Photosynthetic Responses of Forests to Elevated CO2: A Cross-Scale Constraint Framework and a Roadmap for a Multi-Stressor World
Simple Summary
Abstract
1. Introduction
2. The Biochemical Potential: Why We Expect a Strong CO2 Effect
3. The First Attenuation: Photosynthetic Acclimation as an Inevitable Plant-Level Feedback
4. The Dominant Constraint: Nutrient Limitation as the Primary Ecosystem Bottleneck
| Process | Description | Key References |
|---|---|---|
| Progressive nitrogen limitation | Gradual decrease in soil N availability constraining long-term CO2 response | [45,49] |
| Phosphorus limitation | Strong constraint on CO2 fertilization, especially in tropical forests | [50,53] |
| Mycorrhizal associations | Fungal symbioses mediating plant nutrient acquisition under elevated CO2 | [72,81] |
| Root allocation changes | Increased carbon allocation to roots for enhanced nutrient acquisition | [52,72] |
| Soil organic matter dynamics | Changes in decomposition rates and soil carbon storage | [82,83] |
| Nutrient use efficiency | Adjustments in plant nutrient utilization strategies | [17,35] |
| Soil microbial activity | Altered microbial communities and functions affecting nutrient cycling | [52,72] |
5. Cross-Scale Modulators: How Water, Climate, and Carbon Allocation Reshape the CO2 Response
| Response | Description | Magnitude | Key References |
|---|---|---|---|
| Stomatal conductance reduction | Decreased stomatal opening under elevated CO2 | 10–30% | [9,59] |
| Leaf-level WUE increase | Increased carbon fixed per unit water transpired | 30–60% | [61] |
| Canopy-level transpiration | Changes in whole-canopy water use, often less than expected from leaf-level changes | 0–20% | [62,63] |
| Soil moisture effects | Increased soil moisture due to reduced transpiration | 5–15% | [64,65] |
| Drought interaction | Enhanced CO2 effects during drought periods | Variable | [58,66] |
| Runoff and streamflow | Changes in watershed hydrology due to altered transpiration | 0–10% | [67,68] |
| Regional water cycling | Broader hydrological cycle impacts | Complex | [62,65] |
6. Experimental Approaches and Evidence
- Multi-Factor Experimental Platforms: The era of single-factor manipulation is reaching its limits. The most pressing need is for next-generation experiments that manipulate CO2 in concert with other critical global change drivers, especially warming and altered precipitation regimes, to understand their crucial synergistic and antagonistic effects [22,77,100,121].
- Next-Generation Model Development: A concerted effort is required to integrate robust and interacting nutrient cycles (N and P) and sophisticated plant hydraulic modules into ESMs [37,74,81]. Crucially, a stronger culture of data-model fusion is needed to parameterize, test, and constrain these models with experimental data [56,78,122,123].
- Focus on Belowground Processes: The intricate interactions within the rhizosphere—involving roots, mycorrhizal fungi, and microbial communities—mediate nutrient uptake and carbon storage. Deeper investigation into these belowground processes is fundamental to understanding the long-term stability of ecosystem responses [73,82,124].
7. Conclusions and Implications
7.1. Implications for Forest Management and Conservation
7.2. Implications for Climate Change Mitigation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ainsworth, E.A.; Long, S.P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A metaanalytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005, 165, 351–372. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Hauck, J.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; Le Quéré, C.; et al. Global Carbon Budget 2019. Earth Syst. Sci. Data 2019, 11, 1783–1838. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Keenan, T.F.; Williams, C.A. The terrestrial carbon sink. Annu. Rev. Environ. Resour. 2018, 43, 219–243. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021.
