, S.A.; Karmakar, S.; Chhaba, B.; Rout, S.K. Ibuprofen: Its toxic effect on aquatic organisms. J. Exp. Zool. India 2019, 22, 1125–1131. [Google Scholar]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U., Jr.; Mohan, D. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef]
- Placova, K.; Halfar, J.; Brozova, K.; Heviankova, S. Issues of Non-Steroidal Anti-Inflammatory Drugs in Aquatic Environments: A Review Study. Eng. Proc. 2023, 57, 13. [Google Scholar] [CrossRef]
- Bahlmann, A.; Weller, M.G.; Panne, U.; Schneider, R.J. Monitoring carbamazepine in surface and wastewaters by an immunoassay based on a monoclonal antibody. Anal. Bioanal. Chem. 2009, 395, 1809–1820. [Google Scholar] [CrossRef] [PubMed]
- Baali, H.; Cosio, C. Effects of carbamazepine in aquatic biota. Environ. Sci. Process. Impacts 2022, 24, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Sumpter, J.P.; Runnalls, T.J.; Donnachie, R.L.; Owen, S.F. A comprehensive aquatic risk assessment of the beta-blocker propranolol, based on the results of over 600 research papers. Sci. Total Environ. 2021, 793, 148617. [Google Scholar] [CrossRef] [PubMed]
- Young, R.B.; Borch, T. Sources, Presence, Analysis, and Fate of Steroid Sex Hormones in Freshwater Ecosystems—A review. Reproduction 2009, 1. [Google Scholar] [CrossRef]
- Grzegorzek, M.; Wartalska, K.; Kowalik, R. Occurrence and sources of hormones in water resources—Environmental and health impact. Environ. Sci. Pollut. Res. 2024, 31, 37907–37922. [Google Scholar] [CrossRef]
- Laurenson, J.P.; Bloom, R.A.; Page, S.; Sadrieh, N. Ethinyl estradiol and other human pharmaceutical estrogens in the aquatic environment: A review of recent risk assessment data. AAPS J. 2014, 16, 299–310. [Google Scholar] [CrossRef]
- Berninger, J.P.; Du, B.; Connors, K.A.; Eytcheson, S.A.; Kolkmeier, M.A.; Prosser, K.N.; Valenti, T.W., Jr.; Chambliss, C.K.; Brooks, B.W. Effects of the antihistamine diphenhydramine on selected aquatic organisms. Environ. Toxicol. Chem. 2011, 30, 2065–2072. [Google Scholar] [CrossRef]
- Aich, U.; Polverino, G.; Yazdan Parast, F.; Melo, G.C.; Tan, H.; Howells, J.; Wong, B.B. Long-term effects of widespread pharmaceutical pollution on trade-offs between behavioural, life-history and reproductive traits in fish. J. Anim. Ecol. 2024, 94, 340–355. [Google Scholar] [CrossRef]
- Islam, P.; Hossain, M.I.; Khatun, P.; Masud, R.I.; Tasnim, S.; Anjum, M.; Islam, M.A. Steroid hormones in fish, caution for present and future: A review. Toxicol. Rep. 2024, 13, 101733. [Google Scholar] [CrossRef]
- Overturf, M.D.; Anderson, J.C.; Pandelides, Z.; Beyger, L.; Holdway, D.A. Pharmaceuticals and personal care products: A critical review of the impacts on fish reproduction. Crit. Rev. Toxicol. 2015, 45, 469–491. [Google Scholar] [CrossRef]
- Ribas, J.L.C.; Zampronio, A.R.; Silva De Assis, H.C. Effects of trophic exposure to diclofenac and dexamethasone on hematological parameters and immune response in freshwater fish. Environ. Toxicol. Chem. 2016, 35, 975–982. [Google Scholar] [CrossRef]
- Grabicova, K.; Grabic, R.; Fedorova, G.; Fick, J.; Cerveny, D.; Kolarova, J.; Turek, J.; Zlabek, V.; Randak, T. Bioaccumulation of Psychoactive Pharmaceuticals in Fish in an Effluent Dominated Stream. Water Res. 2017, 124, 654–662. [Google Scholar] [CrossRef]
- Corcoran, J.; Winter, M.J.; Tyler, C.R. Pharmaceuticals in the aquatic environment: A critical review of the evidence for health effects in fish. Crit. Rev. Toxicol. 2010, 40, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.; Hayashi, S.; Nagamine, N. Effect of Excessive Doses of Oxytetracycline on Stress-Related Biomarker Expression in Coho Salmon. Environ. Sci. Pollut. Res. 2018, 25, 7121–7128. [Google Scholar] [CrossRef]
- Okon, E.M.; Okocha, R.C.; Adesina, B.T.; Ehigie, J.O.; Alabi, O.O.; Bolanle, A.M.; Adedeji, O.B. Antimicrobial resistance in fish and poultry: Public health implications for animal source food production in Nigeria, Egypt, and South Africa. Front. Antibiot. 2022, 1, 1043302. [Google Scholar] [CrossRef] [PubMed]
- Directive 2013/39/eu. Available online: https://eur-lex.europa.eu/legal-content/RO/TXT/PDF/?uri=CELEX:32013L0039&from=IT (accessed on 1 June 2024).
- Kidd, K.A.; Blanchfield, P.J.; Mills, K.H.; Palace, V.P.; Evans, R.E.; Lazorchak, J.M.; Flick, R.W. Collapse of a fish population after exposure to a synthetic estrogen. Proc. Natl. Acad. Sci. USA 2007, 104, 8897–8901. [Google Scholar] [CrossRef] [PubMed]
- Commission Implementing Decision (EU) 2018/840 of 5 June 2018 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council and Repealing Commission Implementing Decision (EU) 2015/495 (Notified Under Document C(2018) 3362). Available online: https://eurlex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018D0840 (accessed on 1 June 2024).
- Lahti, M.; Brozinski, J.M.; Jylha, A.; Kronberg, L.; Oikari, A. Uptake from water, biotransformation, and biliary excretion of pharmaceuticals by rainbow trout. Environ. Toxicol. Chem. 2011, 30, 1403–1411. [Google Scholar] [CrossRef]
- An, X.; Tao, Y.; Wu, J.; Li, Z.; Li, H.; Chen, S.; Pang, Y. Occurrence, toxicity, ecological risk, and remediation of diclofenac in surface water environments: A review with a focus on China. Environ. Toxicol. Chem. 2025, vgaf005. [Google Scholar] [CrossRef]
- Menashe, O.; Raizner, Y.; Kuc, M.E.; Cohen-Yaniv, V.; Kaplan, A.; Mamane, H.; Avisar, D.; Kurzbaum, E. Biodegradation of the Endocrine-Disrupting Chemical 17?-Ethynylestradiol (EE2) by Rhodococcus zopfii and Pseudomonas putida Encapsulated in Small Bioreactor Platform (SBP) Capsules. Appl. Sci. 2020, 10, 336. [Google Scholar] [CrossRef]
- European Commission, 2020. EUR-Lex—Regulation (EU) 2020/741 of the European Parliament and of the Council of 25 May 2020 on Minimum Requirements for Water Reuse. Official Journal of the European Union L177, 32–54. Available online: https://eur-lex.europa.eu/eli/reg/2020/741/oj/eng (accessed on 1 June 2024).
- Eu. 2022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022D1307 (accessed on 1 June 2024).
