Sustainable Cultivation and Functional Bioactive Compounds of Auricularia Mushrooms: Advances, Challenges, and Future Prospects
Simple Summary
Abstract
1. Introduction
2. Morphological and Physiological Characteristics
3. Artificial Cultivation
4. Taxonomy and Global Diversity
5. Genomic and Genetic Research
6. Geographic Distribution
7. Nutritional Composition and Biological Activity
7.1. Main Components
7.2. Pharmacological Effects
8. Industrialized Applications of Auricularia Species
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lesa, K.N.; Khandaker, M.U.; Iqbal, F.M.R.; Sharma, R.; Islam, F.; Mitra, S.; Bin Emran, T. Nutritional value, medicinal importance, and health-promoting effects of dietary mushroom (Pleurotus ostreatus). J. Food Qual. 2022, 2022, 2454180. [Google Scholar] [CrossRef]
- Sheng, K.J.; Wang, C.L.; Chen, B.T.; Kang, M.J.; Wang, M.C.; Liu, K.; Wang, M. Recent advances in polysaccharides from Lentinus edodes (Berk.): Isolation, structures and bioactivities. Food Chem. 2021, 358, 129883. [Google Scholar] [CrossRef]
- Qi, J.Z.; Wu, J.; Kang, S.J.; Gao, J.M.; Hirokazu, K.; Liu, H.W.; Liu, C.W. The chemical structures, biosynthesis, and biological activities of secondary metabolites from the culinary-medicinal mushrooms of the genus Hericium: A review. Chin. J. Nat. Med. 2024, 22, 676–698. [Google Scholar] [CrossRef] [PubMed]
- Royse, D.J.; Baars, J.; Tan, Q. Current overview of mushroom production in the world. In Edible and Medicinal Mushrooms: Technology and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Wu, F.; Yuan, Y.; He, S.-H.; Bandara, A.R.; Hyde, K.D.; Malysheva, V.F.; Li, D.-W.; Dai, Y.-C. Global diversity and taxonomy of the Auricularia auricula-judae complex (Auriculariales, Basidiomycota). Mycol. Prog. 2015, 14, 95. [Google Scholar] [CrossRef]
- Zhang, J. Breeding of Superior Strains and Selenium-Enriched Cultivation Techniques of Auricularia auricula. Master’s Thesis, Northwest A&F University, Xianyang, China, 2021. [Google Scholar]
- Zhang, P. Morphological Development and Anatomical Studies on Secondary Mycelium and Fruit Bodies of Auricularia. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2011. [Google Scholar]
- Han, Z.; Dai, X.; Chen, H.; Ma, Y.; Zhang, J. The effect of temperature on the growth and development of Auricularia auricula fruit body. Edible Fungi 2016, 38, 17–18+28. [Google Scholar]
- Yuan, L. Studies on Senescence of Hyphae of Cultivated Auricularia Auricula-Judae. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2010. [Google Scholar]
- Li, L. Genetic Diversity of Cultivated Germplasm Resources of Auricularia in China. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2011. [Google Scholar]
- Liu, E.C.; Ji, Y.; Zhang, F.; Liu, B.J.; Meng, X.H. Review on Auricularia auricula-judae as a functional food: Growth, chemical composition, and biological activities. J. Agric. Food Chem. 2021, 69, 1739–1750. [Google Scholar] [CrossRef]
- Xu, Z.M. Origin of artificial cultivation and evolution of cultivation techniques for Auricularia auricula. Lishui Agric. Sci. Technol. 2016, 2, 20–23. [Google Scholar]
- Sun, S.J.; Zhang, X.J.; Chen, W.X.; Zhang, L.Y.; Zhu, H. Production of natural edible melanin by Auricularia auricula and its physicochemical properties. Food Chem. 2016, 196, 486–492. [Google Scholar] [CrossRef]
- Zhao, G.; Sun, J.; Zou, L. Autumn cultivation and yield-increasing management techniques for Auricularia auricula. For. By-Prod. Spec. China 2021, 32–34. [Google Scholar] [CrossRef]
- Bian, Y.B. Effect of straw resource status on the development of edible fungi industry in China. Edible Fungi China 2006, 1, 5–7. [Google Scholar]
- Wu, S.F. Optimized formula for alterative culture substrate in cultivation of black fungus. Fujian Agric. Sci. Technol. 2017, 8, 47–48. [Google Scholar] [CrossRef]