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Malhi, Y.; Franklin, J.; Seddon, N.; Solan, M.; Turner, M.G.; Field, C.B.; Knowlton, N. Climate change and ecosystems: Threats, opportunities and solutions. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190104. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant Cell Environ. 2007, 30, 258–270. [Google Scholar] [CrossRef]
- Drake, B.G.; Gonzàlez-Meler, M.A.; Long, S.P. More efficient plants: A consequence of rising atmospheric CO2? Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 609–639. [Google Scholar] [CrossRef]
- Leakey, A.D.B.; Ainsworth, E.A.; Bernacchi, C.J.; Rogers, A.; Long, S.P.; Ort, D.R. Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. J. Exp. Bot. 2009, 60, 2859–2876. [Google Scholar] [CrossRef]
- Körner, C. Plant CO2 responses: An issue of definition, time and resource supply. New Phytol. 2006, 172, 393–411. [Google Scholar] [CrossRef] [PubMed]
- Long, S.P.; Ainsworth, E.A.; Rogers, A.; Ort, D.R. Rising atmospheric carbon dioxide: Plants FACE the future. Annu. Rev. Plant Biol. 2004, 55, 591–628. [Google Scholar] [CrossRef] [PubMed]
- Hendrey, G.R.; Ellsworth, D.S.; Lewin, K.F.; Nagy, J. A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Glob. Change Biol. 1999, 5, 293–309. [Google Scholar] [CrossRef]
- Norby, R.J.; De Kauwe, M.G.; Walker, A.P.; Werner, C.; Zaehle, S.; Zak, D.R. Elevated CO2 response of photosynthesis depends on plant functional type and available nitrogen: A metaanalysis. Plant Cell Environ. 2022, 45, 1983–1992. [Google Scholar]
- Curtis, P.S.; Wang, X. A metaanalysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 1998, 113, 299–313. [Google Scholar] [CrossRef]
- Norby, R.J.; De Kauwe, M.G.; Domingues, T.F.; Duursma, R.A.; Ellsworth, D.S.; Goll, D.S.; Lapola, D.M.; Luus, K.A.; MacKenzie, A.R.; Medlyn, B.E.; et al. Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytol. 2016, 209, 17–28. [Google Scholar] [CrossRef]
- Bader, M.K.F.; Siegwolf, R.; Hagedorn, F.; Schleppi, P.; Körner, C. No overall stimulation of soil respiration in a mature temperate forest under elevated CO2. New Phytol. 2013, 197, 1172–1182. [Google Scholar]
- Medlyn, B.E.; Badeck, F.W.; De Pury, D.G.G.; Barton, C.V.M.; Broadmeadow, M.; Ceulemans, R.; De Angelis, P.; Forstreuter, M.; Jach, M.E.; Kellomäki, S.; et al. Effects of elevated [CO2] on photosynthesis in European forest species: A metaanalysis of model parameters. Plant Cell Environ. 1999, 22, 1475–1495. [Google Scholar] [CrossRef]
- Saxe, H.; Ellsworth, D.S.; Heath, J. Tree and forest functioning in an enriched CO2 atmosphere. New Phytol. 1998, 139, 395–436. [Google Scholar] [CrossRef]
- Reich, P.B.; Bermudez, R.; Montgomery, R.A.; Rich, R.L.; Rice, K.E.; Hobbie, S.E.; Stefanski, A. Even modest climate change may lead to major transitions in boreal forests. Nature 2022, 608, 540–545. [Google Scholar] [CrossRef]
- Anderegg, W.R.; Trugman, A.T.; Badgley, G.; Anderson, C.M.; Bartuska, A.; Ciais, P.; Cullenward, D.; Field, C.B.; Freeman, J.; Goetz, S.J.; et al. Climate-driven risks to the climate mitigation potential of forests. Science 2020, 368, eaaz7005. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, G.D.; von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef]
- Von Caemmerer, S.; Farquhar, G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153, 376–387. [Google Scholar] [CrossRef]
- Sharkey, T.D. Photosynthesis in intact leaves of C3 plants: Physics, physiology and rate limitations. Bot. Rev. 1985, 51, 53–105. [Google Scholar] [CrossRef]
- Sharkey, T.D. Estimating the rate of photorespiration in leaves. Physiol. Plant. 1988, 73, 147–152. [Google Scholar] [CrossRef]
- Busch, F.A.; Sage, R.F.; Farquhar, G.D. Plants increase CO2 uptake by assimilating nitrogen via the photorespiratory pathway. Nat. Plants 2018, 4, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, T.D. O2-insensitive photosynthesis in C3 plants: Its occurrence and a possible explanation. Plant Physiol. 1985, 78, 71–75. [Google Scholar] [CrossRef]
- Gunderson, C.A.; Wullschleger, S.D. Photosynthetic acclimation in trees to rising atmospheric CO2: A broader perspective. Photosynth. Res. 1994, 39, 369–388. [Google Scholar] [CrossRef]
- Rogers, A.; Humphries, S.W. A mechanistic evaluation of photosynthetic acclimation at elevated CO2. Glob. Change Biol. 2000, 6, 1005–1011. [Google Scholar] [CrossRef]