- del Carmen Gómez-Regalado, M.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E.; Zafra-Gómez, A. Bioaccumulation/bioconcentration of pharmaceutical active compounds in aquatic organisms: Assessment and factors database. Sci. Total Environ. 2023, 861, 160638. [Google Scholar] [CrossRef]
- Van der Oost, R.; Beyer, J.; Vermeulen, N.P. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environ. Toxicol. Pharmacol. 2003, 13, 57–149. [Google Scholar]
- Zheng, C.; Liu, J.; Cai, Y.; Jing, C.; Jiang, R.; Zheng, X.; Lu, G. Pharmaceutically active compounds in biotic and abiotic media of rivers receiving urban sewage: Concentrations, bioaccumulation and ecological risk Process. Saf. Environ. Prot. 2022, 166, 491–499. [Google Scholar] [CrossRef]
- Manjarrés-López, D.P.; Peña-Herrera, J.M.; Benejam, L.; Montemurro, N.; Pérez, S. Assessment of wastewater-borne pharmaceuticals in tissues and body fluids from riverine fish. Environ. Pollut. 2023, 324, 121374. [Google Scholar] [CrossRef]
- Taslima, K.; Selly, S.L.C.; McAndrew, B.J.; Penman, D.J. Combined estrogen and elevated temperature treatments induce feminization in Nile tilapia, Oreochromis niloticus. Aquac. Rep. 2023, 33, 101773. [Google Scholar] [CrossRef]
- Madureira, T.V.; Rocha, M.J.; Cruzeiro, C.; Galante, M.H.; Monteiro, R.A.; Rocha, E. The toxicity potential of pharmaceuticals found in the Douro River estuary (Portugal): Assessing impacts on gonadal maturation with a histopathological and stereological study of zebrafish ovary and testis after sub-acute exposures. Aquat. Toxic. 2011, 105, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Brodin, T.; Piovano, S.; Fick, J.; Klaminder, J.; Heynen, M.; Jonsson, M. Ecological effects of pharmaceuticals in aquatic systems—Impacts through behavioral alterations. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130580. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Zhao, G.; Zhou, Y.; Chen, R.; Li, J.; Zha, J. Risks to aquatic environments posed by 14 pharmaceuticals as illustrated by their effects on zebrafish behavior. Sci. Total Environ. 2021, 771, 145450. [Google Scholar] [CrossRef]
- Lakshmi, S.D.; Geetha, B.V.; Vibha, M. From prescription to pollution: The ecological consequences of NSAIDs in aquatic ecosystems. Toxicol. Rep. 2024, 13, 101775. [Google Scholar]
- Brodin, T.; Nordling, J.; Lagesson, A.; Klaminder, J.; Hellström, G.; Christensen, B.; Fick, J. Environmental relevant levels of a benzodiazepine (oxazepam) alters important behavioral traits in a common planktivorous fish, (Rutilus rutilus). J. Toxicol. Environ. Health Part A 2017, 80, 963–970. [Google Scholar] [CrossRef]
- Dara, M.; Carbonara, P.; La Corte, C.; Parrinello, D.; Cammarata, M.; Parisi, M.G. Fish Welfare in Aquaculture: Physiological and Immunological Activities for Diets, Social and Spatial Stress on Mediterranean Aqua Cultured Species. Fishes 2023, 8, 414. [Google Scholar] [CrossRef]
- Ogunwole, G.A.; Abiya, S.E.; Amaeze, N.H.; Eze, C. Antioxidant markers in gills, liver and muscle tissue of the African Sharptooth Catfish (Clarias gariepinus) exposed to subchronic levels of Ibuprofen and Dibutyl phthalate. Sci. Afr. 2021, 12, e00816. [Google Scholar] [CrossRef]
- Cubbage, T.L. The Effects of Salinity and Pharmaceuticals on the Physiology of the Sheepshead Minnow (Cyprinodon variegatus). Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2019. [Google Scholar]
- Tierney, K.B.; Kennedy, C.J.; Gobas, F.; Gledhill, M.; Sekela, M. Organic Contaminants and Fish. In Fish Physiology; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar] [CrossRef]
- Burkina, V.; Zlabek, V.; Zamaratskaia, G. Effects of pharmaceuticals present in aquatic environment on Phase I metabolism in fish. Environ. Toxicol. Pharmacol. 2015, 40, 430–444. [Google Scholar] [CrossRef] [PubMed]
- Kolanczyk, R.C.; Solem, L.E.; Schmieder, P.K.; McKim, J.M., III. A Comparative Study of Phase I and II Hepatic Microsomal Biotransformation of Phenol in Three Species of Salmonidae: Hydroquinone, Catechol, and Phenylglucuronide Formation. Fishes 2024, 9, 284. [Google Scholar] [CrossRef] [PubMed]
- Eapen, J.V.; Thomas, S.; Antony, S.; George, P.; Antony, J. A review of the effects of pharmaceutical pollutants on humans and aquatic ecosystem. Explor. Drug Sci. 2024, 2, 484–507. [Google Scholar] [CrossRef]
- Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Arancibia-Hernández, Y.L.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J. RONS and Oxidative Stress: An Overview of Basic Concepts. Oxygen 2022, 2, 437–478. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef] [PubMed]
- McGill, M.R.; Jaeschke, H.; Kaplowitz, N.; DeLeve, L.D. Chapter 4—Oxidant Stress, Antioxidant Defense, and Liver Injury. In Drug-Induced Liver Disease, 3rd ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 71–84. [Google Scholar]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Mythri, R.B.; Vali, S.; Bharath, M.M.S. Oxidative Stress, Protein Damage. In Encyclopedia of Systems Biology; Dubitzky, W., Wolkenhauer, O., Cho, K.H., Yokota, H., Eds.; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Sharma, V.; Collins, L.B.; Chen, T.H.; Herr, N.; Takeda, S.; Sun, W.; Nakamura, J. Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations. Oncotarget 2016, 7, 25377. [Google Scholar] [CrossRef]
- Martins, S.G.; Zilhão, R.; Thorsteinsdóttir, S.; Carlos, A.R. Linking Oxidative Stress and DNA Damage to Changes in the Expression of Extracellular Matrix Components. Front. Genet. 2021, 12, 673002. [Google Scholar] [CrossRef]
- Rhee, J.S.; Yu, I.T.; Kim, B.M.; Jeong, C.B.; Lee, K.W.; Kim, M.J.; Lee, S.J.; Park, G.S.; Lee, J.S. Copper induces apoptotic cell death through reactive oxygen species-triggered oxidative stress in the intertidal copepod Tigriopus japonicus. Aquat. Toxicol. 2013, 132, 182–189. [Google Scholar] [CrossRef]
- Awasthi, Y.; Ratn, A.; Prasad, R.; Kumar, M.; Trivedi, S.P. An in vivo analysis of Cr6+ induced biochemical, genotoxicological and transcriptional profiling of genes related to oxidative stress, DNA damage and apoptosis in liver of fish, Channa punctatus (Bloch, 1793). Aquat. Toxicol. 2018, 200, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Baines, C.; Meitern, R.; Kreitsberg, R.; Fort, J.; Scharsack, J.P.; Nogueira, P.; Sepp, T. Correlations between oxidative DNA damage and formation of hepatic tumours in two flatfish species from contaminated environments. Biol. Lett. 2023, 19, 20220583. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.L.; Rush, L.M.; Breneman, C.; Mohideen, M.A.P.; Cheng, K.C. Zebrafish genomic instability mutants and cancer susceptibility. Genetics 2006, 174, 585–600. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Kumar, A.; Tyagi, M.B.; Sinha, R.P. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids 2010, 2010, 592980. [Google Scholar] [CrossRef]