- He, G.; Wei, J.; Hu, X.; Wu, S.; Zhao, H. Current status and prospects of edible fungi industry development in China. Vegetables 2022, 40–46. [Google Scholar]
- Li, C.; Li, H. Formula optimization of Auricularia auricular cultivation using corn straw. North. Hort. 2017, 18, 166–169. [Google Scholar]
- Shu, B. Research on the Key Technology for the Bag Cultivation of Auricularia auricula. Master’s Thesis, Northwest A&F University, Xianyang, China, 2021. [Google Scholar]
- Wu, C.-Y.; Liang, C.-H.; Liang, Z.-C. Evaluation of using spent mushroom sawdust wastes for cultivation of Auricularia polytricha. Agronomy 2020, 10, 1892. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, L. Spent mushroom substrate and medical stone modified composted green waste as growth media for ornamental plant Antirrhinum majus L. and Salvia splendens. Sci. Hortic. 2023, 313, 111929. [Google Scholar] [CrossRef]
- Marion Perez-Chavez, A.; Mayer, L.; Alberto, E. Mushroom cultivation and biogas production: A sustainable reuse of organic resources. Energy Sustain. Dev. 2019, 50, 50–60. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, L.; Zhou, X.; Tian, T.; Xu, S.; Li, D.; Li, C.; Li, Y. Optimizing straw-rotting cultivation for sustainable edible mushroom production: Composting spent mushroom substrate with straw additions. J. Fungi 2023, 9, 925. [Google Scholar] [CrossRef]
- Jonathan, S.G.; Fasidi, I.O. Studies on phytohormones, vitamins and mineral element requirements of Lentinus subnudus (Berk) and schizophyllum commune (Fr. Ex. Fr) from Nigeria. Food Chem. 2001, 75, 303–307. [Google Scholar] [CrossRef]
- Carrasco, J.; Zied, D.C.; Pardo, J.E.; Preston, G.M.; Pardo-Giménez, A. Supplementation in mushroom crops and its impact on yield and quality. AMB Express 2018, 8, 146. [Google Scholar] [CrossRef] [PubMed]
- Kadnikova, I.A.; Costa, R.; Kalenik, T.K.; Guruleva, O.N.; Yanguo, S. Chemical composition and nutritional value of the mushroom Auricularia auricula-judae. J. Food Nutr. Res. 2015, 3, 478–482. [Google Scholar]
- Kian Shin, C.; Fook Yee, C.; Jau Shya, L.; Atong, M. Nutritional properties of some edible wild mushrooms in Sabah. J. Appl. Sci. 2007, 7, 2216–2221. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Zeng, W.; Liu, Y.; Zhao, D.; Zhang, Y.; Jia, X. Screening and identification of soil selenium-enriched strains and application in Auricularia auricula. Microorganisms 2024, 12, 1136. [Google Scholar] [CrossRef] [PubMed]
- Crous, P.W.; Kang, J.C.; Braun, U. A phylogenetic redefinition of anamorph genera in Mycosphaerella based on ITS rDNA sequence and morphology. Mycologia 2001, 93, 1081–1101. [Google Scholar] [CrossRef]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List; Bolchacova, E. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef]
- Chen, J.J.; Cui, B.K.; Zhou, L.W.; Korhonen, K.; Dai, Y.C. Phylogeny, divergence time estimation, and biogeography of the genus Heterobasidion (Basidiomycota, Russulales). Fungal Divers. 2015, 71, 185–200. [Google Scholar] [CrossRef]
- Ertz, D.; Tehler, A. The phylogeny of arthoniales (Pezizomycotina) inferred from nucLSU and RPB2 sequences. Fungal Divers. 2011, 49, 47–71. [Google Scholar] [CrossRef]
- Froslev, T.G.; Matheny, P.B.; Hibbett, D.S. Lower level relationships in the mushroom genus Cortinarius (Basidiomycota, Agaricales): A comparison of RPB1, RPB2, and ITS phylogenies. Mol. Phylogenet. Evol. 2005, 37, 602–618. [Google Scholar] [CrossRef]
- Matheny, P.B. Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). Mol. Phylogenet. Evol. 2005, 35, 1–20. [Google Scholar] [CrossRef]