- Arp, W.J. Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ. 1991, 14, 869–875. [Google Scholar] [CrossRef]
- Paul, M.J.; Foyer, C.H. Sink regulation of photosynthesis. J. Exp. Bot. 2001, 52, 1383–1400. [Google Scholar] [CrossRef]
- Dusenge, M.E.; Duarte, A.G.; Way, D.A. Plant carbon metabolism and climate change: Elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 2019, 221, 32–49. [Google Scholar] [CrossRef]
- Sage, R.F. Acclimation of photosynthesis to increasing atmospheric CO2: The gas exchange perspective. Photosynth. Res. 1994, 39, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Rütting, T.; Pleijel, H.; Wallin, G.; Reich, P.B.; Kammann, C.I.; Newton, P.C.D.; Kobayashi, K.; Luo, Y.; Uddling, J. Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Glob. Change Biol. 2015, 21, 3152–3168. [Google Scholar] [CrossRef] [PubMed]
- Crous, K.Y.; Wujeska-Klause, A.; Jiang, M.; Medlyn, B.E.; Ellsworth, D.S. Nitrogen reallocation and photosynthetic acclimation to elevated CO2 in temperate forest trees. Tree Physiol. 2017, 37, 1478–1491. [Google Scholar]
- Rogers, A.; Medlyn, B.E.; Dukes, J.S.; Bonan, G.; von Caemmerer, S.; Dietze, M.C.; Kattge, J.; Leakey, A.D.B.; Mercado, L.M.; Niinemets, Ü.; et al. A roadmap for improving the representation of photosynthesis in Earth system models. New Phytol. 2017, 213, 22–42. [Google Scholar] [CrossRef]
- Kumarathunge, D.P.; Medlyn, B.E.; Drake, J.E.; Tjoelker, M.G.; Aspinwall, M.J.; Battaglia, M.; Cano, F.J.; Carter, K.R.; Cavaleri, M.A.; Cernusak, L.A.; et al. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytol. 2019, 222, 768–784. [Google Scholar] [CrossRef]
- Körner, C. Carbon limitation in trees. J. Ecol. 2003, 91, 4–17. [Google Scholar] [CrossRef]
- Tissue, D.T.; Lewis, J.D. Photosynthetic responses of cottonwood seedlings grown in glacial through future atmospheric [CO2] vary with phosphorus supply. Tree Physiol. 2010, 30, 1361–1372. [Google Scholar] [CrossRef]
- Warren, J.M.; Jensen, A.M.; Medlyn, B.E.; Norby, R.J.; Tissue, D.T. Carbon dioxide stimulation of photosynthesis in Liquidambar styraciflua is not sustained during a 12-year field experiment. AoB Plants 2015, 7, plu074. [Google Scholar] [CrossRef]
- Ellsworth, D.S.; Thomas, R.; Crous, K.Y.; Palmroth, S.; Ward, E.; Maier, C.; DeLucia, E.; Oren, R. Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: A synthesis from Duke FACE. Glob. Change Biol. 2012, 18, 223–242. [Google Scholar] [CrossRef]
- McCarthy, H.R.; Oren, R.; Johnsen, K.H.; Gallet-Budynek, A.; Pritchard, S.G.; Cook, C.W.; LaDeau, S.L.; Jackson, R.B.; Finzi, A.C. Reassessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: Interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytol. 2010, 185, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Hobbie, S.E.; Lee, T.D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci. 2014, 7, 920–925. [Google Scholar] [CrossRef]
- Reich, P.B.; Hobbie, S.E.; Lee, T.D.; Ellsworth, D.S.; West, J.B.; Tilman, D.; Knops, J.M.H.; Naeem, S.; Trost, J. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 2006, 440, 922–925. [Google Scholar] [CrossRef]
- Norby, R.J.; Zak, D.R. Ecological lessons from Free-Air CO2 Enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 181–203. [Google Scholar] [CrossRef]
- Finzi, A.C.; Norby, R.J.; Calfapietra, C.; Gallet-Budynek, A.; Gielen, B.; Holmes, W.E.; Hoosbeek, M.R.; Iversen, C.M.; Jackson, R.B.; Kubiske, M.E.; et al. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc. Natl. Acad. Sci. USA 2007, 104, 14014–14019. [Google Scholar] [CrossRef]
- Terrer, C.; Jackson, R.B.; Prentice, I.C.; Keenan, T.F.; Kaiser, C.; Vicca, S.; Fisher, J.B.; Reich, P.B.; Stocker, B.D.; Hungate, B.A.; et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 2019, 9, 684–689. [Google Scholar] [CrossRef]
- Norby, R.J.; Warren, J.M.; Iversen, C.M.; Medlyn, B.E.; McMurtrie, R.E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl. Acad. Sci. USA 2010, 107, 19368–19373. [Google Scholar] [CrossRef]
- Du, E.; Terrer, C.; Pellegrini, A.F.A.; Ahlström, A.; van Lissa, C.J.; Zhao, X.; Xia, N.; Wu, Z.; Jackson, R.B. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 2020, 13, 221–226. [Google Scholar] [CrossRef]
- Jiang, M.; Caldararu, S.; Zhang, H.; Yang, J.; Medlyn, B.E. Carbon-phosphorus cycle models overestimate CO2 enrichment effects on forest productivity. Sci. Adv. 2024, 10, eadl5822. [Google Scholar] [CrossRef]