- Lerebours, A.; Stentiford, G.D.; Lyons, B.P.; Bignell, J.P.; Derocles, S.A.; Rotchell, J.M. Genetic alterations and cancer formation in a European flatfish at sites of different contaminant burdens. Environ. Sci. Technol. 2014, 48, 10448–10455. [Google Scholar] [CrossRef]
- Beckwith, L.G.; Moore, J.L.; Tsao-Wu, G.S.; Harshbarger, J.C.; Heng, K.C. Ethylnitrosourea induces neoplasia in zebrafish (Danio rerio). Lab. Investig. 2000, 80, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Groff, J.M. Neoplasia in fishes. Vet. Clin. N. Am. Exot. Anim. Pract. 2004, 7, 705–756. [Google Scholar] [CrossRef]
- Dale, O.B.; Tørud, B.; Kvellestad, A.; Koppang, H.S.; Koppang, E.O. From chronic feed-induced intestinal inflammation to adenocarcinoma with metastases in salmonid fish. Cancer Res. 2009, 69, 4355–4362. [Google Scholar] [CrossRef]
- Estevez, M.; Valesyan, S.; Jora, M.; Limbach, P.A.; Addepalli, B. Oxidative damage to RNA is altered by the presence of interacting proteins or modified nucleosides. Front. Mol. Biosci. 2021, 8, 697149. [Google Scholar] [CrossRef]
- Kong, Q.; Lin, C.L. Oxidative damage to RNA: Mechanisms, consequences, and diseases. Cell. Mol. Life Sci. 2010, 67, 1817–1829. [Google Scholar] [CrossRef]
- Mustafa, S.A.; Karieb, S.S.; Davies, S.J.; Jha, A.N. Assessment of oxidative damage to DNA, transcriptional expression of key genes, lipid peroxidation and histopathological changes in carp Cyprinus carpio L. following exposure to chronic hypoxic and subsequent recovery in normoxic conditions. Mutagenesis 2015, 30, 107–116. [Google Scholar] [CrossRef]
- Khan, F.; Garg, V.K.; Singh, A.K. Role of free radicals and certain antioxidants in the management of Huntington’s disease: A review. J. Anal. Pharm. Res. 2018, 7, 386–392. [Google Scholar] [CrossRef]
- Olufunmilayo, E.O.; Gerke-Duncan, M.B.; Holsinger, R.M.D. Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants 2023, 12, 517. [Google Scholar] [CrossRef]
- San Juan-Reyes, N.; Gómez-Oliván, L.M.; Galar-Martínez, M.; Vieyra-Reyes, P.; García-Medina, S.; Islas-Flores, H.; Neri-Cruz, N. Effluent from an NSAID-manufacturing plant in Mexico induces oxidative stress on Cyprinus carpio. Water Air Soil Pollut. 2013, 224, 1689. [Google Scholar] [CrossRef]
- Ramos, A.S.; Correia, A.T.; Antunes, S.C.; Goncalves, F.; Nunes, B. Effect of acetaminophen exposure in Oncorhynchus mykiss gills and liver: Detoxification mechanisms, oxidative defence system, and peroxidative damage. Environ. Toxicol. Pharmacol. 2014, 37, 1221–1228. [Google Scholar] [CrossRef]
- Devi, G.; Harikrishnan, R.; Paray, B.A.; Al-Sadoon, M.K.; Hoseinifar, S.H.; Balasundaram, C. Effect of symbiotic supplemented diet on innate-adaptive immune response, cytokine gene regulation and antioxidant property in Labeo rohita against Aeromonas hydrophila. Fish Shellfish Immunol. 2019, 89, 687–700. [Google Scholar] [CrossRef]
- Martınez-Alvarez, R.M.; Morales, A.E.; Sanz, A. Antioxidant defenses in fish: Biotic and abiotic factors. Rev. Fish Biol. Fish. 2005, 15, 75–88. [Google Scholar] [CrossRef]
- Sherratt, P.J.; Hayes, J.D. Glutathione S-transferases. In Enzyme Systems that Metabolize Drugs and Other Xenobiotics; Journal of Cellular Biochemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 319–352. [Google Scholar]
- Waggiallah, H.; Alzohairy, M. The effect of oxidative stress on human red cells glutathione peroxidase, glutathione reductase level, and prevalence of anemia among diabetics. N. Am. J. Med. 2011, 3, 344. [Google Scholar] [CrossRef]
- Ji, L.L.; Yeo, D. Oxidative stress: An evolving definition. Fac. Rev. 2021, 10, 13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumari, K.; Khare, A.; Dange, S. The applicability of oxidative stress biomarkers in assessing chromium induced toxicity in the fish Labeo rohita. Biomed Res. Int. 2014, 1, 782493. [Google Scholar]
- Blasco, J.; Trombini, C. Ibuprofen and diclofenac in the marine environment-a critical review of their occurrence and potential risk for invertebrate species. Water Emerg. Contam. Nanoplastics 2023, 2, 14. [Google Scholar] [CrossRef]
- Qiu, W.; Chen, J.; Li, Y.; Chen, Z.; Jiang, L.; Yang, M.; Wu, M. Oxidative stress and immune disturbance after long-term exposure to bisphenol A in juvenile common carp (Cyprinus carpio). Ecotoxicol. Environ. Saf. 2016, 130, 93–102. [Google Scholar] [CrossRef]
- Mulkiewicz, E.; Wolecki, D.; Świacka, K.; Kumirska, J.; Stepnowski, P.; Caban, M. Metabolism of non-steroidal anti-inflammatory drugs by non-target wild-living organisms. Sci. Total Environ. 2021, 791, 148251. [Google Scholar] [CrossRef]
- Swiacka, K.; Michnowska, A.; Maculewicz, J.; Caban, M.; Smolarz, K. Toxic effects of NSAIDs in non-target species: A review from the perspective of the aquatic environment. Environ. Pollut. 2021, 273, 115891. [Google Scholar] [CrossRef]
- Iacopetta, D.; Ceramella, J.; Catalano, A.; Scali, E.; Scumaci, D.; Pellegrino, M.; Aquaro, S.; Saturnino, C.; Sinicropi, M.S. Impact of Cytochrome P450 Enzymes on the Phase I Metabolism of Drugs. Appl. Sci. 2023, 13, 6045. [Google Scholar] [CrossRef]
- Bartha, B.; Huber, C.; Schröder, P. Uptake and metabolism of diclofenac in Typha latifolia—How plants cope with human pharmaceutical pollution. Plant Sci. 2014, 227, 12–20. [Google Scholar] [CrossRef]
- Oviedo-gómez, D.G.C.; Galar-Martínez, M.; García-Medina, S.; Razo-Estrada, C.; GómezOliván, L.M. Diclofenac-enriched artificial sediment induces oxidative stress in Hyalella azteca. Environ. Toxicol. Pharmacol. 2010, 29, 39–43. [Google Scholar] [CrossRef]
- Grillo, M.P.; Hua, F.; Knutson, G.C.; Ware, A.J.; Li, C. Mechanistic studies on the bioactivation of diclofenac: Identification of diclofenac-S-acyl-glutathione in vitro in incubations with rat and human hepatocytes. Chem. Res. Toxicol. 2003, 16, 1410–1417. [Google Scholar] [CrossRef]
- Chiţescu, C.L.; Ene, A.; Geana, E.-I.; Vasile, A.M.; Ciucure, C.T. Emerging and Persistent Pollutants in the Aquatic Ecosystems of the Lower Danube Basin and North West Black Sea Region—A Review. Appl. Sci. 2021, 11, 9721. [Google Scholar] [CrossRef]
