Flower Position and Clonal Integration Drive Intra-Individual Floral Trait Variation in Water-Hyacinth (Eichhornia crassipes, Pontederiaceae)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Plant Sampling
2.3. Greenhouse Experiment
2.4. Flower Traits Obtaining
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newton, A.C.; Allnutt, T.R.; Gillies, A.C.M.; Lowe, A.J.; Ennos, R.A. Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends Ecol. Evol. 1999, 14, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Liang, X.; Ren, J.; Liao, M.; Li, J.; Galloway, L.F. The mean and variability of a floral trait have opposing effects on fitness traits. Ann. Bot. 2016, 117, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Dávila, R.; Martén-Rodríguez, S.; Huerta-Ramos, G. Variation in floral morphology and plant reproductive success in four Ipoemea species (Convolvulaceae) with contrasting breeding systems. Plant Biol. 2016, 18, 903–912. [Google Scholar] [CrossRef]
- Violle, C.; Enquist, B.J.; McGill, B.J.; Jiang, L.; Albert, C.H.; Hulshof, C.; Jung, V.; Messier, J. The return of the variance: Intraspecific variability in community ecology. Trends Ecol. Evol. 2012, 27, 244–252. [Google Scholar] [CrossRef]
- Kuppler, J.; Höfers, M.K.; Wiesmann, L.; Junker, R.R. Time-invariant differences between plant individuals in interactions with arthropods correlate with intraspecific variation in plant phenology, morphology and floral scent. New Phytol. 2016, 210, 1357–1368. [Google Scholar] [CrossRef]
- Albert, C.H.; Grassein, F.; Schurr, F.M.; Vieilledent, G.; Violle, C. When and how should intraspecific variability be considered in trait-based plant ecology? Perspect. Plant Ecol. 2011, 13, 217–225. [Google Scholar] [CrossRef]
- Stearns, S.C. The Evolution of Life Histories, 1st ed.; Oxford University Press: New York, NY, USA, 1992. [Google Scholar]
- Roff, D.A. Life History Evolution, 1st ed.; Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar]
- Westerbrand, A.C.; Funk, J.L.; Barton, K.E. Intraspecific trait variation in plants: A renewed focus on its role in ecological processes. Ann. Bot. 2021, 127, 397–410. [Google Scholar] [CrossRef]
- Herrera, C.M. The ecology of subindividual variability in plants: Patterns, processes, and prospects. Web Ecol. 2017, 17, 51–64. [Google Scholar] [CrossRef]
- Thomson, J.D. Deployment of ovules and pollen among flowers within inflorescences. Evol. Trend Plant 1989, 3, 65–68. [Google Scholar]
- Ohara, M.; Higashi, S. Effects of inflorescence size on visits from pollinators and seed set of Corydalis ambigua (Papaveraceae). Oecologia 1994, 98, 25–30. [Google Scholar] [CrossRef]
- Torices, R.; Méndez, M. Influence of inflorescence size on sexual expression and female reproductive success in a monoecious species. Plant Biol. 2011, 13, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Biernaskie, J.M.; Cartar, R.V.; Hurly, T.A. Risk averse inflorescence departure in hummingbirds and bumble bees: Could plants benefit from variable nectar volumes? Oikos 2002, 98, 98–104. [Google Scholar] [CrossRef]
- Winn, A.A. Proximate and ultimate sources of within-individual variation in seed mass in Prunella vulgaris (Lamiaceae). Am. J. Bot. 1991, 78, 838–844. [Google Scholar] [CrossRef]