- Jiang, M.; Medlyn, B.E.; Drake, J.E.; Duursma, R.A.; Anderson, I.C.; Barton, C.V.M.; Boer, M.M.; Carrillo, Y.; Castañeda-Gómez, L.; Collins, L.; et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 2020, 580, 227–231. [Google Scholar] [CrossRef]
- Ellsworth, D.S.; Anderson, I.C.; Crous, K.Y.; Cooke, J.; Drake, J.E.; Gherlenda, A.N.; Gimeno, T.E.; Macdonald, C.A.; Medlyn, B.E.; Powell, J.R.; et al. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat. Clim. Change 2017, 7, 279–282. [Google Scholar] [CrossRef]
- Lapola, D.M.; Quesada, C.A.; Spanner, G.C.; Oberlander, E.A.; Cantinho, M.; Araujo, A.C.; Domingues, T.F.; Pinto, E.; Martins, D.; Cunha, H.F.V.; et al. CO2 fertilization can be a disturbance leading to worldwide forest degradation. Plants People Planet 2025, 7, 1–14. [Google Scholar] [CrossRef]
- Fleischer, K.; Rammig, A.; De Kauwe, M.G.; Walker, A.P.; Domingues, T.F.; Fuchslueger, L.; Garcia, S.; Goll, D.S.; Grandis, A.; Jiang, M.; et al. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. 2019, 12, 835–841. [Google Scholar] [CrossRef]
- Peñuelas, J.; Ciais, P.; Canadell, J.G.; Janssens, I.A.; Fernández-Martínez, M.; Carnicer, J.; Obersteiner, M.; Piao, S.; Vautard, R.; Sardans, J. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 2017, 1, 1438–1445. [Google Scholar] [CrossRef] [PubMed]
- Norby, R.J.; Wullschleger, S.D.; Gunderson, C.A.; Johnson, D.W.; Ceulemans, R. Tree responses to rising CO2 in field experiments: Implications for the future forest. Plant Cell Environ. 1999, 22, 683–714. [Google Scholar] [CrossRef]
- Morgan, J.A.; LeCain, D.R.; Pendall, E.; Blumenthal, D.M.; Kimball, B.A.; Carrillo, Y.; Williams, D.G.; Heisler-White, J.; Dijkstra, F.A.; West, M. C4 grasses prosper as carbon dioxide eliminates dessication in warmed semi-arid grassland. Nature 2011, 476, 202–205. [Google Scholar] [CrossRef]
- Keenan, T.F.; Hollinger, D.Y.; Bohrer, G.; Dragoni, D.; Munger, J.W.; Schmid, H.P.; Richardson, A.D. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 2013, 499, 324–327. [Google Scholar] [CrossRef]
- De Kauwe, M.G.; Medlyn, B.E.; Zaehle, S.; Walker, A.P.; Dietze, M.C.; Hickler, T.; Jain, A.K.; Luo, Y.; Parton, W.J.; Prentice, I.C.; et al. Forest water use and water use efficiency at elevated CO2: A model-data intercomparison at two contrasting temperate forest FACE sites. Glob. Change Biol. 2013, 19, 1759–1779. [Google Scholar] [CrossRef]
- Peters, W.; van der Velde, I.R.; van Schaik, E.; Miller, J.B.; Ciais, P.; Duarte, H.F.; van der Laan-Luijkx, I.T.; van der Molen, M.K.; Scholze, M.; Schaefer, K.; et al. Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental scale. Nat. Geosci. 2018, 11, 744–748. [Google Scholar] [CrossRef]
- Swann, A.L.S.; Hoffman, F.M.; Koven, C.D.; Randerson, J.T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought. Proc. Natl. Acad. Sci. USA 2016, 113, 10019–10024. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, G.; Cohen, E.; McNulty, S.G.; Caldwell, P.V.; Krieger, S.; Domec, J.C. Forest water-use efficiency: Effects of climate change and management. For. Ecol. Manag. 2023, 532, 120765. [Google Scholar] [CrossRef]
- Knauer, J.; Zaehle, S.; Medlyn, B.E.; Reichstein, M.; Williams, C.A.; Migliavacca, M.; De Kauwe, M.G.; Werner, C.; Keitel, C.; Kolari, P.; et al. Towards physiologically meaningful water-use efficiency estimates from eddy covariance data. Glob. Change Biol. 2017, 23, 5231–5249. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, J.; Zhao, X.; Zhu, L.; Wang, Y.; Zhao, L. Global water use efficiency saturation due to increased vapor pressure deficit. Science 2023, 381, 758–762. [Google Scholar] [CrossRef]
- Grossiord, C.; Buckley, T.N.; Cernusak, L.A.; Novick, K.A.; Poulter, B.; Siegwolf, R.T.W.; Sperry, J.S.; McDowell, N.G. Plant responses to rising vapor pressure deficit. New Phytol. 2020, 226, 1550–1566. [Google Scholar] [CrossRef] [PubMed]
- Mastrotheodoros, T.; Pappas, C.; Molnar, P.; Burlando, P.; Manoli, G.; Parajka, J.; Rigon, R.; Szeles, B.; Bottazzi, M.; Hadjidoukas, P.; et al. More green and less blue water in the Alps during warmer summers. Nat. Clim. Change 2020, 10, 155–161. [Google Scholar] [CrossRef]
- Zhang, Y.; Peña-Arancibia, J.L.; McVicar, T.R.; Chiew, F.H.S.; Vaze, J.; Zheng, H.; Wang, Y.P. Future response of ecosystem water use efficiency to CO2 effects in CMIP6 models over China. Hydrol. Earth Syst. Sci. 2024, 28, 4989–5008. [Google Scholar]