- Matheny, P.B.; Wang, Z.; Binder, M.; Curtis, J.M.; Lim, Y.W.; Nilsson, R.H.; Hughes, K.W.; Hofstetter, V.; Ammirati, J.F.; Schoch, C.L.; et al. Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol. Phylogenet. Evol. 2007, 43, 430–451. [Google Scholar] [CrossRef]
- Yoon, S.-J.; Yu, M.-A.; Pyun, Y.-R.; Hwang, J.-K.; Chu, D.-C.; Juneja, L.R.; Mourão, P.A. The nontoxic mushroom Auricularia auricula contains a polysaccharide with anticoagulant activity mediated by antithrombin. Thromb. Res. 2003, 112, 151–158. [Google Scholar] [CrossRef]
- Wu, F. Taxonomy and Phylogeny of the Genus Auricularia. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2016. [Google Scholar]
- Wang, C.; Han, B. Twenty years of rice genomics research: From sequencing and functional genomics to quantitative genomics. Mol. Plant 2022, 15, 593–619. [Google Scholar] [CrossRef] [PubMed]
- Ohm, R. Genome sequence of the model mushroom Schizophyllum commune. Nat. Biotechnol. 2010, 28, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Stajich, J.E.; Wilke, S.K.; Ahrén, D.; Au, C.H.; Birren, B.W.; Borodovsky, M.; Burns, C.; Canbäck, B.; Casselton, L.A.; Cheng, C. Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc. Natl. Acad. Sci. USA 2010, 107, 11889–11894. [Google Scholar] [CrossRef]
- Tang, L.H.; Jian, H.H.; Song, C.Y.; Bao, D.P.; Shang, X.D.; Wu, D.Q.; Tan, Q.; Zhang, X.H. Transcriptome analysis of candidate genes and signaling pathways associated with light-induced brown film formation in Lentinula edodes. Fungal Genet. Biol. 2013, 60, 123–130. [Google Scholar] [CrossRef]
- Peng, S.; Qi, J.; Lin, C.; Xu, Z.; Li, Z.; Liu, C. From natural laboratory to drug discovery: Chemical structures, bioactivities, and biosynthesis of meroterpenoids from Ganoderma species. Chin. Herb. Med. 2025. [Google Scholar] [CrossRef]
- Floudas, D.; Binder, M.; Riley, R.; Barry, K.; Blanchette, R.A.; Henrissat, B.; Martínez, A.T.; Otillar, R.; Spatafora, J.W.; Yadav, J.S.; et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 2012, 336, 1715–1719. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, F.; Si, J.; Zhao, Y.-F.; Dai, Y.-C. Whole genome sequence of Auricularia heimuer (Basidiomycota, Fungi), the third most important cultivated mushroom worldwide. Genomics 2019, 111, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Lu, L.; Yao, F.; Fang, M.; Wang, P.; Meng, J.; Shao, K.; Sun, X.; Zhang, Y. High-quality genome assembly and multi-omics analysis of pigment synthesis pathway in Auricularia cornea. Front. Microbiol. 2023, 14, 1211795. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, L.; Li, X.; Huang, Y.; Zhang, B.; Yang, X.; Tan, W.; Li, X.; Zhang, X. De novo genome assembly and functional insights of the first commercial pink Auricularia cornea. Genomics 2024, 116, 110902. [Google Scholar] [CrossRef]
- Fang, M.; Wang, X.; Chen, Y.; Wang, P.; Lu, L.; Lu, J.; Yao, F.; Zhang, Y. Genome sequence analysis of Auricularia heimuer combined with genetic linkage map. J. Fungi 2020, 6, 37. [Google Scholar] [CrossRef]
- Wang, X.-G.; Wei, S.-Y.; Qi, L.-L.; Yang, Z.-F.; Tang, J.; Liu, Z.-L.; Wu, S.-J. Complete mitochondrial genomic sequence of Auricularia delicata (Auriculariaceae), an edible Chinese mushroom. Mitochondrial DNA Part B 2023, 8, 1109–1113. [Google Scholar] [CrossRef]
- Qi, J.; Kang, S.; Zhang, M.; Qi, S.; Li, Y.; Vadim, K.; Du, S.; Li, M. Genomic sequencing and characterization of two Auricularia species from the Qinling region: Insights into evolutionary dynamics and secondary metabolite potential. J. Fungi 2025, 11, 395. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, L.; Fan, X.; Bian, Y. De novo assembly of Auricularia polytricha transcriptome using illumina sequencing for gene discovery and SSR marker identification. PLoS ONE 2014, 9, e91740. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, T.; Wang, S.; Zou, L. Transcriptome exploration to provide a resource for the study of Auricularia heimuer. J. For. Res. 2020, 31, 1881–1887. [Google Scholar] [CrossRef]