- Diggle, P.K. Architectural effects and the interpretation of patterns of fruit and seed development. Annu. Rev. Ecol. Evol. Syst. 1995, 26, 531–552. Available online: https://www.jstor.org/stable/2097218 (accessed on 1 December 2024). [CrossRef]
- Diggle, P.K. Ontogenetic contingency and floral morphology: The effects of architecture and resource limitation. Int. J. Plant Sci. 1997, 158, s99–s107. Available online: https://www.jstor.org/stable/2475170 (accessed on 1 December 2024). [CrossRef]
- Berg, R.L. A general evolutionary principle underlying the origin of developmental homeostasis. Am. Nat. 1959, 93, 103–105. [Google Scholar] [CrossRef]
- Berg, R.L. The ecological significance of correlation Pleiades. Evolution 1960, 43, 1398–1416. [Google Scholar] [CrossRef]
- Ishii, H.S.; Morinaga, S.I. Intra and inter-plant level correlations among floral traits in Iris gracilipes (Iridaceae). Evol. Ecol. 2005, 19, 435–448. [Google Scholar] [CrossRef]
- Zhao, Z.; He, Y.; Wang, M.; Du, G. Variations of flower size and reproductive traits in self-incompatible Trollius ranunculoides (Ranunculaceae) among local habitats of alpine meadow. Plant Ecol. 2007, 193, 241–251. [Google Scholar] [CrossRef]
- Zhang, Z.-Q.; Zhu, X.-F.; Sun, H.; Yang, Y.P.; Barret, S.C.H. Size-dependent gender modification in Lilium apertum (Liliaceae): Does this species exhibit gender diphasy? Ann. Bot. 2014, 114, 441–453. [Google Scholar] [CrossRef]
- Iwaizumi, M.G.; Sakai, S. Variation in flower biomass among nearby populations of Impatiens textori (Balsaminaceae): Effects of population plant densities. Can. J. Bot. 2004, 82, 563–572. [Google Scholar] [CrossRef]
- Austen, E.J.; Forrest, J.R.K.; Weis, A.E. Within-plant variation in reproductive investment: Consequences for selection on flowering time. J. Evol. Biol. 2015, 28, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.G.; Du, G.Z.; Huang, S.Q. The effect of flower position on variation and covariation in floral traits in a wild hermaphrodite plant. BMC Plant Biol. 2010, 10, 91. [Google Scholar] [CrossRef]
- Brunet, J.; Charlesworth, D. Floral sex allocation in sequentially blooming plants. Evolution 1995, 49, 70–79. [Google Scholar] [CrossRef]
- Mazer, S.J.; Dawson, K.A. Size-dependence sex allocation within flowers of the annual herb Clarkia unguiculata (Onagraceae): Ontogenic and among-plant variation. Am. J. Bot. 2001, 88, 819–831. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.Q.; Zhang, B.; Wang, L.P.; Guo, W.; Fang, Y.; Li, Q.J. Architectural effects regulate resource allocation within the inflorescences with nonlinear blooming patterns. Am. J. Bot. 2022, 109, 1191–1202. [Google Scholar] [CrossRef]
- Byrne, M.; Mazer, S.J. The effect of position on fruit characteristics, and relationships among components of yield in Phytolacca rivinoides (Phytolaccaceae). Biotropica 1990, 22, 353–365. [Google Scholar] [CrossRef]
- Wolfe, L.M. Why does the size of reproductive structures decline through time in Hydrophyllum appendiculatum (Hydrophyllaceae)? Developmental constraints vs. resource limitation. Am. J. Bot. 1992, 79, 1286–1290. [Google Scholar] [CrossRef]
- Thomson, J.D. Effects of variation in inflorescence size and floral rewards on the visitation rates of trap lining pollinators of Aralia hispida. Evol. Ecol. 1988, 2, 65–76. [Google Scholar] [CrossRef]