- Reich, P.B.; Sendall, K.M.; Stefanski, A.; Rich, R.L.; Hobbie, S.E.; Montgomery, R.A. Boreal and temperate trees show strong acclimation of respiration to warming. Nature 2016, 531, 633–636. [Google Scholar] [CrossRef]
- Sullivan, M.J.P.; Lewis, S.L.; Affum-Baffoe, K.; Castilho, C.; Costa, F.; Sanchez, A.C.; Ewango, C.E.N.; Hubau, W.; Lopez-Gonzalez, G.; Neill, D.; et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 2020, 368, 869–874. [Google Scholar] [CrossRef]
- Litton, C.M.; Raich, J.W.; Ryan, M.G. Carbon allocation in forest ecosystems. Glob. Change Biol. 2007, 13, 2089–2109. [Google Scholar] [CrossRef]
- Terrer, C.; Phillips, R.P.; Hungate, B.A.; Rosende, J.; Pett-Ridge, J.; Craig, M.E.; van Groenigen, K.J.; Keenan, T.F.; Sulman, B.N.; Stocker, B.D.; et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 2021, 591, 599–603. [Google Scholar] [CrossRef]
- Fatichi, S.; Pappas, C.; Yegorov, V. The role of plant hydraulics in land surface models: A review. WIREs Water 2016, 3, 3–39. [Google Scholar]
- Fisher, R.A.; Koven, C.D.; Anderegg, W.R.L.; Christoffersen, B.O.; Dietze, M.C.; Farrior, C.E.; Holm, J.A.; Hurtt, G.C.; Knox, R.G.; Lawrence, P.J.; et al. Vegetation demographics in Earth System Models: A review of progress and priorities. Glob. Change Biol. 2018, 24, 35–54. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.E.; Godwin, C.M.; Cardinale, B.J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 2021, 549, 261–264. [Google Scholar] [CrossRef]
- Walker, A.P.; De Kauwe, M.G.; Medlyn, B.E.; Zaehle, S.; Iversen, C.M.; Asao, S.; Guenet, B.; Harper, A.; Hickler, T.; Hungate, B.A.; et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 2021, 229, 2413–2445. [Google Scholar] [CrossRef]
- Medlyn, B.E.; Zaehle, S.; De Kauwe, M.G.; Walker, A.P.; Dietze, M.C.; Hanson, P.J.; Hickler, T.; Jain, A.K.; Luo, Y.; Parton, W.; et al. Using ecosystem experiments to improve vegetation models. Nat. Clim. Change 2015, 5, 528–534. [Google Scholar] [CrossRef]
- Körner, C. Responses of woody plants to rising CO2 in controlled environments. In The Biology of Trees and Forests under Changing Climates; Springer: Dordrecht, The Netherlands, 2009; pp. 25–50. [Google Scholar]
- Kubiske, M.E.; Zak, D.R.; Pregitzer, K.S.; Johnson, N.C. Photosynthesis, canopy dynamics, and root processes in trees and forests at the Aspen FACE experiment. Oecologia 2002, 133, 425–438. [Google Scholar]
- Piao, S.; Wang, X.; Wang, K.; Ciais, P.; Bastos, A.; Canadell, J.G.; Cescatti, A.; Don, A.; Eglin, T.; Goll, D.S.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Terrer, C.; Vicca, S.; Hungate, B.A.; Phillips, R.P.; Prentice, I.C. Mycorrhizal fungi mediate soil carbon sequestration and plant nitrogen uptake in response to rising CO2. Science 2016, 353, 72–74. [Google Scholar] [CrossRef]
- Wieder, W.R.; Cleveland, C.C.; Smith, W.K.; Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 2015, 8, 441–444. [Google Scholar] [CrossRef]
- Zaehle, S.; Medlyn, B.E.; De Kauwe, M.G.; Walker, A.P.; Dietze, M.C.; Hickler, T.; Luo, Y.; Wang, Y.P.; El-Masri, B.; Thornton, P.; et al. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies. New Phytol. 2014, 202, 803–822. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Change 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Medlyn, B.E.; Dreyer, E.; Ellsworth, D.; Forstreuter, M.; Harley, P.C.; Kirschbaum, M.U.F.; Le Roux, X.; Montpied, P.; Strassemeyer, J.; Walcroft, A.; et al. Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ. 2002, 25, 1167–1179. [Google Scholar] [CrossRef]
- Prentice, I.C.; Kelley, D.I.; Foster, P.N.; Friedlingstein, P.; Harrison, S.P.; Bartlein, P.J. Modeling fire and the terrestrial carbon balance. Glob. Biogeochem. Cycles 2015, 29, 1349–1361. [Google Scholar] [CrossRef]
- Bonan, G.B.; Lawrence, D.M.; Oleson, K.W.; Fisher, R.A.; Lawrence, P.J.; Lombardozzi, D.L. The Community Land Model Version 5 (CLM5). J. Adv. Model. Earth Syst. 2019, 11, 4467–4517. [Google Scholar]
- Zuidema, P.A.; Pons, T.L.; Vlam, M.; Sterck, F.J. Centennial-scale atmospheric CO2 rise increased photosynthetic efficiency in tropical trees. New Phytol. 2025, 235, 1234–1246. [Google Scholar]
- Hart, K.M.; Curioni, G.; Blaen, P.J.; Harper, N.J.; Miles, P.; Lewin, K.F.; Nagy, J.; Bannister, E.J.; Cai, X.M.; Thomas, R.M.; et al. Enhanced woody biomass production in a mature temperate forest exposed to elevated CO2. Nat. Clim. Change 2024, 14, 983–988. [Google Scholar]