- Wu, F.; Tohtirjap, A.; Fan, L.-F.; Zhou, L.-W.; Alvarenga, R.L.M.; Gibertoni, T.B.; Dai, Y.-C. Global diversity and updated phylogeny of Auricularia (Auriculariales, Basidiomycota). J. Fungi 2021, 7, 933. [Google Scholar] [CrossRef] [PubMed]
- Looney, B.P.; Birkebak, J.M.; Matheny, P.B. Systematics of the genus Auricularia with an emphasis on species from the southeastern United States. N. Am. Fungi 2013, 8, 1–25. [Google Scholar] [CrossRef]
- Baldrian, P. Decomposition in forest ecosystems: After decades of research still novel findings. Fungal Ecol. 2011, 4, 359–361. [Google Scholar] [CrossRef]
- Bandara, A.R.; Karunarathna, S.C.; Mortimer, P.E.; Hyde, K.D.; Khan, S.; Kakumyan, P.; Xu, J. First successful domestication and determination of nutritional and antioxidant properties of the red ear mushroom Auricularia thailandica (Auriculariales, Basidiomycota). Mycol. Prog. 2017, 16, 1029–1039. [Google Scholar] [CrossRef]
- Ohiri, R.C.; Bassey, E.E. Evaluation and characterization of nutritive properties of the jelly ear culinary-medicinal mushroom Auricularia auricula-judae (Agaricomycetes) from Nigeria. Int. J. Med. Mushrooms 2017, 19, 173–177. [Google Scholar] [CrossRef]
- Afiukwa, C.A.; Ebem, E.C.; Igwe, D.O. Characterization of the proximate and amino acid composition of edible wild mushroom species in Abakaliki, Nigeria. AASCIT J. Biosci. 2015, 1, 20–25. [Google Scholar]
- Li, C.; Mao, X.; Xu, B. Pulsed electric field extraction enhanced anti-coagulant effect of fungal polysaccharide from Jew’s ear (Auricularia auricula). Phytochem. Anal. 2013, 24, 36–40. [Google Scholar] [CrossRef]
- Khaskheli, S.G.; Zheng, W.; Sheikh, S.A.; Khaskheli, A.A.; Liu, Y.; Soomro, A.H.; Feng, X.; Sauer, M.B.; Wang, Y.F.; Huang, W. Characterization of Auricularia auricula polysaccharides and its antioxidant properties in fresh and pickled product. Int. J. Biol. Macromol. 2015, 81, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Islam, T.; Yao, F.; Kang, W.; Lu, L.; Xu, B. A systematic study on mycochemical profiles, antioxidant, and anti-inflammatory activities of 30 varieties of Jew’s ear (Auricularia auricula-judae). Food Sci. Hum. Wellness 2022, 11, 781–794. [Google Scholar] [CrossRef]
- Damte, D.; Reza, M.A.; Lee, S.-J.; Jo, W.-S.; Park, S.-C. Anti-inflammatory activity of dichloromethane extract of Auricularia auricula-judae in RAW264.7 cells. Toxicol. Res. 2011, 27, 11–24. [Google Scholar] [CrossRef]
- Shahar, O.; Pereman, I.; Khamisie, H.; Ezov, N.; Danay, O.; Khattib, A.; Khatib, S.; Mahajna, J. Compounds originating from the edible mushroom Auricularia auricula-judae inhibit tropomyosin receptor kinase B activity. Heliyon 2023, 9, e13756. [Google Scholar] [CrossRef]
- Dai, Y.; He, Y.; Ma, Y.; Yang, X.; Huang, Y.; Min, H.; Liu, X. Purification, structural analysis, and hypoglycemic activity of Auricularia auricula-judae polysaccharides extracted with natural deep eutectic solvents. J. Funct. Foods 2024, 122, 106524. [Google Scholar] [CrossRef]
- Misaki, A.; Kakuta, M.; Sasaki, T.; Tanaka, M.; Miyaji, H. Studies on interrelation of structure and antitumor effects of polysaccharides: Antitumor action of periodate-modified, branched (1 goes to 3)-beta-D-glucan of Auricularia auricula-judae, and other polysaccharides containing (1 goes to 3)-glycosidic linkages. Carbohydr. Res. 1981, 92, 115–129. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, H.; Wang, Z.; Liu, D.; Liu, S.; Han, W.; Regenstein, J.M.; Geng, L. The antitumor effect of folic acid conjugated-Auricularia auricular polysaccharide-cisplatin complex on cervical carcinoma cells in nude mice. Int. J. Biol. Macromol. 2018, 107, 2180–2189. [Google Scholar] [CrossRef]