- Hallare, A.; Kӧhler, H.; Triebskorn, R. Developmental toxicity and stress protein responses in zebrafish embryos after exposure to diclofenac and its solvent, DMSO. Chemosphere 2004, 56, 659–666. [Google Scholar] [CrossRef]
- Stuelten, D.; Zuehlke, S.; Lamshoeft, M.; Spiteller, M. Occurrence of diclofenac and selected metabolites in sewage effluents. Sci. Total Environ. 2008, 405, 310316. [Google Scholar] [CrossRef]
- Devika Rani, H.K.; Parimala, B. Biochemical impacts and environmental risks of diclofenac in aquatic ecosystems: A comprehensive review. Int. J. Entomol. Res. 2024, 9, 26–30. [Google Scholar]
- Scheurell, M.; Franke, S.; Shah, R.M.; Hühnerfuss, H. Occurrence of diclofenac and its metabolites in surface water and effluent samples from Karachi, Pakistan. Chemosphere 2009, 77, 870–8766. [Google Scholar] [CrossRef]
- Ebele, A.J.; Abdallah, M.A.E.; Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Heberer, T.; Adam, M. Transport and attenuation of pharmaceutical residues during artificial groundwater replenishment. Environ. Chem. 2004, 1, 22–25. [Google Scholar] [CrossRef]
- Banzhaf, S.; Nödler, K.; Licha, T.; Krein, A.; Scheytt, T. edox-sensitivity and mobility of selected pharmaceutical compounds in a low flow column experiment. Sci. Total Environ. 2012, 438, 113–121. [Google Scholar] [CrossRef]
- Guiloski, I.C.; Ribas, J.L.C.; da Pereira, L.S.; Neves, A.P.P.; Silva de Assis, H.C. Effects of Trophic Exposure to Dexamethasone and Diclofenac in Freshwater Fish. Ecotoxicol. Environ. Saf. 2015, 114, 204–211. [Google Scholar] [CrossRef]
- Bio, S.; Nunes, B. Acute effects of diclofenac on zebrafish: Indications of oxidative effects and damages at environmentally realistic levels of exposure. Environ. Toxicol. Pharmacol. 2020, 78, 103394. [Google Scholar] [CrossRef]
- Eze, C.C.; Nwamba, H.O.; Omeje, F.U.; Anukwu, J.U.; Okpe, M.N.; Nwani, C.D. Effects of Diclofenac on the Oxidative Stress Parameters of Freshwater Fish Oreochromis niloticus. J. Appl. Life Sci. Int. 2021, 24, 44–51. [Google Scholar]
- Guiloski, I.C.; Piancini, L.D.S.; Dagostim, A.C.; Calado, S.L.M.; Fávaro, L.F.; Boschen, S.L.; Cestari, M.M.; Cunha, C.; Assis, H.C.S. Effects of environmentally relevant concentrations of the anti-inflammatory drug diclofenac in freshwater fish Rhamdia quelen. Ecotoxicol. Environ. Saf. 2017, 139, 291–300. [Google Scholar] [CrossRef]
- Ghelfi, A.; Ribas, J.L.C.; Guiloski, I.C.; Bettim, F.L.; Piancini, L.D.S.; Cestari, M.M.; Silva de Assis, H.C. Evaluation of biochemical, genetic and hematological biomarkers in a commercial catfish Rhamdia quelen exposed to diclofenac. Bull. Environ. Contam. Toxicol. 2016, 96, 49–54. [Google Scholar] [CrossRef]
- McRae, N.K.; Glover, C.N.; Burket, S.R.; Brooks, B.W.; Gaw, S. Acute exposure to an environmentally relevant concentration of diclofenac elicits oxidative stress in the culturally important galaxiid fish Galaxias maculatus. Environ. Toxicol. Chem. 2018, 37, 224–235. [Google Scholar] [CrossRef]
- Pandey, L.K.; Bergey, E.A.; Lyu, J.; Park, J.; Choi, S.; Lee, H.; Depuydt, S.; Oh, Y.T.; Lee, S.M.; Han, T. The use of diatoms in ecotoxicology and bioassessment: Insights, advances and challenges. Water Res. 2017, 118, 39–58. [Google Scholar] [CrossRef]
- Islas-Flores, H.; Gomez-Olivan, L.M.; Galar-Martinez, M.; Colin-Cruz, A.; Neri-Cruz, N.; Garcia-Medina, S. Diclofenac-induced oxidative stress in brain, liver, gill, and blood of common carp (Cyprinus carpio). Ecotoxicol. Environ. Saf. 2013, 92, 32–38. [Google Scholar] [CrossRef]
- Syed, M.; Skonberg, C.; Hansen, S.H. Mitochondrial toxicity of diclofenac and its metabolites via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria: Possible role in drug-induced liver injury (DILI). Toxicol. In Vitro 2016, 31, 93–102. [Google Scholar] [CrossRef]
- Jung, S.H.; Lee, W.; Park, S.H.; Lee, K.Y.; Choi, Y.J.; Choi, S.; Hong, S.S.; Lee, B.H. Diclofenac impairs autophagic flux via oxidative stress and lysosomal dysfunction: Implications for hepatotoxicity. Redox Biol. 2020, 37, 101751. [Google Scholar] [CrossRef]
- Justi, L.H.Z.; da Silva, J.F.; Santana, M.S.; Laureano, H.A.; Pereira, M.E.; Oliveira, C.S.; Guiloski, I.C. Non-steroidal anti-inflammatory drugs, and oxidative stress biomarkers in fish: A meta-analytic review. Toxic. Rep. 2025, 14, 101910. [Google Scholar] [CrossRef]
- Diniz, M.S.; Matos, A.P.A.; Lourenço, J.; Castro, L.; Peres, I.; Mendonça, E.; Picado, A. Liver alterations in two freshwater fish species (Carassius auratus and Danio rerio) following exposure to different TiO2 nanoparticle concentrations. Microsc. Microanal. 2013, 19, 1131–1140. [Google Scholar] [CrossRef]
- Petersen, A.; Zetterberg, M.; Sjöstrand, J.; Pålsson, A.Z.; Karlsson, J.O. Potential protective effects of NSAIDs/ASA in oxidatively stressed human lens epithelial cells and intact mouse lenses in culture. Ophthalmic Res. 2005, 37, 318–327. [Google Scholar] [CrossRef]
- Feito, R.; Valcárcel, Y.; Catalá, M. Biomarker assessment of toxicity with miniaturized bioassays: Diclofenac as a case study. Ecotoxicology 2012, 21, 289–296. [Google Scholar] [CrossRef]
- Praskova, E.; Plhalova, L.; Chromcova, L.; Stepanova, S.; Bedanova, I.; Blahova, J.; Hostovsky, M.; Skoric, M.; Maršálek, P.; Voslarova, E.; et al. Effects of subchronic exposure of diclofenac on growth, histopathological changes, and oxidative stress in zebrafish (Danio rerio). Sci. World J. Ecotoxicol. Environ. Saf. 2014, 114, 67–74. [Google Scholar] [CrossRef]
- Oliveira, L.L.D.; Antunes, S.C.; Gonçalves, F.; Rocha, O.; Nunes, B. Evaluation of ecotoxicological effects of drugs on Daphnia magna using different enzymatic biomarkers. Ecotoxicol. Environ. Saf. 2015, 119, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Fono, L.J.; Kolodziej, E.P.; Sedlak, D.L. Attenuation of wastewater-derived contaminants in an effluent-dominated river. Environ. Sci. Technol. 2006, 40, 7257–7262. [Google Scholar] [CrossRef] [PubMed]
- Cahill, J.D.; Furlong, E.T.; Burkhardt, M.R.; Kolpin, D.; Anderson, L.G. Determination of pharmaceutical compounds in surface- and ground-water samples by solid-phase extraction and high-performance liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. 2004, 1041, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.D.S.; Maranho, L.A.; Cortez, F.S.; Pusceddu, F.H.; Santos, A.R.; Ribeiro, D.A.; Cesar, A.; Guimarães, L.L. Occurrence of pharmaceuticals and cocaine in a Brazilian coastal zone. Sci. Total Environ. 2016, 548–549, 148–154. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, J.; Wang, X. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef]