- Gardner, A.; Ellsworth, D.S.; Crous, K.Y.; Pritchard, J.; Mackenzie, A.R. Is photosynthetic enhancement sustained through three years of elevated CO2 exposure in 175-year-old Quercus robur? Tree Physiol. 2022, 42, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Hubau, W.; Lewis, S.L.; Phillips, O.L.; Affum-Baffoe, K.; Beeckman, H.; Cuní-Sanchez, A.; Daniels, A.K.; Ewango, C.E.N.; Fauset, S.; Mukinzi, J.M.; et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 2020, 579, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The global tree restoration potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Rogers, A.; Blum, H.; Nösberger, J.; Long, S.P. Variation in acclimation of photosynthesis in Trifolium repens after eight years of exposure to Free-Air CO2 Enrichment (FACE). J. Exp. Bot. 2003, 54, 2769–2774. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Rogers, A.; Leakey, A.D.B.; Heady, L.E.; Gibon, Y.; Stitt, M.; Schurr, U. Does elevated atmospheric [CO2] alter diurnal C uptake and the balance of C and N metabolites in growing and fully expanded soybean leaves? J. Exp. Bot. 2007, 58, 579–591. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Rogers, A.; Leakey, A.D.B. Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiol. 2008, 147, 13–19. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Rogers, A.; Nelson, R.; Long, S.P. Testing the “source-sink” hypothesis of downregulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agric. For. Meteorol. 2004, 122, 85–94. [Google Scholar] [CrossRef]
- Bagley, J.; Rosenthal, D.M.; Ruiz-Vera, U.M.; Siebers, M.H.; Kumar, P.; Ort, D.R.; Bernacchi, C.J. The influence of photosynthetic acclimation to rising CO2 and warmer temperatures on leaf and canopy photosynthesis models. Glob. Biogeochem. Cycles 2015, 29, 194–206. [Google Scholar] [CrossRef]
- Crous, K.Y.; Ellsworth, D.S. Canopy position affects photosynthetic adjustments to long-term elevated CO2 concentration (FACE) in aging needles in a mature Pinus taeda forest. Tree Physiol. 2004, 24, 961–970. [Google Scholar] [CrossRef]
- Dusenge, M.E.; Wittemann, M.; Mujawamariya, M.; Ntawuhiganayo, E.B.; Zibera, E.; Ntirugulirwa, B.; Way, D.A.; Nsabimana, D.; Uddling, J.; Wallin, G. Limited thermal acclimation of photosynthesis in tropical montane tree species. Glob. Change Biol. 2021, 27, 4860–4878. [Google Scholar] [CrossRef] [PubMed]
- Norby, R.J.; Sholtis, J.D.; Gunderson, C.A.; Jawdy, S.S. Leaf dynamics of a deciduous forest canopy: No response to elevated CO2. Oecologia 2003, 136, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Liu, Y.; Yu, M.; Meinzer, F.C.; Tissue, D.T.; Hanson, D.T.; Yan, L.; Luo, Y.; Zhou, G. Meta-analysis of the responses of tree and herb to elevated CO2 in temperate forests. Sci. Rep. 2023, 13, 15845. [Google Scholar]
- Jiang, Y.; Still, C.J.; Rastogi, B.; Page, G.F.M.; Wharton, S.; Meinzer, F.C.; Voelker, S.; Kim, J.B. Trends and controls on water-use efficiency of an old-growth coniferous forest in the Pacific Northwest. Environ. Res. Lett. 2019, 14, 074029. [Google Scholar] [CrossRef]
- Gao, Y.; Markkanen, T.; Aurela, M.; Mammarella, I.; Thum, T.; Tsuruta, A.; Yang, H.; Aalto, T. Response of water use efficiency to summer drought in a boreal Scots pine forest in Finland. Biogeosciences 2017, 14, 4409–4422. [Google Scholar] [CrossRef]
- Poorter, H.; Nagel, O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review. Aust. J. Plant Physiol. 2000, 27, 595–607. [Google Scholar]
- Hickler, T.; Smith, B.; Prentice, I.C.; Mjöfors, K.; Miller, P.; Arneth, A.; Sykes, M.T. CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob. Change Biol. 2008, 14, 1531–1542. [Google Scholar] [CrossRef]
- Cernusak, L.A.; Winter, K.; Dalling, J.W.; Holtum, J.A.M.; Jaramillo, C.; Körner, C.; Leakey, A.D.B.; Norby, R.J.; Poulter, B.; Turner, B.L.; et al. Tropical forest responses to increasing atmospheric CO2: Current knowledge and opportunities for future research. Funct. Plant Biol. 2013, 40, 531–551. [Google Scholar] [CrossRef] [PubMed]
- Springer, C.J.; Ward, J.K. Flowering time and elevated atmospheric CO2. New Phytol. 2007, 176, 243–255. [Google Scholar] [CrossRef]