- Xiong, W.; Li, L.; Wang, Y.; Yu, Y.; Wang, S.; Gao, Y.; Liang, Y.; Zhang, G.; Pan, W.; Yang, X. Design and evaluation of a novel potential carrier for a hydrophilic antitumor drug: Auricularia auricular polysaccharide-chitosan nanoparticles as a delivery system for doxorubicin hydrochloride. Int. J. Pharm. 2016, 511, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liu, C.; Wang, X.; Jia, D.; Lu, W.; Sun, X.; Liu, Y.; Yuan, L. Hpyerglycemic and anti-diabetic nephritis activities of polysaccharides separated from Auricularia auricular in diet-streptozotocin-induced diabetic rats. Exp. Ther. Med. 2017, 13, 352–358. [Google Scholar] [CrossRef]
- Lu, A.; Yu, M.; Shen, M.; Xu, S.; Xu, Z.; Zhang, Y.; Lin, Z.; Wang, W. Preparation of the Auricularia auricular polysaccharides simulated hydrolysates and their hypoglycaemic effect. Int. J. Biol. Macromol. 2018, 106, 1139–1145. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, W.; Xie, B.; Liu, H. Effects of Auricularia auricula and its polysaccharide on diet-induced hyperlipidemia rats by modulating gut microbiota. J. Funct. Foods 2020, 72, 104038. [Google Scholar] [CrossRef]
- Liu, Q.; Ma, R.; Li, S.; Fei, Y.; Lei, J.; Li, R.; Pan, Y.; Liu, S.; Wang, L. Dietary supplementation of Auricularia auricula-judae polysaccharides alleviate nutritional obesity in mice via regulating inflammatory response and lipid metabolism. Foods 2022, 11, 942. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Z.; Wang, C.; Chen, W. Melanin in Auricularia auricula: Biosynthesis, production, physicochemical characterization, biological functions, and applications. Food Sci. Biotechnol. 2024, 33, 1751–1758. [Google Scholar] [CrossRef]
- Cai, M.; Lin, Y.; Luo, Y.-l.; Liang, H.-h.; Sun, P. Extraction, antimicrobial, and antioxidant activities of crude polysaccharides from the wood ear medicinal mushroom Auricularia auricula-judae (higher basidiomycetes). Int. J. Med. Mushrooms 2015, 17, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, J.-X.; Sun, C.; Li, Y.-G.; Jiang, H.-X.; Jiang, S.-L.; Liang, J.; Wang, W.-F.; Kuang, H.-X.; Xia, Y.-G. Auricularia auricula polysaccharides alleviate experimental silicosis by targeting EGFR through the “gut-lung axis”. Int. J. Biol. Macromol. 2025, 309, 142541. [Google Scholar] [CrossRef]
- Bian, C.; Wang, Z.; Shi, J. Extraction optimization, structural characterization, and anticoagulant activity of acidic polysaccharides from Auricularia auricula-judae. Molecules 2020, 25, 710. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Chen, Y.; Wang, G.; Feng, T.; Shen, M.; Xiao, B.; Gu, J.; Wang, W.; Li, J.; Zhang, Y. Evaluation of the antioxidant effects of acid hydrolysates from Auricularia auricular polysaccharides using a caenorhabditis elegans model. Food Funct. 2019, 10, 5531–5543. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Dai, Y.; Wang, Z.; Gao, Y.; Wu, Q. Ultrasound-induced modifications of Auricularia auricula polysaccharides: Implications for antioxidant and glucose-lowering activities. Food Chem. X 2025, 25, 102209. [Google Scholar] [CrossRef]
- Ma, F.; Wu, J.; Li, P.; Tao, D.; Zhao, H.; Zhang, B.; Li, B. Effect of solution plasma process with hydrogen peroxide on the degradation of water-soluble polysaccharide from Auricularia auricula. II: Solut. Conform. Antioxid. Act. vitro. Carbohydr. Polym. 2018, 198, 575–580. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Fan, Z.; Qiu, J.; Rumbani, M.; Yang, X.; Zhang, H.; Wang, Z. Effects of polysaccharide from the fruiting bodies of Auricularia auricularon glucose metabolism in 60Co-γ-radiated mice. Int. J. Biol. Macromol. 2019, 135, 887–897. [Google Scholar] [CrossRef]