- Martín, J.; Camacho-Muñoz, D.; Santos, J.L.; Aparicio, I.; Alonso, E. Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: Removal and ecotoxicological impact of wastewater discharges and sludge disposal. J. Hazard. Mater. 2012, 239–240, 40–47. [Google Scholar] [CrossRef]
- Ma, R.; Qu, H.; Wang, B.; Wang, F.; Yu, Y.; Yu, G. Simultaneous enantiomeric analysis of non-steroidal anti-inflammatory drugs in environment by chiral LC-MS/MS: A pilot study in Beijing, China. Ecotox. Environ. Saf. 2019, 174, 83–91. [Google Scholar] [CrossRef]
- Paíga, P.; Santos, L.H.; Amorim, C.G.; Araújo, A.N.; Montenegro, M.C.B.; Pena, A.; Delerue-Matos, C. Pilot monitoring study of ibuprofen in surface waters of north of Portugal. Environ. Sci. Pollut. Res. 2013, 20, 2410–2420. [Google Scholar] [CrossRef]
- Lonappan, L.; Brar, S.K.; Das, R.K.; Verma, M.; Surampalli, R.Y. Diclofenac and its transformation products: Environmental occurrence and toxicity—A review. Environ. Int. 2016, 96, 127–138. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, X.; Pan, L.; Zhou, X.; Zhao, L.; Mou, X.; Wang, X. Evaluation of ibuprofen contamination in local urban rivers and its effects on immune parameters of juvenile grass carp. Fish Physiol. Biochem. 2021, 47, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Choi, K.; Kim, J.; Ji, K.; Kim, S.; Ahn, B.; Yun, J.; Choi, K.; Khim, J.S.; Zhang, X.; et al. Endocrine Disruption and Consequences of Chronic Exposure to Ibuprofen in Japanese Medaka (Oryzias latipes) and Freshwater Cladocerans Daphnia magna and Moina macrocopa. Aquat. Toxicol. 2010, 98, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Stancova, V.; Plhalova, L.; Blahova, J.; Zivna, D.; Bartoskova, M.; Siroka, Z.; Marsalek, P.; Svobodova, Z. Effects of the pharmaceutical contaminants ibuprofen, diclofenac, and carbamazepine alone, and in combination, on oxidative stress parameters in earlylife stages of tench (Tinca tinca). Vet. Med. 2017, 62, 90–97. [Google Scholar] [CrossRef]
- Mathias, F.T.; Fockink, D.H.; Disner, G.R.; Prodocimo, V.; Ribas, J.L.C.; Ramos, L.P.; Cestari, M.M.; da Silva de Assis, H.C. Effects of low concentrations of ibuprofen on freshwater fish Rhamdia quelen. Environ. Toxicol. Pharmacol. 2010, 59, 105–113. [Google Scholar] [CrossRef]
- Sánchez-Aceves, L.; Pérez-Alvarez, I.; Gómez-Oliván, L.M.; Islas-Flores, H.; Barceló, D. Long-term exposure to environmentally relevant concentrations of ibuprofen and aluminum alters oxidative stress status on Danio rerio. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 248, 109071. [Google Scholar] [CrossRef] [PubMed]
- Hodkovicova, N.; Hollerova, A.; Blahova, J.; Mikula, P.; Crhanova, M.; Karasova, D.; Franc, A.; Pavlokova, S.; Mares, J.; Postulkova, E.; et al. Non-steroidal anti-inflammatory drugs caused an outbreak of inflammation and oxidative stress with changes in the gut microbiota in rainbow trout (Oncorhynchus mykiss). Sci. Total Environ. 2022, 849, 157921. [Google Scholar] [CrossRef]
- Wadhah Hassan, A.E. Occurrence of paracetamol in aquatic environments and transformation by microorganisms: A review. Chron. Pharm. Sci. 2017, 1, 341–355. [Google Scholar]
- Satayeva, A.; Kerim, T.; Kamal, A.; Issayev, J.; Inglezakis, V.; Kim, J.; Arkhangelsky, E. Determination of aspirin in municipal wastewaters of Nur-Sultan City, Kazakhstan. IOP Conf. Ser. Earth Environ. Sci. 2022, 1123, 012067. [Google Scholar] [CrossRef]
- Wille, K.; Noppe, H.; Verheyden, K.; Vanden Bussche, J.; De Wulf, E.; Van Caeter, P.; Janssen, C.R.; De Brabander, H.F.; Vanhaecke, L. Validation and application of an LC-MS/MS method for the simultaneous quantification of 13 pharmaceuticals in seawater. Anal. Bioanal. Chem. 2010, 397, 1797–1808. [Google Scholar] [CrossRef]
- Agunbiade, F.O.; Moodley, B. Occurrence and distribution pattern of acidic pharmaceuticals in surface water, wastewater, and sediment of the Msunduzi River, Kwazulu-Natal, South Africa. Environ. Toxicol. Chem. 2016, 35, 36–46. [Google Scholar] [CrossRef]
- Ilie, M.; Deák, G.; Marinescu, F.; Ghita, G.; Tociu, C.; Matei, M.; Covaliu, I.; Covaliu, M.R.; Yusof, S.Y. Detection of Emerging Pollutants Oxytetracycline and Paracetamol and the Potential Aquatic Ecological Risk Associated with their Presence in Surface Waters of the Arges-Vedea, Buzau-Ialomita, Dobrogea-Litoral River Basins in Romania. IOP Conf. Ser. Earth Environ. Sci. 2020, 616, 012016. [Google Scholar] [CrossRef]
- Koagouw, W.; Arifin, Z.; Olivier, G.W.; Ciocan, C. High concentrations of paracetamol in effluent dominated waters of Jakarta Bay, Indonesia. Mar. Pollut. Bull. 2021, 169, 112558. [Google Scholar] [CrossRef]
- Gómez, M.J.; Bueno, M.M.; Lacorte, S.; Fernández-Alba, A.R.; Agüera, A. Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere 2007, 66, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Américo, J.H.P.; Isique, W.D.; Minillo, A.; Carvalho, S.L.; Torres, N.H. Drugs in a sewage treatment plant in the Midwest region of Brazil and the risks to water resources. RBRH 2012, 17, 61–67. [Google Scholar] [CrossRef]
- Gayen, T.; Tripathi, A.; Kumari, U.; Mittal, S.; Mittal, A.K. Ecotoxicological impacts of environmentally relevant concentrations of aspirin in the liver of Labeo rohita: Biochemical and histopathological investigation. Chemosphere 2023, 333, 138921. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Bao, S.; Nie, X. Responses of the Nrf2/Keap1 signaling pathway in Mugilogobius abei (M. abei) exposed to environmentally relevant concentration aspirin. Environ. Sci. Pollut. Res. Int. 2020, 27, 15663–15673. [Google Scholar] [CrossRef]
- Zivna, D.; Plhalova, L.; Praskova, E.; Stepanova, S.; Siroka, Z.; Sevcikova, M.; Svobodova, Z. Oxidative stress parameters in fish after subchronic exposure to acetylsalicylic acid. J. Neuroendocrinol. 2013, 34 (Suppl. S2), 116–122. [Google Scholar]
- Erhunmwunse, N.O.; Tongo, I.; Ezemonye, L.I. Acute effects of acetaminophen on the developmental, swimming performance and cardiovascular activities of the African catfish embryos/larvae (Clarias gariepinus). Ecotoxicol. Environ. Saf. 2021, 208, 111482. [Google Scholar] [CrossRef]