- Darbah, J.N.T.; Kubiske, M.E.; Nelson, N.; Oksanen, E.; Vapaavuori, E.; Karnosky, D.F. Effects of decadal exposure to interacting elevated CO2 and/or O3 on paper birch (Betula papyrifera) reproduction. Environ. Pollut. 2010, 158, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Stitt, M. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ. 1991, 14, 741–762. [Google Scholar] [CrossRef]
- Moore, B.D.; Cheng, S.H.; Sims, D.; Seemann, J.R. The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ. 1999, 22, 567–582. [Google Scholar]
- Bloom, A.J.; Smart, D.R.; Nguyen, D.T.; Searles, P.S. Nitrogen assimilation and growth of wheat under elevated carbon dioxide. Proc. Natl. Acad. Sci. USA 2002, 99, 1730–1735. [Google Scholar] [CrossRef]
- Makino, A.; Mae, T. Photosynthesis and plant growth at elevated levels of CO2. Plant Cell Physiol. 1999, 40, 999–1006. [Google Scholar] [CrossRef]
- Baldocchi, D.; Valentini, R. Geographic and temporal variation of carbon exchange by ecosystems and their sensitivity to environmental perturbations. In The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World; Field, C.B., Raupach, M.R., Eds.; Island Press: Washington, DC, USA, 2004; pp. 295–316. [Google Scholar]
- Harley, P.C.; Sharkey, T.D. An improved model of C3 photosynthesis at high CO2: Reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynth. Res. 1991, 27, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Medlyn, B.E.; Barton, C.V.M.; Broadmeadow, M.S.J.; Ceulemans, R.; De Angelis, P.; Forstreuter, M.; Freeman, M.; Jackson, S.B.; Kellomäki, S.; Laitat, E.; et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: A synthesis. New Phytol. 2001, 149, 247–264. [Google Scholar] [CrossRef]
- Herrick, J.D.; Thomas, R.B. Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum trees (Liquidambar styraciflua) in a forest ecosystem. Tree Physiol. 2001, 21, 1103–1111. [Google Scholar] [CrossRef]
- Tagesson, T.; Schaphoff, S.; Hickler, T.; Fensholt, R. Disentangling the controls of vegetation productivity in the high-latitude Northern Hemisphere using a dynamic vegetation model. Biogeosciences 2020, 17, 3085–3105. [Google Scholar]
- Ainsworth, E.A.; Lemonnier, P.; Wedow, J.M. The influence of rising tropospheric ozone on plant communities. Annu. Rev. Plant Biol. 2006, 57, 35–51. [Google Scholar]
- Cheng, L.; Zhang, L.; Wang, Y.P.; Canadell, J.G.; Ciais, P.; He, S.; Liu, Y.; Piao, S.; Tao, F.; Yuan, W.; et al. CO2 fertilization increased global annual terrestrial photosynthesis by 13.5% between 1982 and 2020. Science 2023, 381, 772–776. [Google Scholar]
- Nowak, R.S.; Ellsworth, D.S.; Smith, S.D. Functional responses of plants to elevated atmospheric CO2—Do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol. 2004, 162, 253–280. [Google Scholar] [CrossRef]
- Duursma, R.A.; Gimeno, T.E.; Boer, M.M.; Crous, K.Y.; Tjoelker, M.G.; Ellsworth, D.S. Canopy leaf area of a mature evergreen Eucalyptus woodland does not respond to elevated atmospheric [CO2] but tracks water availability. Glob. Change Biol. 2016, 22, 1666–1676. [Google Scholar] [CrossRef]
- Körner, C.; Asshoff, R.; Bignucolo, O.; Hättenschwiler, S.; Keel, S.G.; Peláez-Riedl, S.; Pepin, S.; Siegwolf, R.T.W.; Zotz, G. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 2005, 309, 1360–1362. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, J.; Han, Y.; Liu, G.; Wang, X.; Li, Z.; Zou, Q.; Zhai, C.; Zhang, J.; Huang, Z.; et al. Rapid increase in soil respiration and reduction in soil nitrate concentration in a temperate forest exposed to elevated CO2. ACS Omega 2025, 10, 1624–1634. [Google Scholar]
- Guerrieri, R.; Belmecheri, S.; Ollinger, S.V.; Asbjornsen, H.; Jennings, K.; Xiao, J.; Hollinger, D.Y.; Bracho-Garrillo, R.; Clark, K.; Coulston, J.; et al. Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proc. Natl. Acad. Sci. USA 2019, 116, 16909–16914. [Google Scholar] [CrossRef] [PubMed]




| Mechanism | Description | Key References |
|---|---|---|
| Rubisco content reduction | Decreased Rubisco content and activity (Vcmax) after long-term CO2 exposure | [9,33] |
| Electron transport adjustment | Changes in maximum electron transport rate (Jmax) and Jmax/Vcmax ratio | [37,38] |
| Carbohydrate accumulation | Increased leaf starch and soluble sugar content leading to feedback inhibition | [11] |
| Nitrogen reallocation | Shift in nitrogen allocation from Rubisco to light harvesting components | [35,36] |
| Source-sink regulation | Imbalance between carbohydrate production and utilization/export | [17] |