- Zhao, Y.; Shui, D.; Li, S.; Lin, X.; Liang, H.; Zhang, S.; Ji, C. Complexation behavior of Auricularia auricula polysaccharide and whey protein isolate: Characterization and potential beverage application. J. Food Process. Preserv. 2022, 46, e16340. [Google Scholar] [CrossRef]
- Liu, X.; Hou, R.; Wang, D.; Mai, M.; Wu, X.; Zheng, M.; Fu, J. Comprehensive utilization of edible mushroom Auricularia auricula waste residue-extraction, physicochemical properties of melanin and its antioxidant activity. Food Sci. Nutr. 2019, 7, 3774–3783. [Google Scholar] [CrossRef]
- Zou, Y.; Yang, Y.; Zeng, B.; Gu, Z.; Han, Y. Comparison of physicochemical properties and antioxidant activities of melanins from fruit-bodies and fermentation broths of Auricularia auricula. Int. J. Food Prop. 2013, 16, 803–813. [Google Scholar] [CrossRef]
- Hou, R.; Liu, X.; Yan, J.; Xiang, K.; Wu, X.; Lin, W.; Chen, G.; Zheng, M.; Fu, J. Characterization of natural melanin from Auricularia auricula and its hepatoprotective effect on acute alcohol liver injury in mice. Food Funct. 2019, 10, 1017–1027. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, H.; Cao, Y.; Zhang, Y.; Li, W.; Guo, W.; Lv, X.; Rao, P.; Ni, L.; Liu, P. Auricularia auricula melanin protects against alcoholic liver injury and modulates intestinal microbiota composition in mice exposed to alcohol intake. Foods 2021, 10, 2436. [Google Scholar] [CrossRef] [PubMed]
- Bin, L.; Wei, L.; Xiaohong, C.; Mei, J.; Mingsheng, D. In vitro antibiofilm activity of the melanin from Auricularia auricula, an edible jelly mushroom. Ann. Microbiol. 2012, 62, 1523–1530. [Google Scholar] [CrossRef]
- Xue, J.; Wang, Y.; Qi, X.; Zeng, W.; Zhang, Y.; Lei, H. The physicochemical properties and antioxidant and bacteriostatic activities of Auricularia auricula melanin modificated by Arginine. J. Food Meas. Charact. 2024, 18, 7443–7454. [Google Scholar] [CrossRef]
- Jia, D.; Wang, B.; Li, X.; Peng, W.; Zhou, J.; Tan, H.; Tang, J.; Huang, Z.; Tan, W.; Gan, B. Proteomic analysis revealed the fruiting-body protein profile of Auricularia polytricha. Curr. Microbiol. 2017, 74, 943–951. [Google Scholar] [CrossRef]
- Miles, P.G.; Chang, S.-T. Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Sheu, F.; Chien, P.J.; Chien, A.L.; Chen, Y.F.; Chin, K.L. Isolation and characterization of an immunomodulatory protein (APP), from the Jew’s Ear mushroom Auricularia polytricha. Food Chem. 2004, 87, 593–600. [Google Scholar] [CrossRef]
- Agyei, D.; Danquah, M.K. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol. Adv. 2011, 29, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-H.; Chien, P.-J.; Tong, M.-H.; Sheu, F. Mushroom immunomodulatory proteins possess potential thermal/freezing resistance, acid/alkali tolerance and dehydration stability. Food Chem. 2007, 105, 597–605. [Google Scholar] [CrossRef]
- Zhan, Q.; Yang, M.; Zhao, X.; Liu, F.; Zhao, L. Structural characterization and hypoglycemic activity of a glycoprotein extracted from Auricularia auricula. Foods 2024, 13, 3859. [Google Scholar] [CrossRef]
- Chen, G.; Luo, Y.-C.; Ji, B.-P.; Li, B.; Su, W.; Xiao, Z.-L.; Zhang, G.-Z. Hypocholesterolemic effects of Auricularia auricula ethanol extract in ICR mice fed a cholesterol-enriched diet. J. Food Sci. Technol. 2011, 48, 692–698. [Google Scholar] [CrossRef]
- Kho, Y.S.; Vikineswary, S.; Abdullah, N.; Kuppusamy, U.R.; Oh, H.I. Antioxidant capacity of fresh and processed fruit bodies and mycelium of Auricularia auricula-judae (Fr.) Quel. J. Med. Food 2009, 12, 167–174. [Google Scholar] [CrossRef]
- Ratz-Lyko, A.; Arct, J.; Pytkowska, K. Methods for evaluation of cosmetic antioxidant capacity. Ski. Res. Technol. 2012, 18, 421–430. [Google Scholar] [CrossRef]