- Choi, E.; Alsop, D.; Wilson, J.Y. The effects of chronic acetaminophen exposure on the kidney, gill and liver in rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 2018, 198, 20–29. [Google Scholar] [CrossRef]
- Yen, F.L.; Wu, T.H.; Lin, L.T.; Lin, C.C. Hepatoprotective and antioxidant effects of Cuscuta chinensis against acetaminophen-induced hepatotoxicity in rats. J. Ethnopharmacol. 2007, 111, 123–128. [Google Scholar] [CrossRef]
- Guiloski, I.C.; Ribas, J.L.C.; Piancini, L.D.S.; Dagostim, A.C.; Cirio, S.M.; Fávaro, L.F.; de Assis, H.C.S. Paracetamol causes endocrine disruption and hepatotoxicity in male fish Rhamdia quelen after subchronic exposure. Environ. Toxicol. Pharmacol. 2017, 53, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Perussolo, M.C.; Vicentini, M.; Lyra, L.S.; Silva, L.Â.; Rodrigues, M.D.S.; Fernandes, L.D.S.P.; Assis, H.C.S.D. A multibiomarker approach to investigate paracetamol effects in the reproduction regulatory axis of a male Neotropical catfish Rhamdia quelen. Acta Limnol. Bras. 2023, 35, e27. [Google Scholar] [CrossRef]
- Rosas-Ramírez, J.R.; Orozco-Hernández, J.M.; Elizalde-Velázquez, G.A.; Raldúa, D.; Islas-Flores, H.; Gómez-Oliván, L.M. Teratogenic effects induced by paracetamol, ciprofloxacin, and their mixture on Danio rerio embryos: Oxidative stress implications. Sci. Total Environ. 2022, 806, 150541. [Google Scholar] [CrossRef]
- Nunes, B.; Verde, M.F.; Soares, A.M. Biochemical effects of the pharmaceutical drug paracetamol on Anguilla anguilla. Environ. Sci. Pollut. Res. 2015, 22, 11574–11584. [Google Scholar] [CrossRef]
- Wan, J.; Guo, P.; Peng, X.; Wen, K. Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flosaquae. J. Hazard. Mater. 2015, 283, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.L.; Li, P.; Zhang, S.Q.; He, S.W.; Xing, S.Y.; Cao, Z.H.; Li, Z.H. Effects of environmental norfloxacin concentrations on the intestinal health and function of juvenile common carp and potential risk to humans. Environ. Pollut. 2021, 287, 117612. [Google Scholar] [CrossRef] [PubMed]
- Ljubojević Pelić, D.; Radosavljević, V.; Pelić, M.; Živkov Baloš, M.; Puvača, N.; Jug-Dujaković, J.; Gavrilović, A. Antibiotic Residues in Cultured Fish: Implications for Food Safety and Regulatory Concerns. Fishes 2024, 9, 484. [Google Scholar] [CrossRef]
- Zhang, L.; Kinkelaar, D.; Huang, Y.; Li, Y.; Li, X.; Wang, H.H. Acquired antibiotic resistance: Are we born with it? Appl. Environ. Microbiol. 2011, 77, 7134–7141. [Google Scholar] [CrossRef]
- Fernandes, M.J.; Paíga, P.; Silva, A.; Llaguno, C.P.; Carvalho, M.; Vázquez, F.M.; Delerue-Matos, C. Antibiotics and antidepressants occurrence in surface waters and sediments collected in the north of Portugal. Chemosphere 2020, 239, 124729. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yang, M.; Hu, J.; Ren, L.; Zhang, Y.; Li, K. Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and the receiving river. Environ. Toxicol. Chem. 2008, 27, 80–86. [Google Scholar] [CrossRef]
- Han, Q.; Zhao, S.; Zhang, X.; Wang, X.; Song, C.; Wang, S. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China. Environ. Int. 2020, 138, 105551. [Google Scholar] [CrossRef] [PubMed]
- Abu-Zahra, N.I.S.; Atia, A.A.; Elseify, M.M.; Soliman, S. Biological and histological changes and DNA damage in Oreochromis niloticus exposed to oxytetracycline: A potential amelioratory role of ascorbic acid. Aquacult. Int. 2023, 32, 3889–3916. [Google Scholar] [CrossRef]
- Matthee, C.; Brown, A.R.; Lange, A.; Tyler, C.R. Factors determining the susceptibility of fish to effects of human pharmaceuticals. Environ. Sci. Technol. 2023, 57, 8845–8862. [Google Scholar] [CrossRef]
- Bojarski, B.; Kot, B.; Witeska, M. Antibacterials in aquatic environment and their toxicity to fish. J. Pharm. 2020, 13, 189. [Google Scholar] [CrossRef]
- Almeida, A.R.; Tacão, M.; Machado, A.L.; Golovko, O.; Zlabek, V.; Domingues, I.; Henriques, I. Long-Term Effects of Oxytetracy1cline Exposure in Zebrafish: A Multi-Level Perspective. Chemosphere 2019, 222, 333–344. [Google Scholar] [CrossRef]
- Massarsky, A.; Kozal, J.S.; Di Giulio, R.T. Glutathione and zebrafish: Old assays to address a current issue. Chemosphere 2017, 168, 707–715. [Google Scholar] [CrossRef]
- Hu, F.; Dong, F.; Yin, L.; Wang, H.; Zheng, M.; Fu, S.; Zhang, W. Effects of sulfamethoxazole on the growth, oxidative stress and inflammatory response in the liver of juvenile Nile tilapia (Oreochromis niloticus). Aquaculture 2021, 543, 736935. [Google Scholar] [CrossRef]
- Plhalova, L.; Zivna, D.; Bartoskova, M.; Blahova, J.; Sevcikova, M.; Skoric, M.; Svobodova, Z. The effects of subchronic exposure to ciprofloxacin on zebrafish (Danio rerio). Neuroendocrinol. Lett. 2014, 35 (Suppl. S2), 64–70. [Google Scholar]
- Salahinejad, A.; Meuthen, D.; Attaran, A.; Chivers, D.P.; Ferrari, M.C. Effects of common antiepileptic drugs on teleost fishes. Sci. Total Environ. 2023, 866, 161324. [Google Scholar] [CrossRef] [PubMed]
- Tiehm, A.; Schmidt, N.; Stieber, M.; Sacher, F.; Wolf, L.; Hoetzl, H. Biodegradation of Pharmaceutical Compounds and Their Occurrence in the Jordan Valley. Water Res. Manag. 2021, 25, 11951203. [Google Scholar] [CrossRef]
- Chiţescu, C.; Ene, A.; Bahrim, G.E.; Enachi, E. Pharmaceutical residues monitoring in surface water in Romania. Status and concerns. In Proceedings of the Environmental Toxicants in Freshwater and Marine Ecosystems in the Black Sea Basin, Kavala, Grecia, 8–11 September 2020; pp. 55–56. [Google Scholar]
- Kim, Y.; Choi, K.; Jung, J.Y.; Park, S.; Kim, P.G.; Park, J. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ. Int. 2007, 33, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Santos, N.; Oliveira, R.; Lisboa, C.A.; Mona e Pinto, J.; Sousa-Moura, D.; Camargo, N.S.; Perillo, V.; Oliveira, M.; Grisolia, C.K.; Domingues, I. Chronic Effects of Carbamazepine on Zebrafish: Behavioral, Reproductive and Biochemical Endpoints. Ecotoxicol. Environ. Saf. 2018, 164, 297–304. [Google Scholar] [CrossRef]
- Huiting, Y.; Xiaohong, G.; Huihui, C.; Qingfei, Z.; Zhigang, M.; Hongmin, L.; You, G.; Jinmiao, Z. Effects of Environment-related Concentrations of Carbamazepine on Antioxidant System and Neurotransmitter System of Juvenile Zebrafish. Asian J. Ecotoxicol. 2022, 17, 268–276. [Google Scholar] [CrossRef]