| Gene expression changes | Downregulation of genes related to photosynthesis and carbon fixation | [33] |
| Morphological adaptations | Changes in leaf thickness, stomatal density, and chloroplast structure | [11] |
| FACE Experiment | Location | Forest Type | Duration | Key Findings | Reference |
|---|---|---|---|---|---|
| Duke FACE | USA | Loblolly Pine | 1996–2010 | 23% increase in NPP; 40% increase in WUE; Stronger response in wet years | [17] |
| Oak Ridge FACE | USA | Sweetgum | 1998–2009 | 20% increase in NPP initially, declining to 10% over time; Progressive nitrogen limitation | [49] |
| EucFACE | Australia | Eucalyptus | 2012–present | No significant increase in NPP; Phosphorus limitation; Enhanced WUE | [52,53] |
| BIFoR FACE | UK | Oak Woodland | 2017–present | 25% increase in woody biomass; Sustained photosynthetic enhancement | [89,90] |
| Hofstetten FACE | Switzerland | Mixed Deciduous | 2009–2015 | Weak growth response in mature trees; Significant understory response | [18] |
| AspenFACE | USA | Aspen, Birch, Maple | 1997–2009 | Species-specific responses; Interactions with O3; Altered competitive dynamics | [79] |
| Amazon FACE | Brazil | Tropical Rainforest | 2016–present | Early results show complex responses; Phosphorus limitation important | [54] |
| Model Type | Description | Strengths | Limitations | Key References |
|---|---|---|---|---|
| Leaf-level biochemical | Models of photosynthetic processes based on Farquhar equations | Mechanistic understanding of CO2 effects | Limited scaling to ecosystem level | [23,85] |
| Ecosystem models | Simulate carbon, water, and nutrient cycling in forest ecosystems | Integration of multiple processes | Parameter uncertainty, simplifications | [74,86] |
| Dynamic global vegetation models | Global-scale models of vegetation dynamics and biogeochemistry | Large spatial coverage, vegetation dynamics | Coarse resolution, process simplification | [13] |
| Earth system models | Coupled models of atmosphere, ocean, land, and ice | Integration of climate feedbacks | Computational demands, uncertainty propagation | [3,7,87] |
| Data-model fusion | Integration of observations with models through data assimilation | Improved parameter constraints, uncertainty quantification | Data limitations, computational complexity | [76,77] |
| Machine learning approaches | Statistical models trained on observational data | Capture complex patterns without prior assumptions | Limited mechanistic insight, extrapolation issues | [80,84] |
| Research Area | Key Questions/Approaches/Key References |
|---|---|
| Multi-factor interactions | Key Questions: How do elevated CO2 effects interact with warming, drought, and ozone? Approaches: Multifactor manipulations, climate-gradient transects, model ensembles. Key References: [33,34,61,62,109,119]. |
| Nutrient–hydrology linkages | Key Questions: How do nutrient cycling and water availability jointly regulate CO2 responses? Approaches: FACE × irrigation/fertilization factorials, isotope tracers. Key References: [52,53]. |
| Belowground processes | Key Questions: What role do roots, mycorrhizae, and microbial communities play in modulating long-term CO2 responses? Approaches: Root exclusion, mycorrhizal manipulation, metagenomics. Key References: [81,86]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, N.; Wang, T.; Wang, Y.; Dong, J.; Bao, W. Photosynthetic Responses of Forests to Elevated CO2: A Cross-Scale Constraint Framework and a Roadmap for a Multi-Stressor World. Biology 2025, 14, 1534. https://doi.org/10.3390/biology14111534
Xu N, Wang T, Wang Y, Dong J, Bao W. Photosynthetic Responses of Forests to Elevated CO2: A Cross-Scale Constraint Framework and a Roadmap for a Multi-Stressor World. Biology. 2025; 14(11):1534. https://doi.org/10.3390/biology14111534
Chicago/Turabian StyleXu, Nan, Tiane Wang, Yuan Wang, Juexian Dong, and Wenhui Bao. 2025. "Photosynthetic Responses of Forests to Elevated CO2: A Cross-Scale Constraint Framework and a Roadmap for a Multi-Stressor World" Biology 14, no. 11: 1534. https://doi.org/10.3390/biology14111534
APA StyleXu, N., Wang, T., Wang, Y., Dong, J., & Bao, W. (2025). Photosynthetic Responses of Forests to Elevated CO2: A Cross-Scale Constraint Framework and a Roadmap for a Multi-Stressor World. Biology, 14(11), 1534. https://doi.org/10.3390/biology14111534