- Volcão, L.M.; Halicki, P.B.; Bilibio, D.; Ramos, D.F.; Bernardi, E.; Da Silva Júnior, F.M.R. Biological activity of aqueous extracts of Southern Brazilian mushrooms. Int. J. Environ. Health Res. 2021, 31, 148–159. [Google Scholar] [CrossRef]
- Moreira, L.C.; de Avila, R.I.; Maciel Costa Veloso, D.F.; Pedrosa, T.N.; Lima, E.S.; do Couto, R.O.; Lima, E.M.; Batista, A.C.; de Paula, J.R.; Valadares, M.C. In vitro safety and efficacy evaluations of a complex botanical mixture of Eugenia dysenterica DC. (Myrtaceae): Prospects for developing a new dermocosmetic product. Toxicol. Vitr. 2017, 45, 397–408. [Google Scholar] [CrossRef]
- Fonseca-Santos, B.; Correa, M.A.; Chorilli, M. Sustainability, natural and organic cosmetics: Consumer, products, efficacy, toxicological and regulatory considerations. Braz. J. Pharm. Sci. 2015, 51, 17–26. [Google Scholar] [CrossRef]
- Li, Z.; Ge, G.; Yang, J.; Wang, X.; Li, R.; Xu, L.; Cheng, Y.; Hou, L.; Feng, C.; Meng, J.; et al. Glucono-S-lactone induced Auricularia auricula polysaccharide-casein composite gels for curcumin loading and delivery. Int. J. Biol. Macromol. 2024, 282, 136777. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Li, P.F.; Chen, F.; Jia, L.Q.; Xu, Q.H.; Gai, X.M.; Yu, Y.B.; Di, Y.; Zhu, Z.H.; Liang, Y.Y. A novel pH-sensitive carrier for the delivery of antitumor drugs: Histidine-modified auricularia auricular polysaccharide nano-micelles. Sci. Rep. 2017, 7, 4751. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhao, Y.; Zhao, L.; Liu, G. Nitrogen-phosphorus dual-doped Auricularia auricula porous carbon as host for Li-S battery. PLoS ONE 2024, 19, e0297677. [Google Scholar] [CrossRef] [PubMed]
- d’Ischia, M. Melanin-based functional materials. Int. J. Mol. Sci. 2018, 19, 228. [Google Scholar] [CrossRef]
- Yu, T.; Wu, D.; Liang, B.; Wang, J.; Shang, X.; Wu, Q. Preparation, characterization of Auricularia auricula polysaccharide-based films and application in meat preservation. Int. J. Biol. Macromol. 2023, 244, 125242. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, X.; Chen, X.; Jiang, X.; Wang, H.; Zhang, G. Lead detoxification of edible fungi Auricularia auricula and Pleurotus ostreatus: The purification of the chelation substances and their effects on rats. Front. Nutr. 2023, 10, 1162110. [Google Scholar] [CrossRef] [PubMed]





| Complex Name | Species Name | Country |
|---|---|---|
| A. auricula-judae | A. tibetica | China |
| A. americana | China, Russia, USA | |
| A. angiospermarum | USA | |
| A. heimuer | China, Japan, Russia | |
| A. auricula-judae | France, Czech Republic, UK, Germany | |
| A. villosula | China, Russia, Thailand | |
| A. minutissima | China | |
| A. cornea | A. cornea | China, Brazil, Singapore, Vietnam, Sri Lanka |
| A. novozealandica | New Zealand | |
| A. delicata | A. delicata | Cameroon |
| A. sinodelicata | China | |
| A. australiana | Australia | |
| A. lateralis | China | |
| A. conferta | Australia | |
| A. fuscosuccinea | A. fibrillifera | China, Papua New Guinea, Zambia |
| A. thailandica | China, Thailand | |
| A. fuscosuccinea | USA, Brazil | |
| A. pilosa | Ethiopia, Tanzania, Australia, Zambia | |
| A. scissa | Dominican Republic | |
| A. subglabra | Brazil, Costa Rica, French Guiana | |
| A. nigricans | Costa Rica, USA, Mexico | |
| A. camposii | Brazil | |
| A. tremellosa | Mexico, Peru, Brazil | |
| A. mesenterica | A. brasiliana | Brazil |
| A. asiatica | China, Indonesia | |
| A. mesenterica | France, Czech Republic, Estonia, Switzerland, UK, Italy, Uzbekistan | |
| A. africana | Kenya, Uganda | |
| A. orientalis | China | |
| A. srilankensis | Sri Lanka |
| Compound Type | Representative Component | Bioactivity | Mechanism/Key Effects | Study Model | References |
|---|---|---|---|---|---|