- Zhao, Z.G.; Meng, J.L.; Fan, B.L.; Du, G.Z. Reproductive patterns within racemes in protandrous Aconitum gymnandrum (Ranunculaceae): Potential mechanism and among-family variation. Plant Syst. Evol. 2008, 273, 247–256. [Google Scholar] [CrossRef]
- Kliber, A.; Eckert, C.G. Sequential decline in allocation among flowers within inflorescences: Proximate mechanisms and adaptive significance. Ecology 2004, 85, 1675–1687. [Google Scholar] [CrossRef]
- Coen, E.; Prusinkiewicz, P. Developmental timing in plants. Nat. Commun. 2024, 15, 2674. [Google Scholar] [CrossRef] [PubMed]
- Diggle, P.K. Modularity and intra-floral integration in metameric organisms: Plants are more than the sum of their parts. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130253. [Google Scholar] [CrossRef]
- Żywiec, M.; Delibes, M.; Fedriani, J.M. Microgeographical, inter-individual, and intra-individual variation in the flower characters of Iberian pear Pyrus bourgaeana (Rosaceae). Oecologia 2012, 169, 713–722. [Google Scholar] [CrossRef]
- Dong, M.; Yu, F.-H.; Alpert, P. Ecological consequences of plant clonality. Ann. Bot. 2014, 114, 367. [Google Scholar] [CrossRef]
- Liu, F.; Liu, J.; Dong, M. Ecological consequences of clonal integration in plants. Front. Plant Sci. 2016, 7, 770. [Google Scholar] [CrossRef]
- Cao, X.-X.; Xue, W.; Lei, N.-F.; Yu, F.-H. Effects of Clonal Integration on Foraging Behavior of Three Clonal Plants in Heterogeneous Soil Environments. Forests 2022, 13, 696. [Google Scholar] [CrossRef]
- Stuefer, J.F.; During, H.J.; de Kroon, H. High benefits of clonal integration in two stoloniferous species, in response to heterogeneous light environments. J. Ecol. 1994, 82, 511–518. [Google Scholar] [CrossRef]
- Stuefer, J.F.; Van Hulzen, J.B.; During, H.J. A genotypic trade-off between the number and size of clonal offspring in the stoloniferous plant Potentilla reptans. J. Evol. Biol. 2002, 15, 880–884. [Google Scholar] [CrossRef]
- Demetrio, G.R.; Coelho, F.F.; Barbosa, M.E.A. Body size and clonality consequences for sexual reproduction in a perennial herb of Brazilian rupestrian grasslands. Braz. J. Biol. 2014, 74, 744–749. [Google Scholar] [CrossRef]
- You, W.; Li, N.; Zhang, J.; Song, A.; Du, D. The Plant Invader Alternanthera philoxeroides Benefits from Clonal Integration More than Its Native Co-Genus in Response to Patch Contrast. Plants 2023, 12, 2371. [Google Scholar] [CrossRef] [PubMed]
- Buide, M.L. Disentangling the causes of intrainflorescence variation in floral traits and fecundity in the hermaphrodite Silene acutifolia. Am. J. Bot. 2008, 95, 490–497. Available online: https://www.jstor.org/stable/20700395 (accessed on 1 December 2024). [CrossRef] [PubMed]
- Brookes, R.H.; Jesson, L.K.; Burd, M. Reproductive investment within inflorescences of Stylidium armeria varies with the strength of early resource commitment. Ann. Bot. 2010, 105, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Xue, L.; Li, Y.; Pan, K. The relative importance of architecture and resource competition in allocation to pollen and ovule number within inflorescences of Hosta ventricosa varies with the resource pools. Ann. Bot. 2011, 107, 1413–1419. [Google Scholar] [CrossRef]