- Liang, X.; Csenki, Z.; Ivánovics, B.; Bock, I.; Csorbai, B.; Molnár, J.; Vásárhelyi, E.; Griffitts, J.; Ferincz, Á.; Urbányi, B.; et al. Biochemical Marker Assessment of Chronic Carbamazepine Exposure at Environmentally Relevant Concentrations in Juvenile Common Carp (Cyprinus carpio). Antioxidants 2022, 11, 1136. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Li, P.; Rodina, M.; Randak, T. Effect of human pharmaceutical Carbamazepine on the quality parameters and oxidative stress in common carp (Cyprinus carpio L.) spermatozoa. Chemosphere 2010, 80, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Gasca-Pérez, E.; Galar-Martínez, M.; García-Medina, S.; Pérez-Coyotl, I.A.; Ruiz-Lara, K.; Cano-Viveros, S.; Pérez-Pastén Borja, R.; Gómez-Oliván, L.M. Short-term exposure to carbamazepine causes oxidative stress on common carp (Cyprinus carpio). Environ. Toxicol. Pharm. 2019, 66, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Moreira, D.G.; Aires, A.; de Lourdes Pereira, M.; Oliveira, M. Levels and effects of antidepressant drugs to aquatic organisms. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 256, 109322. [Google Scholar] [CrossRef]
- Singh, A.; Saidulu, D.; Gupta, A.K.; Kubsad, V. Occurrence and fate of antidepressants in the aquatic environment: Insights into toxicological effects on the aquatic life, analytical methods, and removal techniques. J. Environ. Chem. Eng. 2022, 10, 109012. [Google Scholar] [CrossRef]
- Orozco-Hernández, J.M.; Elizalde-Velázquez, G.A.; Gómez-Oliván, L.M.; Santamaría-González, G.O.; Rosales-Pérez, K.E.; García-Medina, S.; Galar-Martinez, M.; San Juan-Reyes, N. Acute exposure to fluoxetine leads to oxidative stress and hematological disorder in Danio rerio adults. Sci. Total Environ. 2023, 905, 167391. [Google Scholar] [CrossRef]
- Kosma, C.I.; Nannou, C.I.; Boti, V.I.; Albanis, T.A. Psychiatrists and selected metabolites in hospital and urban wastewaters: Occurrence, removal, mass loading, seasonal influence and risk assessment. Sci. Total Environ. 2019, 659, 1473–1483. [Google Scholar] [CrossRef]
- Duarte, I.A.; Reis-Santos, P.; Novais, S.C.; Rato, L.D.; Lemos, M.F.; Freitas, A.; Fonseca, V.F. Depressed, hypertense and sore: Long-term effects of fluoxetine, propranolol and diclofenac exposure in a top predator fish. Sci. Total Environ. 2020, 712, 136564. [Google Scholar] [CrossRef]
- Pan, C.; Yang, M.; Xu, H.; Xu, B.; Jiang, L.; Wu, M. Tissue bioconcentration and effects of fluoxetine in zebrafish (Danio rerio) and red crucian cap (Carassius auratus) after short-term and long-term exposure. Chemosphere 2018, 205, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Lu, G.; Li, Y. Interactive effects of selected pharmaceutical mixtures on bioaccumulation and biochemical status in crucian carp (Carassius auratus). Chemosphere 2016, 148, 21–31. [Google Scholar] [CrossRef]
- Cunha, V.; Rodrigues, P.; Santos, M.M.; Moradas-Ferreira, P.; Ferreira, M. Danio rerio embryos on Prozac—Effects on the detoxification mechanism and embryo development. Aquat. Toxicol. 2016, 178, 182–189. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.R. Fluoxetine and the mitochondria: A review of the toxicological aspects. Toxicol. Lett. 2016, 258, 185–191. [Google Scholar] [CrossRef]
- Sathishkumar, P.; Meena, R.A.A.; Palanisami, T.; Ashokkumar, V.; Palvannan, T.; Gu, F.L. Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota—A review. Sci. Total Environ. 2020, 698, 134057. [Google Scholar] [PubMed]
- Jurado, A.; Labad, F.; Scheiber, L.; Criollo, R.; Nikolenko, O.; Pérez, S.; Ginebreda, A. Occurrence of pharmaceuticals and risk assessment in urban groundwater. Adv. Geosci. 2022, 59, 1–7. [Google Scholar] [CrossRef]
- Sharma, J.; Joshi, M.; Bhatnagar, A.; Chaurasia, A.K.; Nigam, S. Pharmaceutical residues: One of the significant problems in achieving ‘clean water for all’ and its solution. Environ. Res. 2022, 215, 114219. [Google Scholar] [CrossRef]
- Lushchak, V.I. Contaminant-induced oxidative stress in fish: A mechanistic approach. Fish Physiol. Biochem. 2016, 42, 711–747. [Google Scholar] [CrossRef]
- Stoliar, O.B.; Lushchak, V.I. Environmental pollution and oxidative stress in fish. In Oxidative Stress—Environmental Induction and Dietary Antioxidants; IntechOpen: London, UK, 2012; pp. 131–166. [Google Scholar]
- Beghin, M.; Schmitz, M.; Betoulle, S.; Palluel, O.; Baekelandt, S.; Mandiki, S.N.; Kestemont, P. Integrated multi-biomarker responses of juvenile rainbow trout (Oncorhynchus mykiss) to an environmentally relevant pharmaceutical mixture. Ecotoxicol. Environ. Saf. 2021, 221, 112454. [Google Scholar] [CrossRef]
- Nava-’Alvarez, R.; Razo-Estrada, A.; García-Medina, S.; G’omez-Olivan, L.; Galar-Martinez, M. Oxidative stress induced by mixture of diclofenac and acetaminophen on common carp (Cyprinus carpio). Water Air Soil Pollut. 2014, 225, 1873. [Google Scholar] [CrossRef]
Class of PhACs | Examples | Reference |
---|---|---|
Antibiotics | Ciprofloxacin, sulfamethoxazole, tetracycline, azithromycin | [15,16,17] |
Analgesics and anti-inflammatory drugs | Ibuprofen, diclofenac, aspirin, naproxen | [18,19,20,21] |
Antidepressants | Fluoxetine | [18] |
Anticonvulsants and mood stabilizers | Carbamazepine | [22,23] |
Beta-blockers | Atenolol, propranolol, metoprolol | [24,25] |
Hormones | Estradiol, ethinylestradiol, progesterone | [26,27] |
Antihistamines | Diphenhydramine | [28] |
Biomarker | Function | Effects | Reference |
---|---|---|---|
SOD | Converts superoxide anion (O2−) into hydrogen peroxide (H2O2) and O2 | First-line defense against ROS, prevents oxidative damage and lipid peroxidation | [83] |
CAT | Decomposes hydrogen peroxide (H2O2) into water and oxygen | Protects cells from H2O2 toxicity, maintains redox homeostasis | [84,85] |
GPx | Reduces hydrogen peroxide (H2O2) and lipid peroxides using glutathione (GSH), producing oxidized glutathione (GSSG) | Detoxifies peroxides and protects lipid membranes from oxidative damage | [86] |
GST | Conjugates glutathione (GSH) to xenobiotics and lipid peroxides, aiding detoxification | Neutralizes ROS, supports phase II detoxification, and prevents cellular oxidative damage. | [87] |
GRed | Regenerates reduced glutathione (GSH) from oxidized glutathione (GSSG) using NADPH | Maintains glutathione homeostasis, supports antioxidant defenses, and regulates cellular metabolism | [88] |
Environmental Concentration | Sampling Point | Reference |
---|---|---|
166–252 ng /L | Argeș River, Romania | [18,99] |
0.54 μg/L | Central European surface waters | [100] |