| Polysaccharides | AAP | Hypoglycemic | Activates GSK3β phosphorylation → hepatic glycogen synthesis; inhibits PEPCK/G6Pase → suppresses gluconeogenesis | Mouse models | [63,67,68] |
| Antitumor | β-(1 → 3)-D-glucan backbone mediates direct antitumor effects; nanoparticle carriers enhance drug delivery | MCF7 cells | [64,65,66] | ||
| Gut microbiota modulation | Promotes SCFA-producing bacteria → improves lipid metabolism | Mouse models | [69,70] | ||
| Anti-obesity | Downregulates hepatic lipogenic genes; upregulates lipolytic/mitochondrial activity genes | HFFD-fed mice | [70] | ||
| Immunomodulation | Binds TLR4/Dectin-1 → activates NF-κB/Syk pathways → promotes lymphocyte maturation | Immune cells in vitro | [71] | ||
| Antimicrobial | Inhibits E. coli/S. aureus; modulates gut-lung EGFR/JNK axis → anti-silicosis | Cells/mouse models | [72,73] | ||
| Anticoagulant | Inhibits thrombin activity; delays platelet aggregation | Blood models in vitro | [36,58,74] | ||
| Antioxidant | Extends lifespan of C. hidradii nematodes; activates antioxidant systems | Nematode model | [75] | ||
| SNAAP | Radioprotective | Regulates Akt/GSK-3/GYS2 (glycogen synthesis), JNK/Akt/FOXO1 (gluconeogenesis), PDX1/GLUT2/IRS1 (insulin secretion) axes | Irradiated mice | [78] | |
| Melanins | AAM | Antioxidant | Scavenges ABTS+/DPPH/OH radicals; repairs H2O2-induced cellular damage | Cell models | [80,81] |
| Alcohol-induced liver protection | Reduces serum TG/TC/ALT/AST; enhances the activity of ADH/CAT/SOD; regulates the PI signaling pathway and glucose metabolism. | Alcohol-injured mice | [82,83] | ||
| Gut microbiota modulation | Increases probiotics such as Akkermansia and Bifidobacterium | Alcohol-exposed mice | [83] | ||
| Arginine-modified AAM | Antibacterial | Disrupts biofilms/cellular structures of S. aureus | Bacterial strains in vitro | [84,85] | |
| Proteins | APP | Immunomodulation | Activates macrophages to release NO/TNF-α; blood coagulation activity | RAW264.7 cells | [88] |
| Lectins (e.g., ABL) | Antitumor/Antibacterial | Balances respiratory flora; inhibits pathogenic bacterial colonization | In vitro models | [90] | |
| Glycoprotein AAG-3 | Hypoglycemic | Promotes glycogen synthesis in insulin-resistant cells; inhibits gluconeogenesis | Insulin-resistant cells | [91] | |
| Polyphenols | Phenolics/Flavonoids | Hypolipidemic | Reduces total cholesterol and atherosclerotic index | Hyperlipidemic mice | [92] |
| Antioxidant | Free radical scavenging; oxidative stress inhibition | In vitro chemical assays | [93,94,95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Jiang, W.; Huang, K.; Li, L.; Meng, Q.; You, X.; Pu, K.; Cheng, M.; Gao, Z.; Qi, J.; et al. Sustainable Cultivation and Functional Bioactive Compounds of Auricularia Mushrooms: Advances, Challenges, and Future Prospects. Biology 2025, 14, 1555. https://doi.org/10.3390/biology14111555
Liu M, Jiang W, Huang K, Li L, Meng Q, You X, Pu K, Cheng M, Gao Z, Qi J, et al. Sustainable Cultivation and Functional Bioactive Compounds of Auricularia Mushrooms: Advances, Challenges, and Future Prospects. Biology. 2025; 14(11):1555. https://doi.org/10.3390/biology14111555
Chicago/Turabian StyleLiu, Miao, Wenxin Jiang, Kai Huang, Ling Li, Qingzhong Meng, Xiaoxuan You, Kunlun Pu, Meijing Cheng, Zhenpeng Gao, Jianzhao Qi, and et al. 2025. "Sustainable Cultivation and Functional Bioactive Compounds of Auricularia Mushrooms: Advances, Challenges, and Future Prospects" Biology 14, no. 11: 1555. https://doi.org/10.3390/biology14111555
APA StyleLiu, M., Jiang, W., Huang, K., Li, L., Meng, Q., You, X., Pu, K., Cheng, M., Gao, Z., Qi, J., & Li, M. (2025). Sustainable Cultivation and Functional Bioactive Compounds of Auricularia Mushrooms: Advances, Challenges, and Future Prospects. Biology, 14(11), 1555. https://doi.org/10.3390/biology14111555