- Barrett, S.C.H. Sexual reproduction in Eichhornia crassipes (Water Hyacinth). I. Fertility of clones from diverse regions. J. Appl. Ecol. 1980, 17, 101–112. [Google Scholar] [CrossRef]
- Barrett, S.C.H. Sexual reproduction in Eichhornia crassipes (Water Hyacinth). II. Seed production in natural populations. J. Appl. Ecol. 1980, 17, 113–124. [Google Scholar] [CrossRef]
- Pott, V.J.; Pott, A. Plantas Aquáticas do Pantanal, 1st ed.; EMBRAPA: Corumbá, Brazil, 2000. [Google Scholar]
- Holm, L.G.; Plucknett, D.L.; Pancho, J.V.; Herberger, J.P. The World’s Worst Weeds: Distribution and Biology, 1st ed.; University Press of Hawaii: Honolulu, HI, USA, 1977. [Google Scholar]
- Barrett, S.C.H. Waterweed invasions. Sci. Am. 1989, 260, 90–97. Available online: https://www.jstor.org/stable/24987444 (accessed on 1 December 2024). [CrossRef]
- Watson, M.A. Developmental constraints: Effect on population growth and patterns of resource allocation in a clonal plant. Am. Nat. 1984, 123, 411–426. Available online: https://www.jstor.org/stable/2461104 (accessed on 1 December 2024). [CrossRef]
- Watson, M.A.; Brochier, J. The role of nutrient levels on flowering in water hyacinth. Aquat. Bot. 1988, 31, 367–372. [Google Scholar] [CrossRef]
- Demetrio, G.R.; Coelho, F.F. What are the consequences of clonal integration for floral traits and reproductive investment of a broadly distributed aquatic plant? Flora 2023, 303, 152292. [Google Scholar] [CrossRef]
- Herrera, J. Visibility vs. biomass in flowers: Exploring corolla allocation in Mediterranean entomophilous plants. Ann. Bot. 2009, 103, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Smyth, D.R. Morphogenesis of Flowers—Our Evolving View. Plant Cell 2005, 17, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Bartoń, K. MuMIn: Multi-Model Inference. R Package Version 1.47.5. 2023. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 1 December 2024).
- Anderson, D.; Burnham, K. Model Selection and Multi-Model Inference, 2nd ed.; Springer: New York, NY, USA, 2004. [Google Scholar]
- Emiliano, P.C.; Vivanco, M.J.; De Menezes, F.S. Information criteria: How do they behave in different models? Comput. Stat. Data Anal. 2014, 69, 141–153. [Google Scholar] [CrossRef]
- Jenkins, D.G.; Quintana-Ascencio, P.F. A solution to minimum sample size for regressions. PLoS ONE 2020, 15, e0229345. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 1 December 2024).
- Cao, G.-X.; Worley, A.C. Life history trade-offs and evidence for hierarchical resource allocation in two monocarpic perennials. Plant Biol. 2013, 15, 158–165. [Google Scholar] [CrossRef]
- Evans, J.P.; Meckstroth, S.; Garai, J. The Amelioration of Grazing through Physiological Integration by a Clonal Dune Plant. Plants 2023, 12, 724. [Google Scholar] [CrossRef]
- Eckert, C.G.; Dorken, M.E.; Barret, S.C.H. Ecological and evolutionary consequences of sexual and clonal reproduction on aquatic plants. Aquat. Bot. 2016, 135, 46–61. [Google Scholar] [CrossRef]
- Coelho, F.F.; Lopes, F.S.; Sperber, C.F. Persistence strategy of Salvinia auriculata Aublet in temporary ponds of southern Pantanal, Brazil. Aquat. Bot. 2005, 81, 343–352. [Google Scholar] [CrossRef]
- Evans, J.P. The effect of local resource availability and clonal integration on ramet functional morphology in Hydrocotyle bonariensis. Oecologia 1992, 89, 265–276. [Google Scholar] [CrossRef]