0.06 to 0.71 µg/L, 0.06 to 0.45 µg/L—DCF; DCF metabolites- 0.07 to 0.42 µg/L for 40-hydroxydiclofenac, 5-hydroxydiclofenac. | Effluents of sewage treatment plants in Germany | [101] |
5 to 20 µg/L | Yamuna River, India | [102] |
8500 ng/L | Korangi drain, Pakistan | [103] |
20 ng/L | Danube River, Romania | [18] |
7–90 ng/L | Danube River, Serbia | [104] |
435 ng/L | Lake Tegel and Havel River, Germany | [105] |
>800 ng/ L | Stream gauge in Mess Basin, Luxemburg | [106] |
Species | Concentration and Time of Exposure | Main Findings | Ref. |
---|---|---|---|
Hoplias malabaricus | 0; 0.2; 2.0; 20 μg/kg after intraperitoneal inoculation with 12 doses | (+) SOD, GPx, LPO, and GSH in the liver; (-) GST in the liver; No modifications to CAT activity | [107] |
Danio rerio (embryos and larvae) | 0; 0.5; 5; 50, and 500 μg/L for 96 h | (+) CAT activity and GPx at 500 μg/L; (-) GSTs in all concentrations | [108] |
Oreochromis niloticus | 0; 250; 320; 480 μg/L for 28 days | (+) LPO; (+) GRed, GPx, and GSH; (-) SOD and CAT | [109] |
Rhamdia quelen | 0; 0.2; 2, and 20 μg/L for 21 days | (-) SOD; (+) GSH; (+) GST in all concentrations- in the liver: (-) LPO at 2 and 20 μg/L; (-) CAT at 2 μg/L No modification of GPx activity | [110] |
Rhamdia quelen | 0; 0.2; 2, and 20 μg/L for 96 h | (+) SOD in the kidney at all concentrations No alteration of CAT and GPx; (-) LPO; significant decrease in DNA damage in the kidney at 20 μg/L | [111] |
Galaxias maculatus | 0.17 and 763 μg/L for 96 h | (-) LPO in gills and kidney at 763 μg/L (+) LPO in the liver at 763 μg/L (+) CAT in the liver at 0.17 and 763 μg/L (-) CAT in gills at 0.17 and 763 μg/L | [112] |
Cyprinus carpio | 100 μg/L for 96 h | (-) SOD in liver; (+) SOD in gills; (+) GPx in gills; (+) CAT in brain; no modification of LPO | [113] |
Environmental Concentration | Sampling Point | Reference |
---|---|---|
0.2 µg/L | USA surface waters | [124] |
0.326–2.094 µg/L | Brasil | [125] |
3-395 ng/L | Europe | [126] |
50.6 μg/L | WWTP effluent, Spain | [127] |
114.9 ng/L | Beijing, China | [128] |
3.32–346 ng/L | Danube River | [99] |
723 ng/L | Lima River, Portugal | [129] |
Species | Concentration and Time of Exposure | Main Findings | Ref. |
---|---|---|---|
Tinca tinca | 0.02–60 μg/L for 35 days | (-) GST in 60 μg/L; (-) GST No modification of CAT activity and LPO | [133] |
Rhamdia quelen | 0.1, 1, and 10 μg/L for 14 days | (+) GST in all groups; (+) GPx and GSH activity at conc. of 10 μg/L; No change of SOD, CAT, and LPO activity in the posterior kidney; No significant changes in OS biomarkers at all concentrations in the gill and liver: | [134] |
Danio rerio | 0.1–11 μg/L for 7, 14, 21, and 28 days | (+) LPO in the liver after 7,14, and 28 days at 11 μg/L (+) SOD activity in the liver at 7, 14, and 28 days and in the gut after 14 days at 11 μg/L; (+) CAT after 21 days in the brain; (+) GPx after 21 and 28 days in the gills and liver at 11 μg/L (+) GPx activity at 21 and 7 days in gills and gut, at 0.1 μg/L | [135] |
Oncorhynchus mykiss | 2 and 200 μg/kg feed | In gills (-) GPX at all concentrations; In liver (+) LPO and GRed at 200 μg/kg feed; No changes in the activity of antioxidant enzymes in the kidney. | [136] |
Pharm. | Environmental Concentration | Sampling Point | Reference |
---|---|---|---|
ASA | 0.011 to 0.855 μg/L | North Sea and the Scheldt Estuary | [139] |
0.025 to 0.29 μg/L | Lis River, Portugal | [129] | |
92.8 μg/L | Msunduzi River, Africa | [140] | |
APAP | 9.6–183 ng/ | Romania | [141] |
420–610 ng/L | Angke and Ancol, Jakarta Bay, Indonesia | [142] | |
65 μg/L | Tyne River, UK | [6] | |
246 μg/L | Spania | [143] | |
30–1877 μg/L | Midwest Brazil | [144] |
Pharm. | Environmental Concentration | Sampling Point | Reference |
---|---|---|---|
Azithromycin | 2819 ng/L | Leça river, Portugal | [159] |
Oxytetracycline | 399.5 ng/L | Danube River—area Sulina | [141] |
612 μg/L | Xiao River, China | [160] | |
Sulfamethazine Sulfamethizole Trimethoprim | (15–328 ng/L) (20–174 ng/L) (4–7 ng/L) | Vietnamese waters | [161] |
Pharmaceutical Product | Species | Concentration and Time of Exposure | Main Findings | Ref. |
---|---|---|---|---|
FLX | Danio rerio | 5, 16, and 40 ng/L for 96 h | (+) SOD, CAT, and GPx in the liver, intestine, brain, and gills. (+) MDA in the brain and tissues after 96 h at a concentration of 5–40 ng/L | [180] |
FLX | Danio rerio | 0.0015, 0.05, 0.1, 0.5, and 0.8 μM for 80 h | (+) CAT (0.0015 and 0.5 μM) (-) SOD (0.0015 and 0.5 μM) | [185] |
Pharmaceutical Mixtures | Species | Concentration and Time of Exposure | Main Findings | Ref. |
---|---|---|---|---|
DCF + IBU | Oncorhynchus mykiss | DCF—2 and 200 μg/kg); IBU—2 and 200 μg/kg. Combination of DCF and IBU—(2 μg/kg DCF + 2 μg/kg; 200 μg/kg IBU). | In gills: (-) GPx activity at IBU 2 and 200 μg kg/kg and the combination of DCF and IBU; In liver: (+) LPO in DCF, and IBU, and DCF conc. of 200 μg/kg (+) GR activity at IBU 200 μg/kg; In the posterior kidney: (+) CAT at DCF 200 μg/kg. | [193] |
DCF + APAP | Cyprinus carpio | 50 μg of each/L, 1:1) | (+) SOD in the brain; (-) SOD in liver and gills; (+) CAT in the brain and gills; (+) GPx in brain and liver; (+) LPO in liver and gills. | [171] |
CBZ, irbesartan, APAP, NPX, DCF | Oncorhynchus mykiss | Concentrations of 1×, 10×, and 100× the median levels found in the Meuse River, Belgium, over 42 days | No change of GST; (-) GSH after 24 h; (-) GPx and CAT | [172] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grădinariu, L.; Crețu, M.; Vizireanu, C.; Dediu, L. Oxidative Stress Biomarkers in Fish Exposed to Environmental Concentrations of Pharmaceutical Pollutants: A Review. Biology 2025, 14, 472. https://doi.org/10.3390/biology14050472
Grădinariu L, Crețu M, Vizireanu C, Dediu L. Oxidative Stress Biomarkers in Fish Exposed to Environmental Concentrations of Pharmaceutical Pollutants: A Review. Biology. 2025; 14(5):472. https://doi.org/10.3390/biology14050472
Chicago/Turabian StyleGrădinariu, Lăcrămioara, Mirela Crețu, Camelia Vizireanu, and Lorena Dediu. 2025. "Oxidative Stress Biomarkers in Fish Exposed to Environmental Concentrations of Pharmaceutical Pollutants: A Review" Biology 14, no. 5: 472. https://doi.org/10.3390/biology14050472
APA StyleGrădinariu, L., Crețu, M., Vizireanu, C., & Dediu, L. (2025). Oxidative Stress Biomarkers in Fish Exposed to Environmental Concentrations of Pharmaceutical Pollutants: A Review. Biology, 14(5), 472. https://doi.org/10.3390/biology14050472