- Lotscher, M. Resource allocation in clonal plants. In Progress in Botany 67, 1st ed.; Esser, K., Lüttge, U., Beyschlag, W., Murata, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 536–561. [Google Scholar]
- Bittebiere, A.K.; Benot, M.L.; Mony, C. Clonality as a key but overlooked driver of biotic interactions in plants. Perspect. Plant Ecol. Evol. Syst. 2020, 43, 125510. [Google Scholar] [CrossRef]
- Coelho, F.F.; Capelo, C.; Neves, A.C.O.; Martins, R.P.; Figueira, J.E.C. Seasonal Timing of Pseudoviviparous Reproduction of Leiothrix (Eriocaulaceae) Rupestrian Species in South-eastern Brazil. Ann. Bot. 2006, 98, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
- Obeso, J.R. The costs of reproduction in plants. New Phytol. 2002, 155, 321–348. [Google Scholar] [CrossRef] [PubMed]
- Demetrio, G.R.; Serafim, D.; Coelho, F.F. Is Clonal Integration a Buffer for the Stress of Resource Acquisition Depletion in Eichhornia crassipes (Pontederiaceae) Ramets? Stresses 2024, 4, 734–743. [Google Scholar] [CrossRef]
- Sletvold, N.; Tye, M.; Ågren, J. Resource and pollinator mediated selection on floral traits. Funct. Ecol. 2017, 31, 135–141. [Google Scholar] [CrossRef]
- Xia, J.; Yang, C.-F. Pollinator Proboscis Length Plays a Key Role in Floral Integration of Honeysuckle Flowers (Lonicera spp.). Plants 2023, 12, 1629. [Google Scholar] [CrossRef]
- Barrett, S.C.H. Influences of clonality on plant sexual reproduction. Proc. Natl. Acad. Sci. USA 2015, 112, 8859–8866. [Google Scholar] [CrossRef]
- Valdés, A.; Ehrlén, J. Flower position within plants influences reproductive success both directly and via phenology. Am. J. Bot. 2024, 111, e16405. [Google Scholar] [CrossRef]
- Castillo-Sánchez, I.L.; Figueroa-Castro, D.M. Intra-inflorescence variation in reproductive traits of Conopholis alpina (Orobanchaceae): Effect of flower maturation pattern and resource competition. Plant Ecol. 2019, 220, 721–729. Available online: https://www.jstor.org/stable/48702762 (accessed on 1 December 2024). [CrossRef]
- van Groenendael, J.; de Kroon, H. Clonal Growth in Plants: Regulation and Function, 1st ed.; SPB Academic Publishing: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Dong, M. Ecology of Clonal Plants, 1st ed.; Science Press: Beijing, China, 2011. [Google Scholar]
- Dong, M. Clonal growth in plants in relation to resource heterogeneity: Foraging behavior. J. Integr. Plant Biol. 1996, 38, 828–835. [Google Scholar]
Trait | Model | Intercept | Flower Position | Treatment | Flower Position × Treatment | AICc | ΔAICc | Weight |
---|---|---|---|---|---|---|---|---|
Floral biomass | 1 | 0.01758 | −0.0002673 | + | + | −1118.9 | 0 | 0.377 |
2 | 0.01745 | −0.0002283 | + | −1118.6 | 0.24 | 0.334 | ||
3 | 0.01670 | + | −1118.3 | 0.54 | 0.228 | |||
Corolla length | 1 | 5.554 | 0.09032 | + | + | 304.2 | 0 | 0.818 |
Banner petal length | 1 | 3.229 | 0.01478 | + | + | 194.6 | 0 | 0.996 |
Nectar guide length | 1 | 0.8407 | −0.007613 | + | + | 62.8 | 0 | 0.994 |
Long stamens length | 1 | 2.216 | −0.02395 | + | −26.4 | 0 | 0.688 | |
Short stamens length | 1 | 0.9371 | + | 65.3 | 0 | 0.56 | ||
2 | 0.9975 | −0.01874 | + | 66.1 | 0.76 | 0.381 | ||
Style length | 1 | 1.794 | + | 160.2 | 0 | 0.54 | ||
2 | 1.716 | 0.02441 | + | 161.3 | 1.09 | 0.313 |
Trait | Component | Estimate | t Value | p |
---|---|---|---|---|
Floral Biomass | Intercept | 0.0175 | 20.95 | <0.01 |
Treatment (Defoliated) | 0.0084 | 6.947 | <0.01 | |
Treatment (Isolated) | −0.011 | −10.28 | <0.01 | |
Flower Position | −0.0002 | −1.252 | 0.213 | |
Treatment (Defoliated) × Flower Position | −0.0002 | −0.792 | 0.430 | |
Treatment (Isolated) × Flower Position | 0.0005 | 1.553 | 0.123 | |
Corolla length | Intercept | 5.554 | 20.55 | <0.01 |
Treatment (Defoliated) | 0.512 | 1.450 | 0.149 | |
Treatment (Isolated) | 0.0725 | 0.217 | 0.828 | |
Flower Position | 0.0903 | 1.463 | 0.146 | |
Treatment (Defoliated) × Flower Position | −0.261 | −2.922 | 0.004 | |
Treatment (Isolated) × Flower Position | −0.223 | −2.159 | 0.032 | |
Banner Petal length | Intercept | 3.229 | 18.53 | <0.01 |
Treatment (Defoliated) | 0.5002 | 2.196 | 0.030 | |
Treatment (Isolated) | 0.1492 | 0.692 | 0.490 | |
Flower Position | 0.0147 | 0.371 | 0.711 | |
Treatment (Defoliated) × Flower Position | −0.2369 | −4.097 | <0.01 | |
Treatment (Isolated) × Flower Position | −0.0812 | −1.214 | 0.227 | |
Nectar Guide length | Intercept | 0.8407 | 8.246 | <0.01 |
Treatment (Defoliated) | −0.2943 | −2.185 | 0.030 | |
Treatment (Isolated) | 0.0381 | 0.299 | 0.765 | |
Flower Position | −0.0076 | −0.323 | 0.747 | |
Treatment (Defoliated) × Flower Position | 0.1569 | 4.589 | <0.01 | |
Treatment (Isolated) × Flower Position | −0.0056 | −0.142 | 0.8876 | |
Long Stamen length | Intercept | 2.2162 | 43.877 | <0.01 |
Treatment (Defoliated) | 0.3261 | 7.242 | <0.001 | |
Treatment (Isolated) | −0.2754 | −6.174 | <0.01 | |
Flower Position | −0.0239 | −2.158 | 0.032 | |
Short Stamen length | Intercept | 0.9974 | 10.024 | <0.01 |
Treatment (Defoliated) | −0.1131 | −1.794 | 0.075 | |
Treatment (Isolated) | −0.4268 | −6.912 | <0.01 | |
Flower Position | −0.0187 | −1.207 | 0.230 | |
Styles length | Intercept | 1.7155 | 13.023 | <0.01 |
Treatment (Defoliated) | 0.2411 | 2.586 | 0.010 | |
Treatment (Isolated) | −0.0697 | −0.762 | 0.447 | |
Flower Position | 0.0244 | 1.062 | 0.290 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demetrio, G.R.; Seixas, L.; Coelho, F.d.F. Flower Position and Clonal Integration Drive Intra-Individual Floral Trait Variation in Water-Hyacinth (Eichhornia crassipes, Pontederiaceae). Biology 2025, 14, 114. https://doi.org/10.3390/biology14020114
Demetrio GR, Seixas L, Coelho FdF. Flower Position and Clonal Integration Drive Intra-Individual Floral Trait Variation in Water-Hyacinth (Eichhornia crassipes, Pontederiaceae). Biology. 2025; 14(2):114. https://doi.org/10.3390/biology14020114
Chicago/Turabian StyleDemetrio, Guilherme Ramos, Luziene Seixas, and Flávia de Freitas Coelho. 2025. "Flower Position and Clonal Integration Drive Intra-Individual Floral Trait Variation in Water-Hyacinth (Eichhornia crassipes, Pontederiaceae)" Biology 14, no. 2: 114. https://doi.org/10.3390/biology14020114
APA StyleDemetrio, G. R., Seixas, L., & Coelho, F. d. F. (2025). Flower Position and Clonal Integration Drive Intra-Individual Floral Trait Variation in Water-Hyacinth (Eichhornia crassipes, Pontederiaceae). Biology, 14(2), 114. https://doi.org/10.3390/biology14020114